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[ Following hand-harvesting of sorghum grain (non bird-resistant variety

Dinkamash) in mid-November, the stover (straw) was hand-cut from the
field in mid-January and stored indoors until feeding in May. Forty
eight Menz Highland rams of 17.2 kg initial weight (M) and ca.l5 months
old were fed 113 g dry matter (DM) cottonseed cake per day (d) and ad
libitum stover over 56 d; salt licks were also provided. Using a 2 x 2
factorial arrangement of treatments, stover, either in the long form or
chopped (Alvan Blanch Maxi Chaff Cutter) was offered at 25 or 50 g DM
per kg M.d. There were four groups, each of three rams, per treatment.
Ram live-weight gain (g/d) was improved, both by chopping the stover
(P<0.05; 43.2, 58.1, s.e. 3.98) and offering more (P<0.001; 38.2, 63.2,
s.e. 3.98); stover form and amount offered did not interact (P>0.05).
Stover intake (kg DM/group.d) was improved by both chopping the stover
{(P<0.05; 1.11, 1.34, s.e. 0.06) and offering more (P<0.001; 1.03, 1.42,
s.e. 0.06); form and amount did not interact (P>0.05). Rams selected
for leaf and sheath, and against stem. The proportion of offered stover
left uneaten ranged from 0.11 (chopped 25) to 0.52 (long 50). The data
offer strategies for feeding stover to alleviaté dry-season feed

shortages and also generating residues for other purposes e.g fuel
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Twenty four male goats initial weight M) 15.5 kg) and 24 rams 17.0

kg M) were individually-fed 150 g cottonseed cake per day (d) and

minerals, and offered 25, 50 or 75 g sorghum (bird-resistant variety

Seredo) stover straw) per kg M.d in a 2 x 3 factorial experiment over

75 d, following a preliminary period of 21 d. Stover was offered in

chopped form (Alvan Blanch ‘'Maxi’

Chaff Cutter . Live-weight gain

(g/d) of sheep was higher than goats (P<0.001; 48.2, 21.5, s.e. 4.51);

there was no interaction between species and amount of stover offered

Growth rates increased with increasing amount of stover offered

(p<0.001; 19.5, 39.8, 47.9, s.e.

5.84). Stover intake (g DM/d) was

higher for sheep than goats (P<0.001; 475, 428, s.e.24.9 and there was

no interaction of species with amount of stover offered. Stover intake

increased with increasing amount of stover offered (P<0.001; 315, 487,

563, s.e. 14.6). The proportion of offered stover remaining uneaten

increased with increasing amounts offered: sheep, 0.05, 0.31, 0.49;

goats, 0.16, 0.41 and 0.53. The proportions of leaf and leaf sheath in

uneaten stover decreased with decreasing amounts of stover offered.

data indicate that both goats and sheep are capable of selective

feeding, leading to increased intake and growth, when they are offered

increasing ad libitum amounts of chopped sorghum stover.
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AN IMPROVED POST-COLUMN DERIVATIZATION PROCEDURE USING SHIFT
REAGENTS FOR THE UV-VIS SPECTROSCOPY OF PHENOLIC COMPOUNDS IN PLANT
EXTRACTS

I. Mueller~-Harvey and P.M.S. Blackwell

Institute for Grassland and Animal Production, Hurley, Maidenhead, SL6 5LR,
UK.

A previously published procedure (Hostettmann et al., J. Chromatogr. 283, 1984,
137) was modified. A new commercially available solvent mixing chamber (Lee
Visco~Jet Micro mixer, Lee Products) was used to introduce the shift
reagents. It has a series of 36 apin chambers and an internal volume of 10
ul. This mixing system causes hardly any loas of resolution even in complex
chromatographic separations. In addition, it was found necessary to adjust
the pH of the column effluent to ca. 3.5 before adding the AICl3 reagent and
to ca. 7.0 before adding the HiBO3 reagent. These pH adjustments were
achieved with another Lee mixer.

This method has been applied to mixtures of standard compounds (flavonoids)
and to plant extracts. HPLC chromatograms and UV-Via aspectra are gshown.
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TANNINS — THEIR BIOCHEMISTRY AND NUTRITIONAL PROPERTIES

1. Introduction

This review collates information on tannins from different areas of
research. The aim is to present the various factors contributing to the
biosynthesis of tannins, to describe the variety of their chemical
structures and their interactions with other macromolecules. This
information is important in an agricultural context: the production of
tanniniferous plants and their utilization by animals. A survey [1 was
shown that 80% of woody perennial dicots and 15% of annual and
herbaceous perennial dicots contain tannins. Plants with high levels of
tannins (e.g. browse plants) -are especially important in many developing
countries as potential protein sources for animals.

This review will not describe techniques for isolating,
characterizing or quantifying tannins as these have been covered
elsewhere [2,3]. We wish instead to provide an update on different
types of chemical structures and on nutritional effects of tannins.
Recognising the wide range of tannin structures that exists between
plants, the reader will appreciate the complexity of their nutritional
effects.

