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9.  ParFish – Participatory Fisheries 
stock assessment

Paul Medley

9.1  Introduction
The ParFish approach provides a framework for participatory stock assessment and 
co-management. In this approach, fishers are actively involved in the management 
process, and their knowledge may be incorporated into stock assessments alongside 
more conventional fisheries data. As illustrated in Figure 9.1, the ParFish approach 
begins with guidance on understanding of the context (Step 1) and setting objectives 
(Step 2). It then goes on to provide tools and techniques for data collection and stock 
assessment (Step 3) and to support communication of the results to the stakeholders 
and the development of management actions (Steps 4 and 5). The final stage (Step 6) 
is to evaluate the ParFish process to provide feedback and guide future management 
efforts. 

Figure 9.1
The ParFish approach

The final outputs of the ParFish process can include: 
•	 improved fisher understanding of the concepts of fisheries management;
•	 greater involvement of fishers in the management process; and
•	 agreed management options including control levels, monitoring plans and pilot 

schemes. 
Although ParFish is being developed by the FMSP as a general co-management 

system, this section looks in detail at Step 3, how the stock assessment is carried out 
within this participatory framework. More detailed information on the other steps will 
be provided in a toolkit, and the software manual will provide step-by-step guidance 
on carrying out the analysis. These tools will be made available shortly at http://www.
fmsp.org.uk/. 
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9.2  Background
Small scale fisheries require agreement and co-operation to achieve management 
objectives. Methods that rigorously capture stakeholder knowledge, objectives and 
preferences have been generally unavailable in fisheries. However, these are now 
recognized as being of central importance in establishing successful management.

Although meetings among fishers using participatory approaches can produce 
better co-operation, any decisions made still need to be informed by scientific advice 
regarding the status of the fisheries resources, and the consequences of following 
different management alternatives. The absence of good advice balancing risks and 
benefits may lead to overfishing and economic hardship. In this context, science can be 
seen more as a form of independent arbitration among fisher opinions, not as a way of 
dictating management decisions.

Bayesian statistical methods are particularly well adapted to dealing with situations 
where there is a lack of good sci.entific information, because they deal with uncertainty 
in a consistent and rigorous manner. Existing assessment methods often demand 
detailed time-series of catch and effort data. Expensive data collection activities are 
inappropriate for many small scale fisheries, and collecting many types of data is often 
beyond the capability of countries operating under severe financial constraints. While 
these data should be used where they are available, their absence should not prevent 
stock assessments and management advice.

A participatory stock assessment method has been developed to address these needs. 
It applies Bayesian decision analysis, using non-parametric robust statistical techniques 
and interviews implementing a multi-attribute decision-making method. The analyses 
can be conducted using specially written software. 

ParFish applies standard stock assessment models, but uses new techniques and 
methods to make the assessment more flexible. The ParFish approach has four distinct 
differences compared to other approaches: 

•	 The fishing community’s views can be incorporated into the stock assessment 
by using information gathered through interviews. Even if these beliefs are 
considered unreliable, there is considerable political advantage in involving fishers 
in an assessment where they can see that their views are being taken into account. 
It is arguably necessary if co-management is being applied.

•	 Data can be combined from many sources, and in particular, rapidly collected data 
can be used as a starting point for an adaptive management system. 

•	 The method applies decision analysis, making use of utility (a measure of the 
stakeholders’ preference for an outcome) and risk to help in deciding management 
actions. This means the method can be used to give advice even when only limited 
information is available.

•	 The method can use any information source as long as information can be reduced 
to frequencies of possible parameter values for a target simulation model. A 
number of Monte Carlo techniques are available for producing such frequencies. 
Separating sources also allows information to be built up from simpler sub-
models, making the whole process easier. 

9.3  Overview
The ParFish method allows complex information sources to be organized into a 
hierarchy describing a target fishery model that is then used to assess fishery controls. 
Controls are assessed on the basis of the changes in catch rates that they are expected to 
produce in the fishery over time. Fishers are separately asked to rank and score possible 
outcomes on their catch and effort in terms of their preference, thereby allowing the 
assessment to identify the control yielding the greatest preference score. Altogether, 
this allows information from many sources to be combined, and in particular involves 
fishers and their community in the stock assessment process.
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Information on the fish stock state and behaviour is reduced to sets of parameter 
frequencies. The parameters are defined by the target simulation model that is thought 
to represent the possible projected behaviour of the fishery. As long as information 
can be reduced to a frequency of one or more of these parameters, it can be used in the 
model. 

Parameter frequencies may be generated in a number of ways, including direct 
draws from a probability distribution (e.g. Markov Chain Monte Carlo), interviews 
and empirical bootstrapping. The last two are supported within the software. However, 
complexity in data interpretation often requires non-standard models which generally 
cannot be supported in simple software. Therefore the software also supports the 
loading of previously-generated frequencies from Microsoft Excel.

Current components which are supported in the software consist of:
•	 An interview to get subjective belief from fishers or other persons with relevant 

knowledge.
•	 The use of fishing experiments and non-destructive survey methods (such as 

visual census).
•	 The use of any catch-effort based stock assessment models and data.
Any number of such frequencies can be combined to produce a posterior probability 

density function. Sets of parameters can then be repeatedly drawn at random from this 
posterior and used in the target simulation model to project changes in catch and effort 
in response to different controls. 

Each outcome, a catch effort time series, is converted to a utility score using the 
relative preference information from the fishers. By ranking and scoring these scenarios 
it is possible to estimate how much better or worse a fisher would think any particular 
outcome is compared to the present.

One or more variables under management control must have been identified which 
have an impact on the objective. For example, in many fisheries the numbers of fishers 
or fishing days could be limited, whereas catch could not. Fishers or fishing days would 
be the appropriate control variable. Possible controls are limited to closed area, and 
catch and effort controls in the current software. 

The target and limit reference points are defined in terms of the management control 
(the action to be taken by management) and should be chosen to be consistent with 
the management objectives. The main objectives currently supported by the assessment 
methodology are:

•	 To maintain fishing so that the probability that the biomass falls into an overfished 
state is at a particular level. The definition of “overfished” is defined by the limit 
state, and would be set to 50 percent of the unexploited biomass in most cases. The 
probability is a measure of management’s risk averseness policy.

•	 To move fishing activity to a target level of fishing which has the highest expected 
preference for the fisher community based on the current uncertainty (the “Bayes 
action”). Management may change issues such as whether and how they weight 
fishers’ opinions. They may also set a policy discount rate.

It is important to note that the optimum decision is not the same as a prediction for 
the outcome. The prediction is represented by the probability distribution, which may 
be very uncertain. The method chooses the optimum action based on this uncertainty, 
so if the decision-makers are risk-averse, actions are taken that will tend to avoid the 
worst outcomes rather than just assume the expected outcome. 

9.4  The Target Simulation Model
Simulation models are used to provide management advice through investigating the 
effects of applying different potential management contols. A target simulation model 
must be chosen that represents the behaviour of the fishery, and in particular, its 
expected response to changes in catch and effort.
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The chosen model needs to adequately describe the dynamics of the system and 
be able to give indications of what might happen under any particular management 
regime and how this might affect fishers. These predictions can be used to provide 
management advice. 

A fishery will be made up of a number of parts, such as species, fishing grounds, 
gears and fishing communities. Each fishery should, ideally, have a model developed 
specifically for it. However, it is pointless trying to use more realistic models unless 
significant amounts of information are available. Simpler models which encapsulate 
basic biological behaviour will probably be more accurate in data poor situations. 

As the focus in ParFish is fisheries with limited data, a robust simple model was 
chosen as the starting point for the analysis and as an easy way to introduce fishers 
to population dynamics. The software currently supports only the logistic (Schaefer) 
biomass dynamics model, which has simple attributes common to all biological 
systems. It describes biomass growth and allows estimation of a surplus yield which 
will not deplete the population. 

9.5  Controls
9.5.1  Effort
The effort control is applied through the catch equation used in the simulation model. 
A new effort is set as the new control and the stock is projected forward from its 
current state under the new fishing mortality. 

9.5.2  Catch quota
The catch quota control is applied as a future limit to catches. A new effort must also 
be supplied as the maximum effort. This is used to calculate catches. If catches exceed 
the quota, this maximum effort is scaled back to a level where the catches are met. This 
allows effort to change, but catches remain fixed if the effort is high enough to reach it 
and if the stock is not overfished. Setting the quota above the MSY means it will have 
no effect and the maximum effort control will apply.

9.5.3  Refuge
Management can provide a refuge from fishing by setting up closed areas or no 
take zones. Such zones may provide many benefits beyond those dealt with in this 
assessment model, and each of these benefits may be sufficient to justify a closed area. 
The model considers only the impacts on the fish stock and the resulting catch and 
effort.

The refuge control indicates what proportion of the stock is protected from 
fishing. The stock is initially split into protected and unprotected stock in proportion 
according to the control and it is assumed that there is no adult migration between 
the two. Migration would reduce the effective refuge size. The two separate stocks are 
modelled independently. If there has been no previous refuge, both stocks will be at the 
same level. Once the control is applied the protected stock will rise to the unexploited 
level. The exploited stock will be subject to the new mortality based on a new effort 
level defined for this control. The unexploited stock size and the recruitment between 
the refuge and exploited areas is split according to the control level.

Catch is only removed from the exploited part of the population, although both 
parts contribute to overall recruitment and growth. This will result in an immediate 
decrease in catches after the control is introduced and effectively a decrease in 
catchability. There is a longer term gain in stock size as productivity is boosted by 
the refuge stock. As the model suggests, refuges are a good way to maintain the stock 
size above the limit reference point. In combination with effort control, refuges could 
provide a useful tool for reducing risk.
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9.6  Control Reference Points
Indicators must be converted to measures of preference, so that risks can be properly 
assessed. For example, fishers may wish more to avoid low catches rather than make 
large catches, and hence be risk averse. This requires that indicators be converted to 
some measure of utility (an economic measure of satisfaction). 

The target simulation model calculates the overall catch and effort for the fishery 
projection. These can be converted to the relative change in CPUE and effort. These 
relative changes are assumed to apply equally to all fishers, so that if CPUE is 85 percent 
and effort 80 percent of the initial CPUE and effort, then each fishers CPUE is also 85 
percent and 80 percent of his/her current CPUE and effort. The main assumption is 
that any effort or other control is applied proportionally to all fishers.

The optimum Bayesian decision is to choose the action that maximizes the expected 
preference. Using the preference data and model (see Section 9.9), the discounted 
preference score can be summed for each simulation leading to a relative measure of 
how much that outcome would be preferred. The expected preference score is the 
average of the simulations where the simulation parameters are drawn at random from 
their posterior probability distribution. 

The maximum is found by interpolating between the control increments using a 
polynomial function. Finding the maximum by direct means would be very slow and 
produce an unnecessary degree of accuracy. If greater accuracy is required, the range of 
the control (minimum – maximum) can be reduced around the optimum point and/or 
the number of control increments can be increased.

The limit reference point is designed to limit the chance of overfishing to some 
acceptable level. Overfishing is defined here as forcing the stock biomass below some 
limit state defined as the proportion of the unexploited biomass. The limit state may be 
set by the user, but there is a generally accepted point for some models, most notably 
MSY at 50 percent for the logistic/Schaefer model. The probability of reaching this state 
is calculated as the chance that a scenario state taken at random from all scenario states 
combined over time, species and simulations, is below the limit state. This position is 
found again through interpolation using a polynomial function. The method, as well 
as working for the current simulations, will work with stochastic simulation models 
or under more complex management simulations. It could also be interpreted as the 
expected proportion of time that stocks will spend in the overfished state under each 
management regime. 

9.7  Probability Assessment
The ideas for the approach for modelling probability originate with Press (1989), who 
presented a method to estimate the probability of nuclear war. Nuclear war is similar 
to overfishing in that we do not want to have several observations before being able 
to estimate if and how it might occur. Press (1989) suggested using interviews with 
experts and kernel smoothing functions to generate a prior probability. The approach 
can easily be extended to dealing with very many other sources of information. 