Recent studies on the interactions of tannins with other nutrients
(proteins, polysaccharides) will be presented which has led to some
interesting hypotheses relevant to animal nutrition. Although the
literature abounds with information about negative effects of tannins on

nutrition, a few important experiments will be discussed in which



tannins have produced positive effects. It is for these reasons that

the study of tannins is an exciting topic in animal nutrition.

2. Definition of tannins

Plant extracts-have been used for centuries to produce leather from
hide during the tanning process [4]. oOur understanding of what
constitutes a tannin has therefore been influenced by early research on
natural products. The active components of the tanning process were
named tannins and defined as "compounds able to convert hide into
leather’. The transformation of hide into leather results from tannins
crosslinking neighbouring collagen (protein) strands. However, the
definition of tannins is regularly modified in the light of new research
findings. These have revealed that all tannins are polyphenolic
compounds which are synthesized in many plants. It was realized that
these polyphenols not only bound strongly with hide proteins but also
with many other proteins and also with polysaccharides, nucleic acids,
steroids, alkaloids and saponins (5]. Such interactions are obvious
when the complexes between tannins and these compounds precipitate out
from solution. However, tannins also form soluble complexes with some
of the above compounds which have often been overlooked [6]. If the
bonds in such complexes are strong, "profound physiological or
nutritional effects can result from the consumption of tannin-rich
foods.

Traditionally, tannins have been divided into two groups: the
‘condensed’ and 'hydrolysable’ tannins 4]. The ’condensed’ tannins are

made up of flavan-3-ols linked via carbon-carbon bonds, e.g. compounds



(1 and 2). They are also called proanthocyanidins for the reason that
on treatment with alcoholic acid, coloured anthocyanidin compounds are
produced 7]. ‘'Hydrolysable’ tannins are polyesters of gallic acid,
hexahydroxydiphenic acid and/or their derivatives and glucose or quinic
acid compounds 3, 4, 5, 6 [8]). However, within the last 10 years many
new compounds have been identified, which do not fit into either of
these two categories, yet they show tannin-like properties. Whilst it
would seem that the ’condensed’ tannins are the most widely distributed
tannins in plants, the picture is not yet complete and we must wait for
their distribution to be recorded more fully

One attempt to describe the properties of those polyphenols which
behaved as tannins stipulated that the polyphenols must be water-soluble
compounds with molecular weights of between 500 and 3000 Daltons (41.
However, in-depth studies of the interactions between tannins and
proteins have revealed great variability in the binding strengths with
seemingly similar tannins.

It will be seen from the above that the definition of a tannin is
problematical. For the purposes of this paper, we will define a tannin
as a polyphenol capable of complexing with proteins, polysaccharides and
saponins (many of these tannins also bind of course other macro—

molecules).

3. Biosynthesis of tannins

3.1. Tannins based on gallic acid

The biosynthesis of these tannins has not yet been elucidated. A

recent review by Haslam [5] succinctly summarises the known facts.



Gallic acid may be synthesised by either of three routes all of which
originate from quinic acid. Subsequent esterification to glucose
produces g-penta-O-galloyl-D-glucose. This compound seems to represent
a biosynthetic ’watershed’ in the plant kingdom from which many
different tannin compounds are derived either by depsidic linkages
(gallotannins) or by oxidative coupling between further gallic acid
units (ellagitannins) [9]. Not much is known about the enzymology of
these reactions but biosynthetic schemes have been proposed that link

precursors and end-products in a logical manner (5, 10]

3.2. Tannins based on flavanols

Far more is known about the biosynthesis and enzymology of
flavonoids. All enzymes necessary for the formation of flavanols have
been described and these are the immediate precursors of oligoflavanol
tannins.

Two precursors are necessary for flavonoid synthesis, acetate and
phenylalanine, which originate from carbohydrates and proteins
respectively {11 (Scheme 1). Wwhilst the A-ring carbons (see compound
1 are derived from three acetate units , the B and C ring carbons come
from phenylalanine. A chalcone compound forms the first intermediate,
followed by a flavanone and then a dihydroflavonol. A flavan-3,4-diol
is one of the immediate precursors of oligomeric flavanols. The other
precursor is usually a flavanol, but other suitable compounds can also
participate as the nucleophile. No enzymes have yet been isolated which
govern these condensation steps. Controversy has surrounded the nature
of the reactive intermediate derived from flavan-3,4-diol. A

flav-3-en-3-ol has been suggested (compound 7) [12]. However, the



available evidence tends to favour a quinone methide intermediate, which
may be enzyme mediated [12]. This intermediate has a strongly
electrophilic carbon at C-4 and readily condenses with many
nucleophiles.