Given a set of frequency data, how can a probability density function be obtained? 
One option would be to fit a parametric distribution. This would require knowledge of 
the appropriate shape of the function. While in some cases we would be able to propose 
a function, such as the normal or log-normal, in many others it would not be possible. 
There is always a risk of proposing an incorrect function and introducing structural 
error. Instead, a more general non-parametric technique using kernel smoothers is 
used.

Kernel smoothers provide the building block for probability density functions. 
Silverman (1986) provides a detailed description of the use of kernel smoothers in 
estimating densities in one dimension. This method has been adapted to multiple 
dimensions. The method is essentially construction of a smoothed form of histogram. 
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Instead of adding each point to a bin, each point is spread over the real line to smooth 
the distribution. 

There are two requirements to this method. Firstly, a kernel function must be chosen. 
It has been shown that the particular choice of function is not particularly important in 
trying to estimate a density (Silverman, 1986), so the function can be chosen more for 
convenience than mathematical requirements. The normal or Gaussian function was 
chosen for the current model for two reasons:

•	 The multivariate normal offers a simple way to calculate and maintain individual 
multidimensional kernel models through use of its covariance matrix. In particular, 
the posterior of a normal mixture can be calculated directly.

•	 Where very little data is available from interviews, for example, the normal 
distribution has a natural shape which it is assumed can represent an individual’s 
subjective prior as well as building into a community density function once 
enough data are available. 

The second requirement is a smoothing parameter for each dimension which 
controls the degree of spread of the density around each point in the frequency. These 
parameters are important. Not only do they change the look of the density, but it is a 
measure of the uncertainty associated with each point in the frequency and hence the 
frequency as a whole.

Each probability density function is represented by a smoothed probability 
distribution around a set of points. The points can be derived from interview (see 
Section 9.8.3), and represent the prior belief of interviewees (expert stakeholders / 
fishers), from bootstrapping a stock assessment model fitted to fisheries data (see 
Section 9.8.1) or from other means. Frequencies are smoothed by spreading the 
probability around each point using the normal kernel function (Figure 9.2). 

Figure 9.2
An example of two points forming a mixture distribution in one dimension. The individual 

smoothed point densities () are added together to produce a joint density (- - -). In 
the top graph, the smoothing parameter (Sigma parameter or standard deviation in the 
normal distribution) is large and a single flattened mode is produced. In the bottom, the 

smoothing parameter is relatively small and produces two modes
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Although several frequencies (information sources) might be used, they must be 
independent. Non-independent parameter estimates must occur within the same 
frequency, so that their dependence can be represented by the way they occur together. 
The separate independent smoothed frequencies can be combined to generate a 
posterior probability density function.

Using frequencies has several advantages and disadvantages:
1.	A complex set of parameters can be broken down into simpler subsets which can 

be assessed separately.
2.	Gross errors can be minimized as each set can be checked separately to ensure 

estimates are reasonable. For example, catch and effort models might be fitted in 
the normal way, and the observed – expected plots inspected to ensure the fit is 
reasonable. All other standard checks can be applied to ensure results are valid.

3.	The method can be made robust. Non-parametric techniques can be used to 
obtain frequencies. 

4.	Given a set of parameter frequencies, computation of the posterior is straightforward, 
fast and exact.

5.	The individual probability density function derived from the frequencies may be 
inaccurate. If each smoothed frequency represents the source probability density 
function exactly, the corresponding posterior distribution is also known exactly. 
However, any inaccuracies between the individual kernel models and the underlying 
probability density functions will be represented in the posterior. These inaccuracies 
will have two sources. Firstly a randomly-drawn frequency will contain errors both 
in precision and bias (precision can be increased through increasing the number of 
random draws). Secondly, the smoothing parameters will be estimated with error. 
These parameters allow the kernel to cover regions between the frequencies, but 
also they will provide the relative weight between information sources.

9.8  Models Fitted to Data
9.8.1  Approach
Fitted models are structured as a linked hierarchy of sub-models. The structure allows 
greater flexibility, speeds up the fitting process and will allow easier development in 
future. 

The basic structure is to have a multispecies model at the top level (if appropriate), 
the single species population models next and then generalized linear models which fit 
to data. There can be many species populations for each multispecies model and many 
generalized linear models for each single species model. The generalized linear models 
(GLM) link the population models to observations. The population models are more 
likely to be non-linear and more difficult to fit. 

The separation of the single species model and GLM is a formal, more integrated 
approach of what is already commonly done (see Hilborn and Walters, 1992; Lassen 
and Medley, 2001). In many cases, a GLM is applied to observations to produce a 
population index. The population index is then used to fit the population model. 
While this pre-processing may be easier with some complex data sets, it introduces 
a redundant parameter and ignores possible correlations between the GLM and 
population model parameters. McCullagh and Nelder (1989) provide a description of 
generalized linear models as implemented in the current software.

The basic approach is to include the population size as a variable in the GLM. For 
any set of population parameters, the GLMs can be fitted to the population sizes. This 
is fast even if a GLM contains many parameters. A slower non-linear minimizer can 
then be used to minimize the fitted GLM log-likelihood with respect to the smaller 
number of population parameters.

The GLM approach in the software allows three types of log-likelihood: Normal, 
Poisson and Log-normal. The default is the Poisson. The quasi-likelihood argument 
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(see McCullagh and Nelder 1989) suggests that, at least for the GLM parameters (as 
opposed to the non-linear population parameters), only the variance-mean relationship 
needs to hold to obtain maximum-likelihood estimates. Finally, the software allows 
parameter frequencies to be loaded directly, so any external model can be used to 
generate parameter PDFs as required.

An empirical bootstrap method is applied to generate parameter frequencies. This is 
the same methodology as applied in the CEDA software (Section 4.5). The approach 
has been found to be robust and is widely used in stock assessments as a measure of 
uncertainty. The interpretation in ParFish is a little different, however, as the resulting 
frequency is assumed to approximate the parameter likelihood. 

9.8.2  Population models
The logistic (Schaefer) model fitted to the data is the same as that used in the target 
simulation model and CEDA software. This model is the simplest closed population 
model encapsulating recruitment, growth and density-dependent mortality. It describes 
the basic behaviour of populations.

The parameters are given maximum and minimum limits to prevent unrealistic 
results. The current population state, Bnow , is defined as the estimated total biomass at 
the current time as a proportion of the unexploited stock biomass and therefore varies 
between 0 and 1.0. The intrinsic rate of increase (r) produces erratic behaviour above 
2.0. Estimates above 2.0 indicate a shorter time unit should be used. The unexploited 
biomass must be above the maximum observed total catch in any time period. An 
upper limit was also placed on the unexploited biomass, at 100 times the maximum 
total catch. This upper limit is set because if catches do not discernibly decrease the 
resource size (1 percent mortality probably would not), the resource size estimate can 
become arbitrarily high. If the estimate drifts to this upper level, we will learn little 
more than that the resource is lightly exploited. No boundaries are applied to the 
catchability parameters which are fitted through regression.

A linear depletion population model is also provided for analysing fishing 
experiment data. This assumes a closed population with changes only coming about 
through catches and natural mortality. The model is useful for estimating catchability 
and the current biomass within the area of the fishing experiment, which may then be 
scaled up to the total area and size of the overall stock.

9.8.3  Stock assessment interview
The interview allows the logistic model parameters to be estimated from information 
provided by fishers by asking them key questions which can be related to the current 
state of the resource and its potential yield. Questions are asked in units and terms 
familiar to the fisher. The following information is obtained from each fisher:

•	 the main gear used, last year’s CPUE and this year’s CPUE for that gear;
•	 the current CPUE for all other gears used; 
•	 the expected catch rate range for the unexploited stock; and 
•	 the time for an overfished stock to recover to the unexploited state.
In addition, the total effort in this fishery over the last year has to be obtained from 

elsewhere (e.g. from Department of Fisheries’ data, personal estimates or key informants 
in the fishery). The total size of the fishery should form the frame of the sample and 
allows the individual answers to be raised up to the totals for the whole community.

The individual catch rates are regressed towards the mean of the sample. This is 
necessary as they are used as an estimate for the mean catch rate for the whole fishery 
although the question asks for the fisher’s own catch rate. 

There are considerable political benefits from taking account of fishers’ views, but it 
is not clear how valuable this interview information is in terms of assessing the stock. 
A positive example of the use of this approach is given in thr Box below. 
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BOX 9.1

Testing the ParFish approach in the Turks and Caicos Islands

The queen conch fishery in the Caribbean Turks and Caicos Islands provides a useful 
test of the value of fisher interviews because a long time series of catch and effort data is 
available for comparison. The fishery consists of small vessels that go out for day trips 
only. The 2 or 3 crew free dive up to 10m depth to collect conch which are shelled at sea. 
The meat is landed at the processing plants which keep a record of the vessel, date and 
amount purchased. These data are used for calculating the catch and fishing effort. 

Effort in the fishery has fluctuated naturally over the years as available labour has 
responded to economic conditions. This has given enough contrast in the time series to 
get a good fit from a logistic biomass model (Medley and Ninnes, 1999).

The fishery is managed through a quota, so this is the appropriate control. Using 
the preference information, the stock assessment based upon both the interview and 
catch-effort model combined and the catch-effort model alone suggest a quota of around 
1.53 and 1.38 million pounds respectively. Interviews by themselves were found to be 
much less accurate (as indicated by the much lower limit control), but nevertheless 
recommended a target of 1.68 million pounds, reasonably close to but above the other 
targets. 

If it is assumed that fishers knew as much in 1974 as they do now, the interview 
data can be used as representative of a sample that would have been obtained had the 
interviews been conducted at the beginning of the time series. Hence, the interview-only 
target quota can be applied at that point to see what might have happened to the fishery 
had this stock assessment method been applied, assuming that the logistic and maximum 
likelihood parameter estimates are correct. 

The actual total catch over the period 1975–2002 was 45.47 million pounds. Had the 
1.68 million pound quota been applied, the results suggest a total catch of 47 million 
pounds. This quota would realize higher catches in the longer term by foregoing catches 
in the late 1970s. A discount rate of around 5 percent yields approximately the same net 
present value between the two options.

The real gain, however, would have been the rise in catch rate (Figure 9.3). The catch-
effort model suggests the stock was in an overfished state in 1974 and an enforced quota 
would have led to stock recovery. In other words, the catch would have been met with 
much less work and costs than has been applied (from 3 300 boat days down to 2 500 
boat days to realize the same catch). This case study suggests that there are considerable 
benefits to be made using just interview data if no other data exist about the fishery. 
This would need further testing to make the case as a general statement. However it is 
clear that an initial quota set on the basis of interview, but updated as other scientific 
information came available would have led to much better economic benefits from this 
fishery over the last 30 years.

TABLE 9.1
Target and limit controls (landings quota in pounds meat weight) for 
the Turks and Caicos Islands Conch fishery based on catch-effort and 
interview data

Scenario Target Control Limit Control

Interviews and Catch-Effort 
Model Combined 1 531 254 1 580 855

Interviews Data Only 1 678 103 791 651

Catch-Effort Model Only 1 384 882 1 432 696
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9.9  Utility
9.9.1  Overview
Economics in fisheries assessments have mostly been dealt with by assessing costs and 
prices and constructing an economic model of the fishery profit. This is probably the 
best way to assess commercial fisheries, although it has problems: 

•	 Such assessments are expensive and could not be extended to each small scale 
fishery,

•	 Data may be inaccurate and fishers may be unwilling to co-operate,
•	 There may be unobserved variables connecting data to utility (for risk etc.),
•	 The non-commercial aspects of fishing are not accounted for.
For small scale fisheries, a direct approach is more appropriate. In this case, the 

assessment tries to identify the situation fishers would prefer, so that managers can try 
to target this. This may not directly lead to greater understanding of the economics of 
the fishery, but should give the fishers the opportunity to select management targets 
more similar to their own needs or priorities. 

Obtaining information on preferences for outcomes in the fishery has several 
significant advantages for small scale fisheries:

•	 It is simpler and faster to assess potential changes in the fishery.
•	 It is probably more robust to consider changes directly. This does not require an 

accurate model of the economics of the fishery, but does require fishers to be able 
to assess how changes in catch and effort might affect them.

•	 Asking fishers their preferences among outcomes gives them power over 
management objectives, but still allows independent scientific advice to make 
a contribution. This is consistent with all the advantages of community based 
management.

The cost of applying the quota is that, without the depletion in the mid-1980s, less 
information would now be available on the behaviour of the stock, so that the current 
stock assessment would be less reliable. This would need to have been addressed 
through alternative research activities. 

Figure 9.3
Expected catch per boat day (CPUE) from the fitted logistic model and the 

projected CPUE with 1.68 million pound quota
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•	 The questions make fishers think more clearly about possible outcomes for the 
fishery. If community management is to be successful, it is important fishers 
understand possible management outcomes and can weigh up the impact of these 
on themselves and the community. This assessment approach not only obtains 
data for assessment, but starts fishers thinking about what might happen and what 
they would prefer to happen.

A main disadvantage is that it is left to the fisher to assess and balance complex 
issues. However, although imperfect, fishers are probably the best at assessing their 
own circumstances and the effect of changes in the fishery and will get better with 
practice. 

The main source of error is the fishers’ inability to assess accurately how they might 
react to changes in the fishery. This is exhibited in the narrow choice offered in scoring 
(see below) as fishers were unable to finely discriminate between outcomes. This error 
would probably decrease with practice.

A second source of error is in the way the utility model is used. The utility is 
averaged over respondents, so all are assumed to react in the same way, that is reduce 
or increase their fishing or catch by the same proportion. In practice, each individual 
will react separately to maximize their own utility. This makes the assessment 
pessimistic and the community utility curve will be flatter than that suggested in most 
assessments. It is unclear whether the maximum point would be much affected by this 
issue. 

The general method can be extended in future based on the hierarchical model 
structure. For example, the overall catch variable can be calculated as the weighted 
average of the changes in individual species. The more important a species is to a fisher 
the higher the weight this species catch gets in the utility model. 

9.9.2  Preference interview
Although utility theory is well defined and methods for practical utility estimation 
are available (Keeney and Raiffa, 1993), they need considerable adaptation and 
simplification to be used for assessing fishers’ utility. Not only does the method need 
to be simple to understand, it has to be rapid to allow a broad cross-section of the 
community to be represented and to avoid interview fatigue. 

Simplification is achieved by:
•	 The variables examined are simple and consistent. The assessment focuses on 

catch (earnings) and effort (work done).
•	 Comparisons are made as relative changes from the present situation.
•	 Scenarios representing changes from the present situation are ranked, then the 

difference between them scored. The total score for each scenario is the cumulative 
sum of these scores.

•	 The number of comparisons are minimized as “dominance” was automatically 
taken into account in the method.

•	 All comparisons are “pairwise”, so fishers only have to consider two scenarios in 
any comparison.

•	 Interviews are based on households as the fundamental economic unit.
It is worth noting that standard utility and multi-attribute decision making 

techniques have been tried. These techniques were not found to be suitable for fishers 
in the context of the interview, because they require sophisticated interviewees who 
have a clear understanding of the issue and are prepared to spend considerable time 
building up the information necessary to support the method. Such methods are 
useful in analysing decisions, and this is probably the primary way they are used in 
decision-making. This analytical capability could be re-examined as a tool to help a 
small group of fishers representing the fishing community come to some decision on 
the community’s behalf.
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9.9.3  The catch-effort scenarios
Scenarios represent possible changes in the catch and effort as they relate to the 
fisher. Changes are represented as +/-25 percent steps relative to the present and are 
constructed to maximize the information obtained for a regression information matrix. 
The scenarios, which have been given a letter for easy identification, can be laid out in 
relation to the current catch and effort (scenario I in Figure 9.4). 

Figure 9.4
The different scenarios are used to assess fisher preference. The central scenario I 

represents the current situation with 4 fish and 4 boats representing the current catch 
and effort respectively. Effort and catch are decreased and increased by 25% and 50% 

around this current value

One scenario will dominate another where it is clearly better. If we assume higher 
catches for the same effort is always better and higher effort for the same catches 
is always worse, any scenario where the catch is higher than or equal and effort is 
lower than or equal to another scenario will always be preferred. For example, O will 
always be preferred to I, as catch is higher and effort is the same. These dominance 
relationships can be used to rank all 17 scenarios more rapidly with the fewest number 
of comparisons. A represents the best, and C the worst scenarios, so it is only necessary 
to place all other scenarios between these two.19

19	 It should be pointed out here that the individual fisher’s preference to maximize his or her own CPUE 
may not be consistent with the community or policy preference which may be to maximize employment. 
With the latter goal, options N and even E may be preferable to A.
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9.9.4  Scoring
The score for each scenario is calculated as the cumulative sum of the difference scores 
between the ranked scenarios. The scores between ranked scenarios are additive, as 
they are assumed to measure the relative distance along a utility line. So, by ranking and 
then asking for a score as an indication of preference between consecutive scenarios (0 
– no difference, 4 large difference), all scenarios can be scored.

There are a few useful assumptions which can be made about catch and effort utility 
curves. Firstly, the curves are monotonically increasing for catch and probably mostly 
monotonically decreasing for effort. The effort curve is less certain as some fishers 
complained they would become bored if they could not fish at least some days per 
month. Given the interest in sports fishing, this does not seem unreasonable. Secondly, 
they are bounded at zero as fishers would never go fishing if they did not expect to 
catch something, so utility should never fall below the point where they stop fishing 
altogether. The CPUE or catch at which they abandon fishing should set the lower 
bound on the utility.

There are also upper limits to the utility curve. There are logistical limits to the 
amount of catch that can be handled and the effort which can be applied. Excluding 
religious days, the number of days fishing a month is probably limited to 25. The 
amount of fish which a vessel can handle is likewise limited. Changing these limits, 
such as employing more crew or purchasing larger vessels would change the nature of 
the fishery and hence the assessment would have to be undertaken again.

9.9.5  Errors and feedback
If the results from the preference assessment are used without feedback to the 
interviewee, results may not accurately represent true preferences. By their very nature, 
questions are abstractions and may draw out abstract or inconsistent answers. The way 
to avoid this is to present back to the interviewee the implications of their answers 
which they can adjust interactively. 

The rank order provides a method to check consistency of replies. Basically, the 
interviewer can check the reasoning of the fisher for the order chosen. Originally this 
was intended to see whether a fisher understood the object of the exercise and perhaps 
exclude those that did not. In practice, consistency was used as a tool to help fisher 
understanding rather than test for it.

Firstly, dominance is assumed and used in ordering the scenarios. However, fishers 
should be given the opportunity to change this order. Secondly, the fisher’s current 
activity can be assumed to be optimum. So, the scenarios with the same catch rate but 
fishing more or less than now are presumed to be less preferred than the current level 
of catch and effort. If it is not, the fisher should be able to explain why not. The aim 
was to get the fishers to think as clearly as possible about what the scenarios would 
mean to them in reality.

The method works through contrasting catch and effort variables and forces 
the fisher ranking the scenarios to define an exchange rate between them. Whereas 
the ranking works well, it was less certain that the scoring was as accurate. Scoring 
nevertheless gives the fisher the opportunity to draw a distinction between small and 
large differences between scenarios.

9.9.6  Preference model
The additive nature of the scoring technique suggests that a quadratic model of each 
variable together with a single interaction term should be adequate in modelling the 
score (Figure 9.5). The model interpolates the score and smoothes through errors. Pure 
interpolation is too sensitive to errors. As an alternative to the interview preference, a 
simple linear price-cost function is also provided in the software. 



Figure 9.5
Example preference curves fitted to interview data (points). In cases of point outliers, the 

interviewer could check with the interviewee that the scenarios are in the right order. 
They may also be evidence that the model is too inflexible for good individual curves
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10.  Comparisons of length- and 
age-based stock assessment 
methods

Graham M. Pilling, Robert C. Wakeford, Christopher C. Mees

10.1  Introduction
Length-based methods for the assessment of growth have, in the past, been the primary 
method used in tropical countries. The results, however, are only as good as the data 
to which they are applied (e.g. Majkowski et al., 1987). Many commercially important 
species in the tropics are relatively long-lived and slow growing, with highly variable 
individual growth trajectories and protracted spawning periods (Manooch, 1987). These 
life history characteristics result in the super-imposition of successive modal classes, 
limiting the information used in length-based methods to estimate growth (Langi, 1990). 
Despite the historical perception that tropical fish would not show regular marks in 
hard parts (e.g. otoliths), an increasing number of studies have successfully validated 
increments deposited on a regular time scale (see Fowler (1995) for review). Therefore, 
potentially improved estimates of growth may be derived using length-at-age data.

Estimation of growth parameters cannot be examined in isolation. They are 
commonly used as inputs into a suite of biological and fishery assessment methods, as 
described in Chapter 3. Indeed, a major source of uncertainty in length-based stock 
assessments is the use of potentially biased growth parameter estimates to convert 
length into age. However, as there may be compensatory biases later in the stock 
assessment process, the use of more accurate growth parameter estimates may not 
necessarily result in more appropriate assessments, and hence management.

In this study, the performance of length- and age-based methods of growth 
parameter estimation was first assessed through computer simulation. Secondly, the 
performance of management based upon simple stock assessments derived using these 
growth parameters, and of more complicated age-based approaches such as VPA, were 
examined through management strategy simulation. Simulations were based on data 
from two species in the central Indian Ocean exhibiting different life-history strategies; 
a relatively long-lived, slow growing species of emperor (Lethrinus mahsena) and a 
moderately short-lived, fast growing species of rabbitfish (Siganus sutor). Conclusions 
are drawn on the performance of age- versus length-based methods for both tropical 
fish species.

10.2  Method
10.2.1  Growth parameter estimation
Monte Carlo simulations were performed to test the accuracy of length- and age-
based growth parameter estimation methods for Lethrinus mahsena only. The 
approach used to model the population was comparable to the individual-based model 
described in Hampton and Majkowski (1987). In the current model, however, growth 
was described using a non-seasonal von Bertalanffy growth equation (Table 10.1). 
Estimates of individual growth variability within the population of L. mahsena were 
also incorporated (Pilling, Kirkwood and Walker, 2002). Recruitment was specified as 
a normal distribution and the variability as a lognormal distribution. The population 
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was initiated at equilibrium with a set fishing mortality level. Individual fish were 
randomly assigned values from both growth and recruitment parameter distributions 
at birth. At each simulation step (approximately 1 month), whether each individual 
had survived or died was assessed, based upon their probability of survival. If they had 
died, the probability of capture (i.e. death due to fishing rather than natural mortality) 
was calculated based on the gear selectivity pattern (Table 10.1). If caught, the length 
and age of the fish was added to a catch matrix.

Length-based assessment of growth
Four hundred individuals were sampled from the simulated annual catch for five 
consecutive years to generate a time series of length frequency data for length-based 
growth parameter estimation. Growth parameters (L∞ , K and t0) were estimated using 
the ELEFAN method (Pauly and David, 1981) within LFDA. The growth parameters 
with the highest score function identified using the amoeba search were accepted.

Age-based assessment of growth
A length-structured catch sampling design was simulated. Ten individuals were 
randomly sampled from designated 2 cm length classes. A von Bertalanffy growth 
model was then fitted to the length-at-age data through least squares methods.

For both length– and age-based approaches, simulations of L. mahsena were 
performed for a range of equilibrium fishing mortality levels seen in the field 
(F=0.05, 0.25, 0.7 and 1.2). For each mortality level, 100 sets of growth parameter 
estimates were developed for each approach through Monte Carlo simulation. A 
frequency distribution of parameter estimates was derived, and the mean value 
calculated. The bias in this mean, compared to the true “seed” population value (cf. 
Table 10.1), and coefficient of variation (CV) of the distribution were calculated as 
percentages.