Porter 13] discussed the fact that the upper and lower flavanoid
units often differ within oligoflavanoids. This suggests that these
units are synthesised by different metabolic routes. Two distinct
metabolic pools may provide the electrophilic (chain elongating; T, M,
, J-units) and the nucleophilic units (chain terminating; B-units) (Scheme
2)

Roux and Ferreira [14] were able to interpret the relative ratios
between tannin regio-isomers, which were obtained by in vitro synthesis.
They considered the relative stabilities of potential electrophiles and
nucleophiles as chain elongating and terminating units respectively
(Schemes 3 and 4). From these deliberations, it follows that the
relative ratios of 4 - 8) to (4 » 6) oligocatechin regio-isomers (e.g.
compounds 1 and 2) are 10 : 1, whereas for oligofisetinidins they are 4
: 1. In some plants (e.g. Schinopsis sp), the same ratios were detected
in vivo as were obtained by synthesis in vitro. However, in other
plants (e.g. wattle) significantly different ratios were found. They
hypothesised that the condensation reactions leading to tanmnins were
under enzymatic control in ’the metabolically active wattle bark which
also contains chlorophyll’, but that the condensation reactions in the
heartwood of Schinopsis.and Rhus sp. were the product of an ageing
brocess which was probably not under strict enzymatic control. Th
enzymes are responsible for the final structures of flavanoid tannins in

most living tissues is apparent from the fact, that plants using the
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5. Chemical structures of tannins
5.1. Tannins based on flavanols

Views on the nutritional effects of tannins are mixed and sometimes
confused. Most reports conclude that tannins have negative effects on
animal nutrition (see Sections 8 and 9.). However, there is good
evidence that some tannins have beneficial effects. An objective for
future research will be to link particular tannin structures with
particular nutritional effects. This is a distant goal. For the time
being we need to be aware of the variety and complexity of tannin
structures and their different nutritional effects. Good compilations
of tannin structures and their plant sources have been provided [5, 12,
29, 30). Some general rules governing tannin structures based on
research to date are set out below.

Porter’s review [12] covered the literature up to 1986 on
flavan-3-ols, flavan-4-ols, flavan-3,4-diols. Many of the newly
identified flavan-3-ol oligomers also contain other molecules which are
not flavanols. We therefore propose to use a term first coined by Roux’
group [31-34] which is more general than 'condensed’ tannins, namely
‘oligomeric flavanoids’. The assumption is that some of -the newly
included oligomers will also fit the definitions of tannins just as well

as the ’condensed’ tannins.

5.1.1. Nomenclature

Two different nomenclature systems are in use for naming
oligoflavan-3-ols. The IUPAC system is widely used by chemists and
provides a systematic approach to the naming of chemical structures.

However, the IUPAC rules are rather awkward when applied to flavanoids.
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The C to A ring links of higher oligomers have been investigated in
great detail. Three types of building blocks arise from C to A ring
links. ‘Linear’ oligomers result from 4 » 8 carbon-carbon links between
three or more monomers [40] (e.g. compound 10). On the other hand, if
three monomers are linked so that the middle unit (M-unit) is bonded via
4->6and 48 ligks (13) (e.g. compound 11), 'angular’ oligomers
result [41]. If four or more monomers are linked so that there is-éne
central unit (J-unit) surrounded by three monomers, all of which are 4 -
6 and 4 » 8 linked, then 'branched’ oligomers are formed [40] (e.q.
compound 12).

The oligomers described above are linked via single carbon-carbon
bonds between monomers. However, another type of linkage (A-type) is
often encountered (e.g. compound 13) where the C and A rings are doubly
linked through (C2-0-C7) and (C4 -+ C8) [12]

A few representative examples of natural compognds follow below in
order to illustrate these structural principles. The reader is referred
to Porter [12] for a more complete list. Linear dimeric and trimeric
oligomers of (4 » 8) linked catechin and epicatechin are widespread.
Tetrameric and pentameric oligomers containing epicatechin as T- and
M-units coupled to catechin as B-unit have been found in sorghum seeds
{42]. The highest oligomers that have so far been isolated and
identified are linear hexamers of (-)-epicatechin [43]. Pure
oligocatechins or oligoepicatechins (syn. procyanidins) have been found
in some 38 species {12, 20, 44, 45]. Although most had (4 » 8)
linkages, some had a very high proportion of (4 » 6) linkages [15].

A dimeric prodelphinidin (gallocatechin-(4 - 8)-epigallocatechin)

has been isolated from Ribes sanguineum [46]. Flowers of Trifolium
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repens are unique in having oligomers consisting only of gallocatechins
and/or epigallocatechins (syn. prodelphinidins) [20]. Only a few other
pure oligoflavanols are known. These are dimers of afzelechin,
prosopins and fisetinidols [12].

The vast majority of oligoflavan-3-ols contain a mixture of
monomers in which either of the following monomers (afzelechin,
gallocatechin, quibourtinidol, fisetinidol or robinetinidol) form top,
middle or junction units (T-, M-, or J-units; Scheme 2) and catechin or
epicatechin usually form the bottom (B- units [12].