10.2.2  Management strategy simulation
A management strategy simulation approach (Powers and Restrepo, 1998; see also 
Section 3.6.5) was used to investigate the knock-on effects of using alternative growth 
parameter estimates within different stock assessment approaches upon which 
management decisions were based. This approach models the underlying system (an 
operating model, based on parameter values in Table 10.1) and the perception of that 
system based upon catch data sampled from it (the assessment model) (see Figure 10.1). 
The key is that the entire management process relies on imperfect information. The 
simulation incorporates a range of uncertainties in the perceived model (Rosenberg 
and Restrepo, 1995), including process error (variability in growth) and model error 
(simplifying assumptions made in modelling biological processes).

The analysis was performed for both study species; Lethrinus mahsena and Siganus 
sutor (Table 10.1). Starting fishing mortalities for L. mahsena were identical to those 
described above. Those for S. sutor were F = 0.5, 0.75, 1.25 and 1.5.

Estimation of fishing mortality
Stock assessments provided estimates of current fishing mortality upon which 
management decisions could be based. Two assessment approaches were used.

The first was based upon estimates of total (Z) and natural mortality (M), which were 
then used to calculate F (F=Z-M; Figure 10.1a). Total mortality (Z) was itself estimated 
through three methods; Beverton and Holt’s Z estimator (Beverton and Holt, 1956), 
a length-converted catch curve, and an age-based catch curve. The last approach did 
not require the use of growth parameter estimates, and hence eliminated one source 
of uncertainty. Two empirical estimates of natural mortality (M) were applied: Pauly 
(Pauly, 1980); and Ralston (Ralston, 1987).
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The second approach used to estimate F was through direct application of either 
length- or age-based VPA models (see Wakeford et al., 2004; Figure 10.1b).

Management rule
The selected management target level was F0.1 (Caddy and Mahon, 1995). A management 
rule was used to define annual changes in fishing mortality which moved it toward F0.1. 
Fishing mortality in the following year F(y+1) was determined by the relative values of 
the estimate of current fishing mortality (F(y)) and of F0.1:

If F(y) < 0.8*F0.1,  then  F(y+1) = F(y)*1.2,
else if F(y) > 1.17*F0.1,  then  F(y+1) = F(y)/1.17,20

else F(y+1) = F0.1.

The resulting change in fishing mortality directly affected the operating model; i.e. it 
modified the true underlying F (Figure 10.1). Twenty years of management were then 
simulated for each starting F level and each species. The 20 year simulation process was 
then repeated 100 times using each pair of estimated von Bertanaffy growth parameters. 
Pairs of L∞ and K estimates and values of the other key parameters (e.g. M, F0.1) used 
within the assessment were assigned at the start of the simulation and kept constant 
throughout the 20 years. 

Performance measures
Performance of management based on different growth parameter estimation and 
assessment methods was examined using the following criteria:

• Ratio of exploitable biomass in year 20 of simulation relative to unexploited 
equilibrium levels.

• Frequency with which spawning stock biomass fell below a threshold value of 
unexploited levels during each of the 20 years. 

• Fishing effort in the final year. Management target was F=F0.1

• Average catch over the simulation period. Large fluctuations in total annual catch 
were identified at the start of the management period during VPA simulations 
(cf. Figure 10.1b). The average was therefore calculated from the last 10 years of 
management (i.e. 10-19 years) in this case.

Where VPA was not simulated, initial runs showed that the use of age-based 
parameters resulted in under-exploitation of the stock, while length-based parameters 
either under- or over-exploited the stock, dependent on starting fishing mortality. 
To compare performance directly, target fishing mortality was tuned so that F0.1 was 
reached on average (see Pilling et al. (1999) for more details). No tuning was required 
for simulations using VPA assessment models (see Wakeford et al., 2004).

10.3  RESULTS
10.3.1  Growth parameter estimation
Statistics for the distributions of 100 length- and age-based L∞ and K estimates obtained 
at each of the four fishing mortality levels for L. mahsena are shown in Figure 10.2. 
Length-based methods over-estimated both L∞ and K, compared to the mean input 
parameter values (Figure 10.2a). By comparison, at lower fishing mortalities, estimates 
of both growth parameters from age-based methods were less biased, and more 
precise. With increased levels of fishing mortality, however, the accuracy of length-
based estimates of L∞ improved, while performance of age-based estimation methods 
deteriorated. At higher fishing mortalities, therefore, estimates of L∞ derived through 

20 Note that if F is increased by 20 percent when below the target, the equivalent is to decrease by  
17 percent if above the target (e.g. the opposite of doubling effort (F*2) is to halve it (F/2)).
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age-based methods were more biased, and less precise, than those from ELEFAN. 
Age-based estimates of K remained more accurate and precise than ELEFAN estimates 
(Figure 10.2b and d), which showed increasing over-estimation with increasing levels 
of fishing mortality.

10.3.2  Management strategy simulation
Particular combinations of total (Z) and natural mortality (M) estimation methods 
resulted in consistently more accurate and precise estimates of current fishing mortality 
dependent on the growth parameter estimation method. Where length-based growth 
parameter estimates were used, subtracting Pauly’s M estimate from the Beverton and 
Holt Z estimate resulted in the best estimate of F, while subtracting Ralston’s M from 
the length converted catch curve estimate of Z performed best where age-based growth 
parameter estimates were used. 

Estimated values of current fishing mortality and F0.1 after the first year of 
management were compared to examine the likely performance of annual management 
using length- or age-based growth parameter estimates. If the true fishing mortality 
was F=0.05, effort should be increased to reach F0.1 (F=0.4 for L. mahsena). In contrast, 
if F=1.2, effort should be decreased drastically. For L. mahsena, the use of age-based 
growth parameters and the “best” performing combination of total and natural 
mortality estimates described above resulted in the most appropriate decisions at each 
starting fishing mortality level (Figure 10.3). Decisions showed the correct trend from 
confident to more cautious management decisions with increasing fishing mortality. In 
contrast, decisions based on length-based growth parameter estimates were less sensitive 
to increases in fishing mortality. Decisions were more cautious, calling for decreases in 
effort or drastic action at all levels. However, decisions also called for no change in effort 
in a high proportion of cases when fishing mortality levels were very high. 

The comparison described above represents management decisions based upon 
the first year’s assessment, when the population was essentially still at equilibrium 
with the fishing mortality level. The results of the management strategy simulations, 
which modelled the whole fishery assessment and management process over 20 years, 
were less clear cut. Performance resulting from the use of the two alternative growth 
parameter estimates for L. mahsena were compared at a starting fishing mortality 
level equal to F0.1 (F=0.4), using the “most appropriate” total mortality estimation 
combination described above. Both sets of growth parameter estimates performed 
comparably in terms of the level of final year exploitable biomass and the number of 
years that spawning stock biomass was reduced below a threshold value (20 percent) 
of unexploited levels. However, results spanned a wide range of possible outcomes 
when using either set of growth parameter estimates. Age-based growth parameters 
resulted in a slightly narrower range of final year fishing mortality levels, and achieved 
the target level (F=0.4) in 25 percent of cases, as opposed to 15 percent of cases where 
length-based parameters were used. However, the range still spanned F = 0.1 to 0.9 
(Figure 10.4). Age-based methods also performed slightly better for the average catch 
performance measure (not shown).

The use of age frequency distributions (age-based catch curves) in the estimation of 
fishing mortality for L. mahsena further improved the performance of management. 
The optimum in each performance measure was achieved in a greater proportion of 
runs, and the range of outputs was slightly narrower. However, the range of outcomes 
was still large, indicating that assessment outputs remained uncertain.

The use of either the length- or age-based VPA approaches (Figure 10.1b; Wakeford 
et al., 2004) did not produce a notable improvement in management performance for 
L. mahsena. In addition, management performance was impaired by bias in growth 
parameters used to estimate natural mortality and the target fishing level (F0.1) derived 
from the yield per recruit curve. This bias was notable for all starting fishing mortality 
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levels with length-based methods but only at higher levels for age-based approaches 
(see Figure 10.2a and b).

The performance of length- and age-based VPA approaches was also examined 
for Siganus sutor. In contrast to L. mahsena, the use of age-based VPA, along with 
age-based growth parameters to estimate F0.1, resulted in remarkable improvements 
in management performance. Age-based VPA achieved average catches at the MSY 
level in a greater number of cases (40-50 percent, dependent upon the starting fishing 
mortality) while the range of values was narrower and centred on the optimum value 
(Figure 10.5). A similar pattern was seen in the level of exploitable biomass. The use 
of age-based VPA also conferred benefits in terms of reducing the number of years in 
which SSB fell below a threshold level (22 percent of unexploited levels), although the 
result was highly influenced by the starting fishing mortality level. As for L. mahsena, 
management performance was often defined by biases in the estimate of F0.1 (as a result 
of biases in the growth parameters) rather than the estimate of current F.

10.4  Discussion
The results of this study are predicated upon the assumptions made within the 
operational model, and the values used to parameterize it. It is expected that results 
and conclusions will differ according to the geographic location of species and their 
particular life history strategy. Furthermore, it should be noted that the aim of this 
study was not to establish an optimum management strategy. Hence only one strategy 
was examined here (F0.1 as target). Alternative management rules and targets may 
achieve different results in terms of management performance for these and other 
species, and might improve the performance of VPA approaches.

10.4.1  Growth parameters
Age-based growth parameter estimates for L. mahsena were generally more accurate 
and precise than those estimated through the use of ELEFAN, particularly at lower 
fishing mortality levels. The ELEFAN estimate of L∞ was strongly influenced by the 
largest individuals present in the length frequency distribution. Although the seed 
mean value of L∞ was 48.5 cm, individual growth variability resulted in individuals 
over 70 cm in length being present in the catch at low F levels. This positively biased 
the resulting L∞ estimate. This bias reduced as fishing mortality increased, since larger 
individuals were preferentially selected out of the population. ELEFAN consistently 
overestimated K. Given the relatively slow growth of L. mahsena, modes in the length 
frequency data are comprised of a large number of age classes, and hence growth curves 
fitted through those modes will overestimate K. Negative correlation between the two 
parameters meant that as the value of L∞ decreased, K became further overestimated. Age-
based estimates were also influenced by the selection pattern of fishing. Relatively fast 
growing individuals survived through length classes, so that at high fishing mortalities, 
the larger length classes were comprised of relatively young individuals. This decreased 
the information available on L∞ , and indirectly affected the estimate of K.

Results suggest that age-based methods should be used to estimate growth in species 
like L. mahsena. There is benefit in sampling a population early in its exploitation, 
to ensure older, larger individuals are present, providing more information on L∞ . 
Smaller, younger individuals should also be sampled to improve estimates of K. Specific 
sampling gears may be required to do this.

10.4.2  Assessment of management performance
Under equilibrium conditions, use of age-based growth parameter estimates and 
accompanying estimates of current fishing mortality appeared to result in the best 
management decisions for L. mahsena. However, the management strategy simulations 
considered the inter-annual performance of management, and incorporated additional 
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uncertainties compared to the simple study. It showed that while there was benefit for 
management performance in using age-based growth parameter estimates, there was still 
considerable uncertainty in outputs, and benefits were less clear cut. This, in part, was 
the result of using length-based total mortality estimation methods in the assessment 
process, since they required uncertain growth parameter estimates. Use of age-based 
catch curves further improved the performance of management for L. mahsena, while 
the use of VPA approaches appeared to confer little additional benefit. Normally, the 
derivation of age frequency distributions for catch curves would require reading of 
a large number of otoliths, or derivation of an age-length key. However, there is the 
potential to use otolith weight to derive realistic age frequency distributions for such 
a purpose (Pilling, Grandcourt and Kirkwood, 2003). If age-based catch curves cannot 
be derived, the use of age-based growth parameters and length-based methods appears 
the next best course. However, catch curves will not be appropriate for all situations. 
At high fishing mortality levels where stock age range is reduced, for faster growing 
species with few age classes, or where a species shows high recruitment variability, the 
accuracy of catch curves estimates is likely to be poor.

In contrast to L. mahsena, the use of age-based VPA resulted in considerable 
improvements in management performance for Siganus sutor, when compared with 
that of length-based VPA. 

In all cases, uncertainty in management arose since the estimate of F0.1 from the 
yield per recruit curve is strongly affected by the value of natural mortality. In this 
study, natural mortality was derived through empirical formulae based upon growth 
parameter estimates. Natural mortality is notoriously difficult to estimate, and is likely 
to vary between ages. However, its influence on assessments should be considered 
when deriving management. Indeed, it is sensible to treat the analytical assessments 
performed in the simulations as one piece of the assessment process. Other approaches, 
such as the use of catch per unit effort data, should be used to support the findings.

A final issue for the use of age-based methods of assessment is cost. However, 
cost-benefit analyses detailed in Pilling et al. (1999) indicated the higher costs of age-
based methods when compared to length-based approaches was offset by additional 
benefits in terms of management performance (e.g. improved sustainable yields). This 
was particularly true if preparation of otoliths was outsourced. Alternatively, costs of 
age-based growth estimation may be reduced by establishing a regional otolithometry 
centre. This would reduce the high initial expenditure required for age-based methods, 
while opening an additional income stream preparing otoliths for other regional 
organizations. A cost-benefit analysis of the use of potentially more data-intensive 
approaches such as VPA has yet to be performed.

Table 10.1
Parameter values used to simulate L. mahsena and S. sutor populations

Parameter L. mahsena S. sutor

L∞ (cm) 48.5 36.6
K 0.14 0.42
t0 -0.78 -1.36
Length weight a 0.0000806 0.000059
Length weight b 2.74 2.75
M 0.4 0.93
Lm50 27.5 18.0
Lm75 27.5 18.0
Stock recruitment Shepherd SRR Beverton & Holt

R = 25 million 
h = 0.879

Recruitment CV 61% 82%
Recruitment peak Oct – Feb Nov – Mar
Tc50 (Lc50) 3.75 yrs (22.8 cm) 1.49 yrs (18.0 cm)
Tc75 (Lc75) 4.17 yrs (24.3 cm) 1.57 yrs (18.6 cm)
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a.

b.

Figure 10.1
Flow diagrams presenting the simulated assessment processes. Method for estimating 
fishing mortality using (a) total and natural mortality estimates (Pilling et al., 1999), or 

(b) VPA approach (Wakeford et al., 2004)
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Figure 10.2
Statistics for length- and age-based von Bertalanffy growth parameter estimate distributions for  

L. mahsena. Bias (%) in the mean growth parameter estimate of L∞ and K relative to the true “seed” 
value used in the simulation (L∞=48.5, K=0.14) is displayed in graphs a and b respectively. Coefficient 

of variation (CV%) for L∞ and K estimate distributions are in graphs c and d respectively

Figure 10.3
Distribution of management actions based on estimates of F0.1 and current F derived for  
L. mahsena using length- and age-based growth parameter estimates, by initial fishing 

mortality level
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Figure 10.4
Final year fishing mortality level achieved using age-based and length-based parameters 

of L. mahsena for a starting fishing mortality of F=0.4. (Target=F0.1=0.4)

Figure 10.5
Histogram of the average catch for both length- and age-based methods for 
Siganus sutor for a starting fishing mortality of F=0.75 (MSY is 3 081 units)
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11.  The estimation of potential 
yield and stock status using life 
history parameters

J.R. Beddington* and G.P. Kirkwood

Summary
Using life-history invariants, this paper develops techniques that allow the estimation 
of maximum sustainable yield and the fishing mortality rate that produces the 
maximum yield from estimates of the growth parameters, the length at first capture and 
the steepness of the stock recruitment relationship. This allows sustainable yields and 
fishing capacity to be estimated from sparse data, such as that available for developing 
country fisheries.

11.1  Introduction
Fisheries science has developed substantially in the last two decades, primarily due to 
the large increase in computing power, which enables complex statistical calculations to 
be performed relatively quickly and cheaply. Two central problems of the science are:

1.	To estimate the potential yield of a stock or stocks.
2.	To estimate the current state of a stock or stocks. 
The scientific apparatus for solving these problems is well developed. The potential 

yield of a fish stock can be readily estimated from its demographic parameters and these 
in turn can be estimated using well-understood methods of sampling, experimentation 
and statistical estimation. The current state of a stock can be estimated in a variety 
of ways, both directly via research surveys and indirectly using information on 
catch levels, their age composition and the effort levels associated with taking those 
catches.

However, this is a picture of science that is relevant to temperate and high latitude 
fisheries in the developed world. It has much less relevance to tropical fisheries in the 
developing world where, even when the scientific methodology is applicable, its use is 
heavily constrained. Institutions in developing countries, with few exceptions, do not 
have the resources to conduct the substantial sampling and research that is necessary to 
apply the methodology and much work is conducted that, although properly executed, 
is fundamentally flawed because it is incomplete.

What is needed is a development of a scientific methodology that is tailored to the 
requirements of developing country fishery management and that in particular can be 
based on data and research findings that are within the capability of their institutions. The 
scientific analyses described in this paper are therefore aimed at allowing the estimation 
of potential yield and the maximum sustainable rate of exploitation directly from the 
parameters of size and growth. Such parameters are readily estimated from relatively 
simple data obtained by standard sampling and estimation procedures. The results mean 
that, armed with estimates of growth parameters K and L∞ of the von Bertalanffy (1938) 

*	 E-mail address for correspondence (j.beddington@imperial.ac.uk)
Note: This paper was also published in a 2005 special issue (360) of the Philosophical Transactions of the 
Royal Society B: Biological Sciences entitled “Fisheries: a future?”, compiled and edited by John Beddington. 
It is reproduced here with the kind permission of the Royal Society and the authors.
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growth curve and an estimate of stock abundance, potential yield and hence capacity 
can be calculated, and the current status of the stock can be determined. 

11.2  Potential yield
The estimation of potential yield is not an abstract problem of interest only to fisheries 
scientists and biologists; it is arguably the most important problem for fisheries 
management in the developing world. The reason is that once an estimate of potential 
yield can be made, the key management information on the capacity of the fishery can 
be deduced. Knowledge of a fisheries capacity is crucial to its management, whether 
in small scale localized artisanal fisheries or larger commercial ventures. Management 
needs to know how many fishers (and their families) can be supported by a fish stock 
or stocks without eroding the productive capacity of the resource. 

It is an intuitively plausible idea that long-lived, slow-growing species provide 
relatively lower sustainable yields than short-lived, fast-growing species. This idea was 
first encapsulated in a simple formula by Gulland (1971). The formula directly related 
the potential maximum yield of a species to its instantaneous annual natural mortality 
rate, M, in the equation:

Y = 0.5 M B0	 (1)

where B0 is the unexploited population biomass.
The argument used by Gulland to support this formula was a simple mix of a 

theoretical consideration, that the biomass level at which maximum sustainable yield 
can be obtained occurs at half the unexploited level in a simple logistic model, and an 
observation from experience of fisheries worldwide that the maximum yield appeared 
to occur when the fishing mortality rate was roughly equal to the natural mortality rate 
(see Clark, 1991).

Gulland’s formula was never intended to provide anything other than a simple rough 
guide to potential yield. However, because of its potential usefulness, it was revisited by 
Beddington and Cooke (1983) and then again by Kirkwood, Beddington and Rossouw 
(1994). In both cases, the aim was to develop refinements to the formula that improved 
its accuracy, while still retaining as far as possible its essential simplicity. 

In order to achieve these refinements, it was first necessary to take account of 
another key life history process, growth. In fisheries models, almost universally the 
relationships between length, l(t), or weight w(t) and age t are assumed to be described 
by the von Bertalanffy (1938) growth equations

l(t) = L∞ (1− e−Kt)	 (2)

w(t) = W∞ (1− e−Kt)3	 (3)

where L∞ and W∞ are respectively the asymptotic maximum length and weight of 
the fish, and K is a growth rate parameter measuring the rate at which the asymptote 
is approached. Note that the von Bertalanffy growth equations usually include a third 
parameter, t0, which measures the theoretical age at which length and weight are zero. For 
ease of presentation, we follow Beddington and Cooke (1983) and assume that t0 is zero. 

It is also well known that the yield from a fish stock is directly related to the length (or 
age) at which a fish first becomes vulnerable to the fishing gear. Accordingly, we further 
define Lc to be the length at first capture of the fish stock, measured relative to L∞ .

Beddington and Cooke (1983) and Kirkwood, Beddington and Rossouw (1994) both 
developed simple relationships between the potential maximum yield Y and the parameters 
M, K, and Lc . In particular, Kirkwood, Beddington and Rossouw (1994) showed that, for 
fixed values of M/K and Lc , the maximum yield as a proportion of unexploited fishable stock 
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size is either exactly or very nearly directly proportional to M. In summary, they showed 
that, if the potential yield is considered as a proportion of unexploited stock biomass

1.	Yield is higher for higher M.
2.	Yield is higher for higher K (for fixed M).
3.	Yield is higher for larger length at first capture Lc .
The major difficulty in applying these results to developing country fisheries is that 

for very few fisheries has it been possible to reliably estimate the natural mortality rate 
M. Other parameters have been routinely estimated for many stocks, but the sampling 
necessary and the complexity of estimation mean that estimation of natural mortality 
is beyond most developing country fishery institutions (a remark that also applies to 
the developed world). This is a serious problem, as from the results derived it can be 
seen that yield is in fact proportional to the natural mortality rate and if it cannot be 
estimated then neither can the potential yield (at least using this methodology). 

The key life history parameters of fish species (M, K, Lm , the length at sexual maturity 
relative to L∞ , and tm , the age at sexual maturity) have been estimated for a reasonably large 
number of species and various authors have noticed that there appear to be some rather 
simple relationships between them that appear to be similar across different species and 
for different populations of the same species. The pioneering work in this area was carried 
out by Beverton and Holt (1959) and was largely empirical in its analysis. In effect, they 
and a number of subsequent authors (e.g. Pauly, 1980; Froese and Binohlan, 2000), have 
used simple statistical techniques to derive empirical relationships between the parameters. 
That such relationships exist is surprising in that the parameters have been estimated using 
a large variety of sampling methods and sample sizes and using many different estimation 
techniques. They are thus subject to different kinds of statistical uncertainty (including 
bias) and the existence of clear empirical relationships with high statistical significance 
suggests that there are likely to be fundamental evolutionary and ecological processes 
involved.

A completely different approach to looking at the relationship between the life 
history parameters has been taken by authors who have sought an explanation of the 
empirical relationships using life history optimization techniques (Roff 1984; Charnov 
and Berrigan, 1990; Charnov, 1993; Jensen, 1996).

The implications of these studies are that three fundamental relationships are to be 
expected amongst the parameters. These are known as the Beverton-Holt invariants 
and are

a.	The product M tm is constant
b.	The ratio M/K is constant
c.	The value of Lm is constant
Following the development in Jensen (1996), it is possible to show that when growth is 

of the von Bertalanffy form, M tm = 1.65, M/K = 1.5 and Lm = L(tm) / L∞ = 0.67.
Jensen checked these relationships empirically using data published in Pauly (1980) 

and other sources and they are largely corroborated by this statistical analysis. He also 
showed that similar results could be obtained for different growth functions, although 
the empirical estimates of the invariants were slightly different. Mangel (1996) took 
a slightly different approach to considering these invariants, which would imply a 
somewhat more species-specific value for Lm , which is in any case estimable relatively 
easily from field data.