A-type links have been found in dimers between afzelechin and
catechins. In higher oligomers (up to the pentamer), they have been
found in bligo—epicatechins. These contained only one A-link per
molecule which may be due to steric constraints or because other

oligomers have not yet been identified

5.1.3. Molecular weights
Average chain lengths of flavanoid tannins range from two

flavan-3-ol units in barley seeds to 20 or 25 in Lotus pedunculatus

roots and sainfoin leaves. For most samples of the same plant species
the ratios of delphinidin to cyanidin, formed by oxidising the tannins,
were quite similar (44, 45, 47). However, tannins from Lotus

corniculatus leaves and roots yielded extremely variable ratios between

samples which may be due to genetic variability [20].
Average molecular weights of tannins obtained from these plant
samples tended to be similar ranging between 2000 and 4000 Daltons, with

the exception of Trifolium repens flowers (M = ca. 3000, [47); M =

2050, [20]), and sainfoin leaves_(Mh = ca. 5700-9400; ([47], M = 2100,
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20]). The authors could not explain the large discrepancy between the
sainfoin samples. It would be interesting to know whether these
variable molecular weights are caused by seasonal or cultivar

differences

5.1.4. Phlobatannins

In this section other classes of oligoflavanoids are presented
underlining the chemical diversities that can be found amongst tannins
and showing how widespread the carbon-carbon bonds are between different
types of flavanoids. The reaction of oligoflavan-3-ols in strong
mineral acids yields red insoluble polyphenols, the so-called
rphlobaphenes’ or ‘tanners’ reds’. Their structural identities are not
known. While investigating such acid induced changes, Roux and
co-workers discovered a new group of tannins, which they named
phlobatannins [33, 34, 48-50]. The authors suggested that the tanners’
reds may be a mixture of phlobatannins, red anthocyanidins and some
self-condensation products. It should be noted however, that whilst the
tanners’ reds were formed in the presence of oxygen, the phlobatannins
were synthesized under nitrogen. Phlobatannins are thought to arise via
C-ring opening followed by rearrangement. The reaction may involve a
quinone methide intermediate [50] (compound 14). Several phlobatannin
compounds are known consisting of flavanoid ‘dimers’ and ‘trimers’ with
three or four fused rings (compounds 15 and 16)

Phlobatannins with the molecular weight of a flavanoid 'dimer ‘have
now also been found in nature. They were isolated from the heartwoods

of Guibourtia coleosperma (false mopane) and Baikiaea plurijuga

(Rhodesian teak) [33, 34].
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5.1.5. Flavanol glycosides

It is somewhat surprising that monomeric flavan-3-ol glycosides are
relatively rarely detected in plants. Several combinations of catechin,
epicatechin, epiafzelechin with glucose, arabinose, apiose, xylose or
allose have been identified [12}. 6C- and 8C-glucosides of a flavanol
dimer, catechin-(4 &« - 8)-catechin, were found by Kashiwada et al. [51
in medicinal rhubarb together with a 7-O-analogue. The identification
of glycosylated oligoflavanols may be the first step towards resolving
the longstanding question of the nature of insoluble tannins [52, 53]
Insolubility of these tannins may (i stem from their large molecular
size, (ii be due to the formation of a large number of hydrogen bonds
with polysaccharides, or (iii arise from covalent linkages to the
polysaccharides. C-13 n.m.r. studies of oligoflavanols by Porter et al.

and Shen et al. [53] clearly revealed carbohydrate signals in what

regarded as highly purified preparations. The ratio of glucosyl to
flavanoid residues was as high as 1 in the Pinus and Picea sp. tannins,
but it was much smaller for the quince tannins. Glucosyl units in
quince tannins were probably attached at the terminal epicatechin-3-0-
positions. The .same attachment positions were observed for allose in
epicatechin oligomers [55]. However, glucosyl residues in Pinus and
Picea tannins must have been attached to the phenolic hydroxyl groups
[54]. The exact glucosyl-positions could not be determined due to

similar labilities of the glucosidic and interflavanoid bonds!

5.1.6. Flavanol-gallates
These are a special class of tannin compounds incorporating building

units from the 'condensed’ and ’hydrolysable’ tannins. Therefore, the
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hydroxy benzylalcohol derivatives in large amounts 77] and also
synthesise novel tannins. These have building block units consisting of
B-D-glucose and 3,4,5-trihydroxybenzylalcohol (compound 30).
Castamollissin (compound 31  77] contains a benzylaldehyde derivative
and may be an intermediate in the biosynthesis of these benzylalcohél
derivatives. Gallic-acid is esterified at either the glucose moiety
(castamollissin; compound 31 or at the benzylalcohol moiety (cretanin;
compound 32). Chestanin and isochestanin may be envisaged as the dimers
of two oxidatively coupled cretanins. Oxidative coupling between
cretanin and gallic acid leads to chesnatin or isochesnatin.