The implications of these results for the estimation of potential yield in developing 
countries are highly encouraging. They imply that if standard techniques can be used 
to estimate K and L∞ , simple manipulation of the last two of the invariant relationships 
above can give the other parameters necessary to estimate potential yield. The natural 
mortality rate M is equal to 1.5K and the length at maturity is equal to two thirds of 
the asymptotic length, L∞ . With these results, it is possible to revisit the analysis of 
Kirkwood, Beddington and Rossouw (1994). 
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11.2.1	C onstant recruitment
If annual recruitment is assumed to be constant, Kirkwood, Beddington and Rossouw 
(1994) derived a simple expression for the maximum yield as a proportion of the 
unexploited fishable biomass ExB0 in terms of M/K and Lc and showed that for fixed 
values of M/K and Lc, the relationship is linear with the maximum yield being directly 
proportional to the natural mortality rate.

Using the Beverton-Holt invariant M/K = 1.5, it follows that:

Y/ ExB0 = a(Lc) K	 (4)

where the parameter a(Lc) is a constant for a given value of the length at first capture 
Lc. The results are illustrated in Figure 11.1.
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Figure 11.1
Yield as a proportion of unexploited fishable biomass plotted as a function of K for 

different values of Lc

Figure 11.1 indicates that the potential yield increases with both the size at first 
capture (Lc) and K., as is well known (e.g., Beverton and Holt, 1957). Furthermore, the 
rate of increase in potential yield with Lc also increases as K increases. However, it is 
important to remember that situations where both the growth rates and sizes at first 
capture are high are likely to be relatively uncommon. The exploitable biomass as a 
proportion of total biomass becomes smaller as Lc and K increase. Hence, although in 
principle potential yields as a proportion of exploited biomass are higher, the absolute 
yields are smaller and thus unlikely to be commercially attractive unless there are 
special circumstances.

In Figure 11.1, results have been presented only for values of Lc up to 0.6. In the 
case of constant recruitment, it is well known that as Lc approaches the eumetric length 
(Le), the fishing mortality rate that produces the maximum yield approaches infinity 
(Beverton and Holt, 1957). The eumetric length (relative to L∞) here is given by 
(Beddington and Cooke, 1983). 
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and from the Beverton-Holt invariants M/K = 1.5 and Lm = 0.67, it follows that 

Le = Lm = 0.67	 (6)

A simple equation that captures to a good degree of accuracy the relationship 
illustrated in Figure 11.1 is as follows:

Y/ExB0 = 0.2 K (1-ln(0.67 –Lc))	 (7)

There is an attraction in using an assumption of constant recruitment as the 
mathematics are simple and it has been argued that it is a reasonable assumption as long 
as the SSB is not reduced to low levels. A number of authors have suggested that when 
the level of exploitation is such that SSB is greater then 20 percent of its unexploited 
level, then the assumption of constant recruitment is reasonable. However, it is well 
known that levels of exploitation are often higher that this (Garcia and Grainger, 2004) 
and hence the results for constant recruitment are called into question. We explain the 
more general case in § 2 b.

11.2.2  Recruitment varying with stock size
Constant recruitment is effectively the limiting case of strong density dependence. 
A more realistic and conservative approach is to assume that recruitment varies with 
stock size, with reduced recruitment occurring when the stock size is low. 

There is a large literature on stock and recruitment in fish and a variety of models 
have been proposed; see for example Quinn and Deriso (1999). In practice, however, 
it is rarely possible to distinguish between the different models in terms of how well 
they fit available stock and recruitment data and Kirkwood, Beddington and Rossouw 
(1994) chose to use a modified form of the Beverton and Holt (1957) stock-recruitment 
relationship. They argue that the various stock and recruitment relationships vary 
between the extreme density dependence of the Ricker (1954) relationship, through 
constant recruitment to the more conservative form of the Beverton-Holt relationship. 
This choice seems sensible in the context of developing country fisheries and it has the 
added advantage that the mathematics are slightly simpler.

According to the Beverton-Holt stock-recruit relationship, the number of recruits 
first increases rapidly as the spawning stock biomass (SSB) increases from zero. As the 
SSB increases further, the rate of increase in the number of recruits declines, until for 
very high SSBs, recruitment approaches an asymptote. 

The standard formulation of the Beverton-Holt stock-recruit relationship is 

Le = 
M/K3+

3
(5)

R = 
1+

aB
(8)

bB

where R is the number of recruits arising from an SSB of B, and a and b are 
parameters. In this formulation, a/b is the asymptotic number of recruits, and b is a 
productivity parameter measuring the rate at which this asymptote is reached.

This formulation is useful when pairs of corresponding estimates of SSB and 
recruitment are available, as it is a relatively simple matter to estimate the parameters using 
regression techniques. Estimates of the parameters a and b are also often reported in the 
literature when Beverton-Holt relationships have been fitted to stock and recruitment 
data. In many cases, however, and particularly for developing country fisheries, such data 
are absent, and it is then very difficult to select realistic values for the parameters. 



180 Stock assessment for fishery management

An alternative formulation incorporates a parameter characterizing the “steepness” 
of the stock-recruitment relationship at low stock sizes. As illustrated in Figure 11.2, 
the steepness (h) is defined as the recruitment (as a fraction of the recruitment in an 
unexploited stock) that results when SSB is 20 percent of its unexploited level, SSB0 (Mace 
and Doonan, 1988). As h approaches 1, the Beverton-Holt relationship approaches a 
form in which recruitment is constant; when h is 0.2, recruitment is linearly related 
to SSB. The great advantage of this formulation is that h is a dimensionless parameter 
characterising the shape of the relationship and it is unaffected by the actual size of the 
stock.
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FIGURE 11.2 
The characterisation of the Beverton-Holt stock-recruit relationship using the steepness 

parameter, h, for h = 0.2, 0.7 and 1.0

One further parameter needed for this analysis is the value of Lm. This, it will be recalled, 
is the third Beverton-Holt invariant, so that Lm = 0.67. 

Kirkwood, Beddington and Rossouw (1994) illustrated an empirical relationship 
between potential yield and the natural mortality rate that was almost linear for large 
areas of parameter space, but varied with Lm , M/K, the degree of density dependence 
and the length at first capture (Lc). The use of the Beverton-Holt invariants significantly 
simplifies that analysis so that, as in the constant recruitment case, the potential yield 
as a proportion of unexploited fishable biomass is given (to a close approximation) by 
the linear relationship:

Y / ExB0 = a(Lc , h) K  (9)

where a(Lc , h) is a constant multiplier of K determined by the length at first 
capture Lc and the degree of density dependence (steepness) in the stock-recruitment 
relationship h. 

The results are summarized in Figure 11.3.
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As expected, the multiplier of K increases with increased length at first capture and 
with an increasing degree of density dependence, with constant recruitment being the 
limiting case as the steepness parameter h approaches 1. 

Of particular interest is how quickly yield decreases as the steepness drops below 
1, especially for larger values of Lc . Given its definition, it is obvious that reliable 
estimates of h close to 1 will only be available in cases where the spawning stock size 
has been reduced to very low levels (i.e. it has been severely overexploited). For many 
stocks, recruitment appears on average to be constant over the observed range of 
spawning stock sizes. In such cases, it is often possible to identify a reasonable lower 
bound for the steepness, but the data would be consistent with any steepness between 
that and 1. Prudence would therefore indicate that in assessing yield, it would be wise 
to assume lower values of h (weaker density dependence) until data accumulate to 
provide evidence to the contrary.

Figure 11.3 also illustrates clearly the strong bias associated with the use of the 
Gulland (1971) formula in assessing potential yield. The horizontal line depicting the 
Gulland relationship lies well above the other contours even for combinations of high 
density dependence, growth and length at first capture.

Given the comprehensive collection of stock-recruitment data drawn together by 
Myers, Bridson and Barrowman (1995), there is a reasonable literature on estimates 
of the steepness parameter h. In particular, Myers, Bowen and Barrowman (1999) 
summarize estimates of h for a variety of fish species. Combining this information 
with estimates of the growth parameter K obtainable from FishBase (Froese and Pauly, 
2004), it is possible to illustrate our results by looking at a few typical species. A 
more exhaustive analysis will be reported elsewhere. The summary results for selected 
species are shown in Figure 11.4.
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Figure 11.3
Multiplier of K to determine yield as a proportion of unexploited fishable biomass, 

plotted as a function of Lc for different values of h. The horizontal dotted line is at a level 
of 0.75, corresponding to the Gulland (1971) formula Y = 0.5 M B0
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The results presented in Figure 11.4 for individual species are for illustrative 
purposes only, as there is manifestly substantial uncertainty around the estimates of K 
and h. Furthermore, we have assumed a constant Lc of 0.5 for each, when in practice the 
actual lengths at first capture for particular fisheries are likely to be different from this 
value. Nevertheless, the positioning of the species within the contours illustrates well 
the general pattern to be expected from the life history of the species concerned.

Estimates of the ratio between potential yield and unexploited fishable biomass 
for the individual species, and indeed most species, are arguably of historical interest 
only as almost all have been subject to substantial periods of exploitation. They are 
nevertheless indicative of the relatively low levels of sustainable yields that are possible 
and point to the basic reason why so many stocks are over-exploited. In practice, 
estimates of the original unexploited biomass ExB0 are rarely available, although for 
certain species and populations some estimates can be made when long time series of 
catch and relative abundance data are available. For new fisheries, particularly where 
some estimate of biomass has been made, the results can provide useful guidelines 
for the likely levels of sustainable yields. Recent exploitation of deepwater species, 
for which growth is known to be very slow, would have been arguably less intense if 
such preliminary results were available. Similarly, the exploitation of newly discovered 
or relatively lightly exploited stocks can be guided by this analysis to provide an 
assessment of sustainable yields and hence the level of sustainable fishing capacity.

Of more immediate interest to fishery managers is an idea of whether the current 
level of exploitation of a stock is sustainable. In Section 11.3, we explore this issue using 
similar techniques to those for the estimation of sustainable yield, but this time we 
focus on the fishing mortality rate that produces the maximum sustainable yield. If this 
is known and the current fishing mortality rate can be estimated, then the sustainability 
of current levels of fishing can be assessed.
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11.3  Stock status
In addition to comparing recent and current catches to estimates of potential yield, the 
status of a fished stock can also be assessed by comparing an estimate of the current 
fishing mortality rate with an estimate of the fishing mortality rate that produces the 
maximum yield, Fmax. 

Both Beverton and Holt (1957) and Gulland (1971) observed that in many 
situations, Fmax was related to and often close to the level of the annual instantaneous 
natural mortality rate, M. Other authors have also made similar observations, but to 
our knowledge no studies have been carried out to elucidate this relationship. The 
above analysis would appear to have two implications. First, whatever relationship 
exists between Fmax and M, it is likely to hold only for a particular length at first capture 
Lc . Second, it is likely that Fmax (for particular Lc) may be a simple fraction of the growth 
parameter K.

11.3.1  Constant recruitment
Confirming that suggestion, using the techniques of Kirkwood, Beddington and Rossouw 
(1994) and the Beverton-Holt invariants, it can be shown that for Lc < Lm, in the case of 
constant recruitment a linear relationship holds between Fmax and K. Specifically:

Fmax = a(Lc) K	 (3.1)

where the coefficient a(Lc) varies with the length at first capture. The results are 
illustrated in Figure 11.5.
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Figure 11.5
Fmax as a function of K for different values of Lc , when recruitment is assumed constant

As with the comparable relationship between yield biomass ratios and K discussed 
earlier, Fmax increases with increasing K and increasing Lc . Now, however, the 
relationship is Lc is much more non-linear for larger Lc , reflecting the fact that Fmax 
approaches infinity as Lc approaches 0.67. 
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Because of the extreme density dependence implicit in an assumption of constant 
recruitment, the Fmax predicted in this case is almost certainly an upwardly biased 
estimate of the true Fmax. It follows, therefore, that if the current fishing mortality rate 
is estimated to be close to or above this Fmax , then it is likely that the stock is being 
overexploited. 

A simple equation that captures to a good degree of accuracy the relationship 
illustrated in Figure 11.5 for Lc < Lm is as follows:

Fmax = 
0.67 - Lc

0.6K
(3.2)

11.3.2  Recruitment varying with stock size
If, as before with potential yield, we make the more prudent and realistic assumption 
that recruitment varies with SSB according to a Beverton-Holt stock-recruitment 
relationship, then to a close approximation Fmax is linearly related to K. In this case, 
however, the equation is

Fmax = a(Lc , h) K	 (3.3)

where a(Lc , h) is a constant depending on the values of Lc and the degree of density 
dependence h. The results in terms of values of the multiplier of K are summarized in 
Figure 11.6. 
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Multiplier of K to determine Fmax , plotted as a function of Lc for different values of h. The 

horizontal dotted line corresponds to a K multiplier of 1.5, when Fmax = M

The results shown in Figure 11.6 indicate the very strong influence that the steepness 
h has on Fmax. In practice, h is a relatively difficult parameter to estimate reliably, 
requiring at least a substantial time series of stock and recruitment data corresponding 
to a wide range of spawning stock sizes. Because of this, it is not surprising that the 
estimates reported in Myers, Bowen and Barrowman (1999) are predominantly for 
temperate species subject to substantial fisheries. For developing country fisheries, 
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it may therefore be rather difficult to obtain reliable direct estimates of h, though it 
may be possible to infer possible ranges from published estimates for similar species 
elsewhere. In such circumstances, a relatively low choice of h would appear to be 
prudent. 

The horizontal line in Figure 11.6 corresponds to a multiplier of K of 1.5, which is 
equivalent to Fmax being equal to M. It will be recalled that a number of authors since 
Beverton and Holt (1957) have observed that for certain species Fmax was approximately 
equal to M. While this is true for certain combinations of K and h, it seems likely that 
the relationship claimed is an artefact of the choice of species examined, as the region 
close to a multiplier of K of 1.5 is only a very small part of feasible parameter space.

The results obtained from the set of selected species used in the previous section are 
presented in Figure 11.7.
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selected fish species, based on estimates for those species of h from Myers, Bowen and 
Barrowman (1999) and of K from FishBase (Froese and Pauly 2004). A constant value for Lc 

of 0.5 has been assumed for each species

As noted before, the results presented for individual species are for illustrative 
purposes only, given the uncertainties associated with them. Again, however, the 
positioning of the species within the contours illustrates well the general pattern to be 
expected from their life histories. 

11.4  Caveats
In order to produce the results presented here, it has been necessary to make a number 
of simplifying assumptions. The first is that all fish with lengths greater than Lc are 
equally vulnerable to capture. Manifestly, real fisheries do not operate in this manner; 
typically they are prosecuted using a variety of fishing gears that have different 
selection patterns with size (and age). Usually, for each gear it is possible to identify an 
average length at first capture. If one gear dominates catches, then setting Lc equal to 
the average length at first capture for that gear should be sufficient. If there are many 
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gears catching a wide range of sizes, then setting Lc equal to the smallest average length 
at first capture would be prudent. The hardest case is when there are two substantial 
gears catching over quite different size ranges (e.g. purse seine and longline fisheries for 
tunas), but even here selecting an Lc based on the smaller average length at first capture 
seems the most sensible course of action. 

The Beverton-Holt invariants and their various derivations produce an estimate of 
the relationship between M and K with growth assuming that the natural mortality 
rate is constant over the relevant part of the lifespan. However, in a number of species, 
age- or length-specific patterns of natural mortality have been observed. Kirkwood, 
Beddington and Rossouw (1994) were able to show that in this case, a simple Heincke 
estimator (Heincke, 1913) will give a reasonable estimate of the average natural 
mortality rate that relates well to the natural mortality rate involved in the derivation 
of the invariants. 

By ignoring stochastic effects, the analysis presented here fails to account for a 
ubiquitous characteristic of fish stocks, namely that they fluctuate constantly. Such 
fluctuations are difficult to quantify and in most circumstances they are impossible 
to predict. However, again Kirkwood, Beddington and Rossouw (1994) showed that 
their deterministic analysis still provides a reasonable guide to the average behaviour 
of stocks that are exploited in fluctuating environments. 

In some species, there is evidence that density dependence operates on both growth 
and mortality of post-recruits, as well as via the stock recruitment process (e.g. Beverton 
and Holt, 1957, Lorenzen and Enberg, 2002) In this situation, the analysis is substantially 
more complicated, but the estimate of potential yield at Fmax obtained on the assumption 
that density dependence only occurs via the stock-recruitment relationship is likely to be 
conservative (Kirkwood, Beddington and Rossouw, 1994). 

11.5  Assessing stock status
The results above have a useful practical implication for the assessment of the status of 
fisheries where data are sparse. Given an estimate of growth parameters for the species 
concerned, an estimate of Fmax can be obtained simply by application of equation 9. For 
data-rich fisheries, there is a large number of methods available for estimating the current 
F that are routinely used in annual stock assessments, but it is often not possible to use 
these methods when data are sparse. Fortunately, however, several other (albeit rather 
imprecise) methods for estimating the current total mortality rate (F + M) that rely simply 
on availability of catch length frequency samples and estimates of growth parameters have 
been incorporated into stock assessment software packages commonly used in developing 
countries (e.g. FiSAT, Gayanilo and Pauly, 1997). It is then a simple matter to estimate F 
by applying the Beverton-Holt invariant M = 1.5 K. Alternatively, if an estimate of current 
biomass is available, for example from a survey, then a simple approximate estimate of F is 
available from the ratio of current catch to current biomass. 

If the current estimate of F is substantially higher than Fmax , then the stock is clearly 
being overexploited and action may be needed to avert a stock collapse. If it is close to 
Fmax , then any increase in fishing effort should be discouraged. In the situation where the 
estimate of F is well below Fmax , then some simple guidelines for expansion of the fishery 
may be used. Increasing catch levels by increasing effort can be permitted as long as the new 
F is still below Fmax . Clearly, prudence will require that it is a reasonable level below.

11.6  Concluding remarks
In this paper, we have developed simple relationships that can be used to estimate 
potential yield and the maximum sustainable fishing mortality rate given information 
on the growth curve and size at which fishing starts. In both cases, this information 
can be obtained relatively easily from standard sampling procedures well within the 
capability of developing country fisheries institutions. The level of potential yield 
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and the corresponding fishing mortality rate depend also on the steepness (the degree 
of density dependence) in the stock-recruit relationship, which is much less easy to 
estimate. However, the results in this paper still allow estimates to be calculated for a 
reasonable range of possible values of steepness, thereby allowing prudent management 
decisions to be made when only sparse data are available. 
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12.  Managing fishing effort in 
multispecies fisheries

Christopher C. Mees

12.1  Introduction
FMSP Project R5484 derived guidelines for the management of demersal bank and 
deep reef-slope fisheries exploited principally with hooks and lines, a relatively simple 
multispecies fishery, but with widespread applicability (Mees and Rousseau, 1996). 
Section 4.4 outlines the approach used to derive the guidelines. The guidelines describe 
appropriate management controls for multispecies fisheries, and in particular they 
define how to set overall levels of fishing effort applicable across all species. A rule 
of thumb for evaluating the status of key indicator species within the fishery was also 
developed. Outputs from existing stock assessment tools (e.g. CEDA for catch and 
effort data, LFDA or FiSAT for length based data to derive biological reference points, 
and Yield software to evaluate optimum values of effort) applied to data typically 
available in developing country situations are required to implement the guidelines. 
Minimum data requirements to achieve effective management were also derived.

The guidelines for management of multispecies fisheries derived through this study 
were based on fisheries with particular characteristics as listed below. The applicability 
of the guidelines to fisheries with other characteristics has not been evaluated, and 
therefore the reader should be aware of these limitations.

•	 Hooks and lines represent a selective method of fishing (compared to nets, for 
example) and the study was confined to examining interactions between target 
species (including predator-prey responses between them or between age classes of 
the same species). Any effects on their predator or prey species was not examined. 
However, for one of the case study locations, Seychelles, the inshore reefs are 
exploited by small boats using a variety of methods including traps, nets and 
hook and line. In a fishery independent survey, Jennings, Marshall and Polunin 
(1995) indicated that fishing depleted the top predators (lutjanids, serranids and 
lethrinids) but there was no evidence for prey release or an increase in abundance 
of fish at other trophic levels related to fishing following their removal. It may be 
assumed that this observation will also apply to the offshore banks of the present 
study, and suggests that the lack of information on non-target species was not 
important.

•	 A poor relationship exists between hook size and fish size (Ralston, 1982, 1990; 
Bertrand, 1988), which limits management responses, and has implications for 
data collection. 

•	 Target species, members of the families Lethrinidae, Lutjanidae and Serranidae, 
are long lived, slow growing species with relatively low rates of natural mortality. 
Length at maturity as a proportion of the asymptotic length tends to be high, and 
they have limited reproductive capacity and are vulnerable to overfishing. 

12.2  Some key findings from the study
No detectable multispecies responses due to biological interactions and fishing were 
found. Species composition changes due to technical interactions were, however, 
significant. The results indicated that single species and aggregate single species models 
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were adequate to derive management advice for the study demersal fisheries without the 
need for more complex ecosystem models accounting for all multispecies interactions. 
However, standardisation to account for technical interactions was essential. 

In relation to minimum data requirements, the finding that single species and 
aggregate single species models are adequate to describe and manage multispecies 
demersal bank and deep reef slope fisheries has important consequences. The results 
indicated that it is sufficient to obtain catch and effort data from the most important 
species and aggregations of other species without the need for detailed information 
on every species. However, due to the importance of technical interactions, catch 
and effort data collection must include a number of other details, particularly those 
relating to technological changes in fishing methods – vessel and gear characteristics 
must be recorded. Sampling strategies for catch and effort data, and species specific 
length frequency and biological data, also need to capture fishing depth and spatial 
information to enable standardisation for variation in these factors. 

For length frequency and biological data collection, the management guidelines 
require that the number of species from which data is collected need only be confined 
to the most vulnerable and economically important. For individual species length 
frequency data and age and growth assessment were essential. The more costly 
biological data to provide parameters such as length at maturity, whilst useful, was 
not seen as essential for management. An estimate of density dependence in stock 
recruitment would be very useful for refining management thresholds. A key deficiency 
in existing data collection related to uncertainty in growth parameter estimates from 
length based methods. This prompted further studies to investigate the importance of 
growth parameter estimation (see Section 10). 

The effect of a range of potential management controls on study multispecies 
fisheries was examined. Whilst it is theoretically possible to set management controls 
for individual species, and for different depth bands, relating to one source of technical 
interaction, this was considered to be too complex. Management controls based on a 
combination of effort controls and closed areas is recommended. A simple rule was 
derived for determining the ideal fishing mortality of single species, based on the 
effect of controls on effort and length at first capture. A set of criteria was formulated 
for selecting critical (or key) species for which such a single species analysis should 
be performed. From this analysis of some of the component species, a method was 
developed for determining the appropriate overall effort level for the multispecies 
fishery. Although the guidelines for management are conservative, the method enables 
informed choices to be made about the risks and benefits of allowing some species to 
be overfished in order to optimize yields of others.

12.3  Guidelines for data collection and management of  
multispecies fisheries
12.3.1  Data collection
Catch and effort data need only be collected on key species (defined by the management 
guidelines) and guilds of others. Length frequency and biological data need only be 
collected for the key species. Length frequency data are essential, but biological data 
are less important. Table 12.1 provides a summary of data collection requirements that 
may feasibly be implemented by resource limited developing country institutions.

Studies of the predicted effects of management suggested a prioritisation for data 
collection and research subject to the characteristics of tropical demersal reef bank and 
deep slope species. The following highlights the information required to implement the 
management guidelines, some of which are parameters derived from original data.

•	 It is assumed that length at first capture (Lc50) cannot be controlled in a handline 
fishery. The best that can be done is to measure it, and set effort levels accordingly. 
Therefore, deriving estimates for Lc50 for key species is a high priority. When a 
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fishery is new or lightly exploited, the Lc50 is initially high and drops as the large 
sizes of fish are removed. In such fisheries where Lc50 has not stabilized yet, it is 
wiser to use an estimate of future likely Lc50 than to use the real measured value.