It may well be that these compounds are only the first

representatives of a new class of tannins yet to be explored further.
6. Interactions of tannins with other molecules

6.1. Conformations of tannins

In the previous sections we have illustrated the primary structure
of tannins. However, in order to understand the phenomenon of tannins
binding with other molecules, one also needs to appreciate their
secondary and tertiary structures, i.e. their conformations. These
three-dimensional structures have been investigated using X-ray
crystallography, nuclear magnetic resonance (n.m.r.) and computer
models. Although X-ray crystallography is accredited with providing the
final proof of structures, conformations in the solid, densely packed
state are not necessarily the same as in solution 79]. For solution
studies, n.m.r. is a highly valuable tool as it provides information on

primary and secondary structures. If 'u n.m.r.-spectra exhibit
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different sources bind polyphenols to varying degrees {105, 108].
Cellulose - in contrast to starches - adsorbs polyphenols on its

surfaces [97].

7. Effects of tannins on digestion
7.1. Do tannins bind to enzymes or substrates?

Digestion of feeds may be affected by tannins complexing with
protein substrates and/or with digestive enzymes. Mole and Waterman
[109] investigating the proteolysis of BSA by trypsin at pH 7.5
concluded that tannic acid deprived trypsin of substrate rather than
acting directly on the enzyme. Similarly, Blytt et al. [110] reported
that tannins from sorghum seeds (oligocatechins) and from quebracho
(oligofisetinidins) hardly inhibited crude alkaline phosphatase and
5’-nucleotide phosphodiesterase. They therefore proposed that any
anti-nutritional effects of tannins would be due to substrate (protein)
complexation.

It would however be premature to draw firm conclusions from this
limited number of experiments, as the interactions are highly protein
and tannin specific. In addition, Mole and Waterman [6] pointed out how
very different proteolytic rates were obtained depending on the
substrate proteins and the complexation conditions.

An in vivo study by Griffiths and Moseley [111 pointed to direct
enzyme inhibition. Trypsin activity in the gut was determined using a
synthetic substrate. This activity was lower in rats fed high-tannin
field beans, but polyvinylpyrrolidone (PVP) extracts of the gut resulted
in similar activities being measured on straw and tannin diets,

presumably because PVP bound the tannins thus freeing the enzymes
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The answer to the question whether proteolysis by trypsin in the
presence of tannins is substrate or enzyme inhibited is not quite as
clear—cut because the experiments are not directly comparable: firstly
the proteins (BSA and bean protein), secondly the tannins (purified
tannic acid and unpurified bean tannins) were different in these
experiments. It is possible that under the experimental conditions of

and Waterman [109] tannins bound preferrentially to the substrate
and under the conditions of Griffith and Moseley’s [111 experiment they
bound preferrentially to the enzyme. Results from in vivo deer
experiments also demonstrated a reduction in protein digestibility
{112}, the extent of which could be predicted from the protein
precipitating capacity of tannins. Whatever the mechanism, it would
appear that proteolysis is reduced by tannins (100, 109-111

Lipid metabolism on the other hand exhibits a different response to
tannins. Whilst in vitro studies with purified lipase, alkaline
phosphatase and 5’-nucleotide phosphodiesterase showed a depression of
enzyme activities due to tannins [100, 110}, crude fractions in which

enzymes were associated with phospholipids were hardly affected
[110]). Lipase activity was also not changed and occasionally even
enhanced in rat trials [100, 111]. As a result, the digestion of
substrate lipids was not negatively affected by tannins (100]. These
results are rather interesting as they may explain some aspects of the
altered lipid metabolism observed when animals are fed tanniniferous

feeds (Section 8).
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may explain the following observation. Sainfoin tannins did not protect
red clover proteins from degradation in the rumen (see section 8. when
the two diets were mixed [115].

Free soluble phenolics may therefore be more detrimental to animals
than many tannins (112]. They certainly seem to be better deterrents
to Quelea birds than-did the oligo-catechins of sorghum seeds [116]

This view has also been expressed by Singleton [117] who stated that a

significant nutritional drag on animals is observed when phenols exceed
1 to 5% of the diet. However, this range will be higher for phenols of
low solubility which would probably include tannins rendered insoluble

through complex formation.

pH does not only govern protein complexation by tannins, acid pH
values are possibly also important in breaking down some tannins in the

For example, it has been shown that 4 -+ 8 carbon-carbon linkages
are much more susceptible to acid cleavage than 4 -+ 6 links [118].
Tannins having 4 » 8 links may therefore potentially be more toxic to
animals as they will release more phenolic monomers which in turn may be

absorbed by the animal and will have to be detoxified.

8. Nutritional Effects of Tannins

Studies on the effects of tannins on animal nutrition have involved
a wide range of plants and covered a wide variety of wildlife species.
In the vast majority of cases there has been little or no
characterisation of the tannins present in the feedstuffs used. Even
measurements of total tannins or polyphenols presented are equivocal in

most were derived by relatively unspecific procedures frequently of
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but have adapted to and accepted it in their feed [125]. Levels of
tannic acid and some other tannins in diets have been associated with
decreased dry matter intakes in chickens, rats and cattle {126-128].
However, the effects of tannin levels in the diet may also be quite
negligible or indeed they may even enhance intake [127, 129]. Some of
these results may bc-due to tannins affecting other dietary components
present in the feed.

Effects of tannins on voluntary intake may also reflect any
toxicity. Several studies support the assumption that the
oligo-flavanol tannins [130]) of Sericea may be responsible for its
apparently low palatability [131, 132]. The following example
illustrates a typical case in which the different structural types of
tannins were completely disregarded. 1In this study with calves,
gallotannins were added to alfalfa hay diets to bring its tannin content

equal to that of Sericea lespedeza [133] which contains oligo-flavanol

tanné%. The addition of gallotannins did not affect}the intakes of
alfaifa hay compared with non—-tannin containing diets, but the intakes
of alfalfa hay plus gallotannins were higher than the intakes of
Sericea. However, increasing levels of oak browse (contains a mixture
of tannins, the relative proportions of which change with leaf
development {134]) in alfalfa based diets resulted in reduced voluntary
intake by goats [?35]. Given a choice of browse and stocking rate

allowing, goats eating blackbrush (Colegyne ramosissima) twigs will

select low tannin containing older growth compared with high tannin
current season'’'s growth [136]. However, tannin levels of older growth

may only appear to be lower due to an increase in molecular weights
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may therefore be more important than tannins in defending plants against

ruminants [139]

9. Effects of tannins on Different Animal Species and Insects

9.1. Herbivorous Insects

The role of tannins as defense agents of plants has been strongly
questioned following studies on insects [140]. Although there are
experiments which show tannins as effective insect deterrents, equally
there are those in which no effects were observed {124, 141}. For
example, phenolics reported to confer resistance to sorghum against
insect attack are used as nutrients by a tree locust [142] resulting in
increased growth rate and survival. This, of course, may reflect
selective adaptation.

Tree species selected as host by saturniid larvae were rich in
phenolic components and low in alkaloids [143]. Studies with two

closely related papilionid species showed that when Papilio polyxenes

caterpillers (a species restricted to tannin-free Umbelliferae) were
given tannins, large numbers of lesions were found in the qut. On the

other hand when the same tannins were given to Papilio glaucus

caterpillers (a species which feeds on tanniniferous trees) only one
small lesion was found {144]}. Feeny [145) suggested that the decreased
binding between proteins and tannins at alkaline pH may exert a
selection pressure for higher gqut pH in herbivorous insects where the
mid-gqut pH is around 9.2.

Insects may also protect themselves against dietary tannins in

other ways. It has been suggested that tannins may be adsorbed on to
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leucine, these effects were even more marked when raw kidney bean diets
were fed [164]). However, it was not established whether compounds other
than tannins could have caused these effects in soya or kidney beans.

Histopathological effects in chicks receiving sal seed (Shorea
robusta) meal or tannic acid containing diets include decreases in blood
haemoglobin, red and white cell counts; hydropic degeneration of the
liver and intestinal villi and necrosis of the kidney tubules [165,
166]. Conversely chicks and hens given HT sorghum grain diets for 33
and 84 days respectively showed no histopathological lesions in any
section of the intestinal tract [167]. The metabolic fate of dietary
tannic acid was studied by Potter and Fuller [168). They found that it
was apparently hydrolysed to gallic acid and a large part of this was
O-methylated and excreted as 4-O-methylgallic acid. Decarboxylation of
gallic acid accounted for.another urinary metabolite — pyrogallol.

Other detrimental production responses have also been associated
with tannin intake. Decreases in egg production have been reported in
hens receiving diets containing 1% tannic acid with further reductions
when diets contained 2% tannic acid [169]. HT containing horse beans
(oligo-flavanols) depressed egg weights and reduced the laying rate of
hens {170] and an inverse relationship between egg weight laid per day
and tannin content of the diet has also been found [171] Egg yolk
mottling and discolouration was observed with diets containing 2% tannic
acid [169] and egg taint has been related to the tannin content of rape
seed meal used in the diets [172]. This latter effect appeared to be a
result of inhibition of liver microsomal trimethylamine oxidase by the

dietary tannins.
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9.3. Small Mammals

An extensive literature exists on rat feeding trials with sorghum
grains of different tannin content {173]. Tannins in diets of rabbits
rats and mice have been shown to reduce growth rate, protein and amino
acid utilisation and to increase faecal nitrogen excretion [129,
174-178]}. Reducticns in amino acid digestibilities were greatest for
proline, glycine and glutamic acid (174]. 1In rats receiving diets
containing raw field beans or raw soyabeans as protein sources there was
significant impairment in the ability of the small intestine to
transport amino acids or sugars [179, 180). This was postulated to be a
result of tannin content of the feeds. Food intake was depressed in
rats fed tannic acid at 4, 5 and 8% levels in the diet [126]. Other
workers have reported increased feed consumption of rats receiving diets
containing 3.2 or 6.4% tannic acid in diets [129]. Positive and
negative effects were found on feed intake of rabbits receiving tannin
containing birch twigs or isolated tannins of birch twig polyphenol
extracts, catechin or tannic acid in their diets [176]. Mitjavala et
al. [129] also found significant growth depression with increasing
levels of tannic acid in the diet and FER was halved at levels of 6.4%
tannic acid. The main reason for weight reduction appeared to be a
considerably reduced deposition of fat. In rats receiving diets
containing 10% of HT field bean testa, intestinal activities of
o—amylase and trypsin were significantly lower than in animals receiving
diets containing 10% of LT field bean testa, whereas lipase activity was
considerably higher with the HT diet [181]. These results were
confirmed by Horigome et al. [100] after feeding 1% black locust tannins

to rats
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9.4. Pigs

Although field beans (Vicia faba L. have frequently been used in
pig diets the nutritional response has generally been less than that
expected from the nutrient composition of the beans [188). The nature
of the anti-nutritive factor(s) is not known but field beans can contain
0-3.5% tannins in their dry matter [189]. In vitro assessment of the
protein quality of different varieties of field beans [190] showed that
the presence of tannins in the seed was associated with a significant
reduction in the availability of methionine. 1In practical studies where
a LT containing bean was compared with a "standard" tannin containing
bean in fistulated pigs, more dietary nitrogen was digested and absorbed
on the LT diet (69.4 v 64.7). However, in a subsequent experiment the
same author found little difference in incremental daily nitrogen
retention between LT and HT bean containing -diets [188].

Sorghum grain has also been used to some extent in pig diets.
Twelve varieties of sorghum grain grown under the same conditions were
fed in low protein diets to pigs [191]. Highest digestion co-efficients
were obtained for the varieties with yellow or red seedcoat colours and
yellow endosperm and lowest co-efficients for varieties with brown

Oligo-flavanol tannin contents of the
sorghuns varied between 0.21 and 0.65%. Other workers'[195—194] also
found that feeding HT containing sorghum grains usually resulted in
poorer performance, particularly feed conversion efficiency, compared
with LT varieties. In a study where two HT (3.7%) sorghum hybrids and
two LT (0.9%) hybrids were fed to pigs, the digestibility of dry matter,
gross energy and nitrogen were lower with the HT varieties but there was

no reduction in nitrogen utilisation {193]. Caution is needed when
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whereas phenolics in Acacia seyal may have beneficial effects by
increasing rumen microbial utilisation of recycled endogenous nitrogen
(222]. Increased levels of shinnery oak in an alfalfa based diet
resulted in decreases in organic matter, crude protein, and fibre
digestibilities and increases in faecal nitrogen, and decreases in
urinary nitrogen 138]. Zelter et al. [229] treated a variety of
proteins with chestnut tannins which resulted in reduction in
proteolysis of these proteins as measured in an in vitro rumen system.
Other work in vivo confirmed these findings. For example, soyabean meal
was treated with 10% taratannin (compound 6) and fed to lambs [230].
Compared with similar diets containing untanned soyabean meal, average
daily gains, efficiency of feed utilisation, nitrogen balance and the
efficiency of nitrogen utilisation were all increased on the treated
soyabean meal diet, presumably as a result of higher protein flows to
the duodenum

In animals receiving mixed roughage: concentrate diets, any
potential effects of a HT containing component are frequently offset by
the other dietary constituents present. A number of HT containing
concentrate sources have been used to limited extents in ruminant
rations with little or no reduction in the overall nutriti?nal value of
the diet. Feedlot diets containing up to 10% peanut skins did not
affect steer performance, but feedlot heifer performance was depressed
when 20% peanut skins were included in the diets [231]. On the other
hand the effects of oligoflavanol- and gallic acid based tannins in sal
seed meal are such that it has been recommended that its use in
livestock rations should be discontinued [232]. 1In animals receiving

all roughage diets (grazers, browsers and mixed feeders) the overall
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Research at Purdue University has shown conclusively that many
herbivores respond to tannins in feed by producing special salivary
proteins (250, 251}. Many of these proteins have a great affinity for
different tannins which has been attributed to their primary and
secondary structures. They consist largely of proline, glycine and
glutamate and are characterised by a virtual absence of aromatic and.
sulphur containing amino acids. This means they are almost devoid of
essential amino acids and represent no great dietary loss to the
producer. These proteins have a highly flexible and open conformation
which promotes strong interaction with tannins. Decreased intestinal
digestibility of proline, glycine and glutamate (the major components of
PRP’s) observed in certain digestion studies [174, 195] suggest that
tannin:PRP complexes are not digested in the intestinal tract.
Synthesis of proline rich proteins in rats has been induced by
oligoflavanols and gallotannins. In humans, PRPs are constitutive and
account for about 70% of parotid saliva {251 - this may explain our
preference for foods with astringent tastes. PRPs have been found in
deer, sheep, cattle, hares, rabbits, rats, mice, monkeys, humans, koala
bears and rinéféil opposums. However, the tannin affinity of PRPs from
these sources varied greatly. PRPs from deer, bound much more strongly
than those from sheep or cattle [251] Tannin feeding of hamsters has
no effect on salivary glands and PRP’'s are not produced [250], perhaps
explaining, at least in part, the higher susceptibility of hamsters to
tannins.

The rumen microflora is extremely adaptable to changes in dietary
nutrient supply. Although there is little or no direct evidence of the

effects of tannins on rumen microbes, it seems probable that some
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species nutritional effects have been studied in detail but the
characterisation of the tannins present has been poor. Thus there is a
clear need for closer interdisciplinary research between animal
nutritionists and chemists.

Further confusion arises from attempts to extrapolate observed
nutritional effects between animal species. Beneficial effects of
tannins on bloat prevention and better nutrient utilisation have been
observed in ruminants under certain circumstances but in general and
also with most other species anti-nutritional effects result from the
presence of high tannin contents of feeds. However, if the tannin to
protein ratios are favourable, then the anti-nutritional effects may not
be too great. Natural adaptation to high tannin feeds does occur and
may vary between species. Some animals, such as deer, regulate dietary
intake thus not overloading the body's detoxification mechanism. Other
species produce proline-rich-proteins which bind to the tannins
rendering them inocuous. These proline-rich-proteins represent no drain
on essential amino acids of the body thus the animal detoxifies the
tannins at what is probably a minimal nutritional cost.

In developing countries tanniniferous feeds such as browse plants,
crop residues and other agricultural by-products are extremely important
economically and maximum usage of these can only be achieved on a fuller
understanding of tannin chemistry and biochemistry. Indeed
tanniniferous plants may also become more important in those parts of
the world where, as a result of environmental pollution, lower input

farming may have to be practised in the future.
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Table 1:
[12]

Flavan-3-ol units found in naturally occurring oligo-flavanols

Monomeric Oligomeric Substitution pattern

flavan-3-ol flavan-3-ol 3 5 7 8 3" 4’ 5
catechin procyanidin OH OH OH H OH OH H
gallocatechin prodelphinidin OH OH OH H OH OH OH
guibourtinidol proguibourtinidol OH H OH H H OH H
fisetinidol profisetinidin OH H OH H OH OH H
robinetinidol prorobinetinidin OH H OH H OH OH OH
prosopin promelacacinidin OH H OH OH OH OH R




Table 2: Naturally occurring gallic acid (GA) esters of flavan-3-ols

Compound Plant source Reference
3-0-GA esters of:
{+)—catechin see [12]
{-)—epicatechin see [12]
(-)-epigallocatechin see [12]
7-0-GA esters of:
(+)-catechin see [(12])
(—)—epicatechin Acacia nilotica bark & fruit see [57,58]
(+)—gallocatechin see [12]
3’-0-GA ester and
4'-0- GA ester of:
(+)-catechin A. nilotica leaves; see [61,260
A. gerrardi bark
3,5-di-0-GA esters of:
{(—)-epicatechin see [12]
(—)—epigallocatechin see [12]
5,7-di—-0- GA esters of:
(-)-epigallocatechin A. nilotica bark & fruit see [57,58]
37,7-di-0-GA esters and
4’ ,7-di-0-GA esters of:
. {+)-catechin A. gerrardi bark see [260]
5 (or 7), 3'(or 4')
~-di-O-GA esters of:
(+)-catechin A. nilotica leaves see [61
4’ ,5-di-O-GA esters of:
(+)—-gallocatechin A. nilotica fruit see [59]




Captions to schemes:

Scheme 1:

Scheme 2;

Scheme 3:
Scheme 4;

Scheme 5:

Scheme 6:

Scheme 7:

Scheme 8:

An illustration of the biosynthesis of oligoflavanols using the example
of propelargonidins [11].
Copyright permission by Chapman and Hall Ltd, London.

An example of oligoflavanol building units: top (T); middle (M);
junction (J) and bottom (B)-units [13].

Relative stabilities of potential electrophiles [14].
Relative stabilities of potential nucleophiles [14].

Examples of two nomenclature systems when applied to a flavanol
pentamer.

Proposed biosynthetic pathways leading to gallotannins and ellagitannins

5].

A hypothetical biosynthetic scheme linking ellagitannins containing
glucopyranose and open chain glucose cores with flavanoellagitannins.

A hypothetical biosynthetic scheme linking vescalagin or capitalagin with
flavano- and flavonoellagitannins.
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Scheme 5

Nomenclature based on IUPAC system [35]

(2R, 3S)-2,3-trans-6-[(2S, 3R, 4S)-2,3-trans-3,4-cis-flavan-3,3’,4',

7-tetraol—4—yl]-8—{(2$, 3R, 4R)-2,3-trans-3,4-trans-6,8-bi((2S, 3R,

4R)-2,3-trans-3,4-trans-flavan-3,3’,4',7-tetraol-4-yl}-flavan-3,3’,4’,

7-tetraol-4-yl }-flavan-3,3’,4',5, 7- pentaol.

New proposed nomenclature [15]

(+)-fisetinidol (48 -» 8), +)-fisetinidol (4B - 6)-(+)-fisetinidol (4B -

8), (+)-fisetinidol (4« - 6)-(+)—-catechin
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Compound (4): Tellimagrandin II

Compound (5): Casuarictin

Compound (7): Flav-3-en-3-ol
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