•	 It is assumed that catch limitation is impractical. Therefore, it is more important to 
know the effort range within which yield is maximized, than to be able to predict 
the maximum sustainable yield that would be so obtained. This means that it is not 
necessary to estimate length at maturity (Lm50) (but see 12.3.2, point 4).

•	 The study species all have estimated M/K close to 2. This characteristic contributes 
to the simplicity of the management guidelines. It is therefore important to 
monitor that this ratio does not deviate significantly from 2. M and K must be 
estimated for key species. In the case study examples, M was estimated empirically 
(Pauly, 1980).

•	 M is also necessary for setting the desirable fishing pressure, since all F’s are scaled 
to M. 

•	 The only requirement for K is the ratio M/K, but L∞ will be needed in order to 
derive Lc (defined as the ratio of Lc50/L∞), so growth parameters are required. The 
growth parameter t0 is not necessary, so simplified growth curve fitting procedures 
may be used.

•	 It is particularly important to have an estimate of the relative catchabilities of 
species which are to be measured and/or managed as a guild. Similarly, relative 
catchability of guilds should also be known. Fish which are treated as a guild should 
have similar catchability and Lc. This does not necessarily require data analysis 
for all species - where fish are of similar size and habits and are homogenously 
distributed, it can be assumed their catchabilities are approximately the same.

•	 Absolute catchability will be needed for key species.
•	 Length weight parameters are not very important, and are not required for the 

implementation of the management guidelines.
•	 Details of a selection ogive for the gear are not nearly as important as a good 

estimate of Lc50.
•	 If an estimate of virgin biomass is available, it will enable the expected yield to be 

predicted, to within the tolerance represented by unknown parameters such as Lm 
and absolute catchability.

•	 An estimate of density dependence in stock recruitment would be very useful for 
refining management thresholds.

The influence of unknown or uncertain parameters on resulting management advice 
can be investigated through sensitivity analyses. One example is provided by Mees and 
Rousseau (1997), who examined the sensitivity of single species management outputs 
to uncertainty in growth parameter inputs and the stock recruitment relationship 
parameter, d. Effort targets set to be slightly more conservative than maximum 
sustainable yield (MSY) were found to provide security against uncertainty, at 
relatively low cost to the fishery. The Yield software also allows examination of effort 
targets for single species. 

12.3.2  Summary of biological guidelines for management 
A number of alternative management controls for multispecies fisheries were 
investigated, summarized in Table 12.2.

The guidelines are designed to result in an overall effort limit for a multispecies 
fishery which will ensure the maximum return from the fishery while protecting all 
the species within it.

1.	Estimate relative catchability for the major species or guilds (guilds may be 
comprised of similarly sized species which school together or otherwise present a 
homogeneous profile to the gear).

2.	Estimate Lc and M for the following species:
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	 -	 the most catchable one
	 -	 the biggest one (highest L∞)
	 -	 the longest lived (lowest M)
	 -	 the slowest growing (lowest K)
	 -	 any that is caught with a wide range of lengths, particularly juveniles.
3.	If the fishery is new or lightly exploited and Lc > 0.5, then work with a projected 

long term value of Lc=0.5 until it appears that Lc has stabilized at the higher 
value.

4.	From Lc, estimate Fopt for these species, using Figure 12.1. Note that in Figure 12.1, 
Fopt is assumed to be FMSY. Yield Software, however, offers the potential to derive 
alternative values of Fopt (e.g. F0.1 , FSSB20). Thus, if possible, apply yield per recruit 
analysis to derive Fopt based on the selected management target. It is important that 
the estimated SSB at the target effort is higher than the minimum necessary to 
maintain long-term average recruitment.

5.	Estimate absolute catchability q for:
	 -	 the most catchable species and 
	 -	 the one with the lowest Fopt as calculated above.
6.	Calculate Eopt = Fopt / q for the above species.
7.	Choose the smallest of the two Eopts and set overall effort E = min(Eopt)	
This method identifies the various categories of most vulnerable species, and sets 

effort to protect the most vulnerable one. If economic or sociological considerations 
place priorities on a certain species, Eopt can be calculated for it, and the effect of such 
an effort on the more vulnerable species can be estimated. Informed choices can then 
be made about the risks and benefits of overfishing some species in order to optimize 
yields of others.

12.3.3  Rules of thumb for evaluating the status of key species and 
management response 
Having defined the key species for a particular fishery, a manager needs to establish the 
current status of exploitation (i.e. the current fishing effort Fcur) and take appropriate 
management action. Mees and Rousseau (1996) derived rules of thumb based on certain 
biological reference points, that may be used as indicators of the need for management 
action.

Lc50 and fishing mortality (Fcur) are key parameters which should be established. 
Length at maturity (Lm50) is also useful, but where unknown, management may be 
based on knowledge of Lc50. 

Where length at maturity (Lm50) is known and Lc50 is about Lm50, fishing mortality 
(F) should not exceed twice the natural mortality (M, see also Polovina, 1987). Where 
Lc50 is greater than Lm50 effort controls are less important and overfishing is unlikely 
to occur. However, where the reverse is true, careful control of the level of effort is 
required. Yield per recruit analyses may be used to derive the optimum level of fishing 
mortality (Fopt) at any given Lc50. These rules are summarized below.

Where Lm50 is known:
If Lc50 = Lm50 then set F≤2M
If Lc50 > Lm50 then effort controls are less critical
If Lc50 < Lm50 then calculate Fopt from YPR analysis

	 Compare Fcur to Fopt to determine the appropriate management action, based 
on the relationship between Lc50 and Lm50 .

Where Lm50 is unknown, a scale of fishing mortalities has been derived, as a guideline 
to management, appropriate for different values of Lc50 (Figure 12.1). However, 
conservatively it was suggested that where Lc50 was greater than 0.5L∞ then effort 
should be determined for Lc50=0.5L∞ rather than current values (see guidelines point 3) 
and at this point fishing mortality should not exceed natural mortality (i.e. F/M≤1). 



Managing fishing effort in multispecies fisheries 193

Where Lm50 is unknown:
	 If Lc50 > 0.5L∞ then manage conservatively assuming Lc50=0.5L∞, setting 

F=M
	 If Lc50 = 0.5L∞ then set F=M
	 If Lc50 < 0.5L∞ then calculate Fopt/M from Figure 12.1.
	 Compare Fcur/M to Fopt/M to determine the appropriate management action, 

based on the relationship between Lc50 and L∞.

Mees, Pilling and Barry (1999) provide an example of the application of these 
indicators to the banks fishery in the Chagos Archipelago. 

Table 12.1
Summary of data collection requirements feasible for resource limited developing country 
fisheries institutions, for the management of demersal fisheries

Details
Data type

Catch and effort data Length frequency data Biological data

Collected for - Key species plus guilds of 
others (essential)

- All fishing grounds and 
potential fishing areas

- Key species (essential) - Key species only if 
resources available, (not 
essential)

To estimate - catch, 

- effort, 

- biomass-prodn models

- catchability

- Lc

- growth K, L∞

- mortality (M & current F)

- Apply guidelines

- (Lm)

- (growth from hard parts)

- (length-weight 
relationship)

- (Location and time of 
spawning)

Must monitor - Technical interactions

- Depth

- Gear 

- vessel power

- fishing practices 

- Location specific

- gear size (hooks); 

- location specific data 
essential- must relate to 
heavily fished locations

Strategies for 
data collection

- Prioritize to optimize 
cost/benefits for limited 
resources

- Aim for large sample size 
(consider logbooks) 

- Implement targeted 
sampling strategy

- Decide most appropriate 
guilds (more research?)

- Add technological data 
requirements to logbooks

- Prioritize

- Targeted sampling 
strategy (concentrate on 
heavily fished locations if 
cost is limiting)

- Increase sample size from 
lightly fished locations 
where possible

 - Collect biological data 
from successive key 
species where funds 
permit

- Collect hard parts for 
ageing

- Use informal interview 
techniques to get 
additional information 
e.g. spawning time 
/location
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Table 12.2
Summary findings of the simulated effects of alternative management controls on multispecies 
demersal bank and reef-slope fisheries, indicating management recommendations

Management 
Control Project findings

Catch Direct catch controls and quotas not recommended for multispecies fisheries, but 
catches should be monitored, and SSB should not be allowed to fall below  
20-30% of initial SSB (refer to Yield software)

Effort Effort controls are recommended as the primary management control. 
Effort must be appropriate for Lc

Guidelines give appropriate effort for multispecies resource
Given potential for uncertainty in parameters upon which effort targets are 
based, effort controls should be used in combination with permanently closed 
areas.

Length at first 
capture

Difficult to apply in hook and line fisheries
Minimum size controls not appropriate
Essential to monitor this parameter

Closed seasons No benefit indicated
Protection of known spawning aggregations should be encouraged

Closed areas Benefit to spawning stock biomass, but unknown if loss of yield to fishery is 
compensated by increased yields
Useful buffer against stock collapse

Pulse fishing No benefit to yield
Disruptive to fishing activities
Benefits SSB
Recovery 8% pa for deep slope, 12%pa for banks

Resource 
manipulation

Results in reduced overall yields
Elimination of species possible
Sometimes appropriate to maximize economic yield

Figure 12.1
The value of FMSY / M at different lengths at first capture, Lc50 , expressed as a proportion 
of the asymptotic length, L∞(Lc=Lc50/L∞ calculated for Length at maturity equal to 0.5L∞ , 

and 0.7L∞  (see 12.3.2, point 4). Note that for lutjanids, Grimes, 1987, indicated that sexual 
maturity occurs in the range 43%-51% of the maximum length
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13.  Bayesian stock assessment 
of the Namibian orange roughy 
(Hoplostethus atlanticus) fishery

Murdoch McAllister

13.1  Introduction
Bayesian stock assessment can be useful for developing scientifically based fisheries 
management advice in developing fisheries for a variety of reasons (McAllister and 
Kirkwood, 1998a, b). For example, in developing fisheries, data on abundance and the 
biological characteristics of a newly exploited population are nearly always sparse. Yet, 
it is often the case that other populations of the same and similar species have been 
exploited elsewhere and studied by biologists. Bayesian approaches offer a variety of 
methods to harness such data, knowledge and experience to help assess and manage the 
newly exploited fish stocks. Such previous experience for example can help to quantify 
plausible ranges of values for growth, natural mortality rates, catchability, and stock-
recruit function parameters for the stock of interest. 

Bayesian methods offer a coherent probabilistic modelling methodology that 
permits estimation of key population parameters and abundance using a wide variety 
of data. Hierarchical modelling methods, for example, can estimate the distribution of 
values for a parameter across populations based on an analysis of datasets from several 
different populations (Gelman et al., 1995; Liermann and Hilborn, 1997; Michielsens 
and McAllister, 2004). Bayesian stock assessment methods can utilize as inputs prior 
probability distributions for model parameters that incorporate the uncertainty in 
the input values but also what is known based on previous studies and analyses, e.g., 
from hierarchical analysis of stock-recruit data for several similar previously studied 
populations (McAllister et al., 1994). After fitting the Bayesian models to data, output 
distributions convey what is known about the modelled quantities of interest following 
the analysis of data. These output distributions can serve as inputs to decision 
analysis modelling which evaluates the potential consequences of alternative fisheries 
management actions that could be taken (McAllister et al., 1994; McAllister and 
Pikitch, 1997). Thereby, the potential outcomes and risks of alternative management 
actions can be evaluated taking into account all available information and the key 
uncertainties about the state of the stock.

This section provides an illustration of a recent application to demonstrate how the 
Bayesian approach was recently implemented and how the stock assessment advice 
was actually applied in the management of the Namibian orange roughy fishery. For 
further detail on the application, please see Boyer et al. (2001) and McAllister and 
Kirchner (2001, 2002). In the first part, a brief background to Namibian orange roughy 
is provided. The second part illustrates how expert judgment and experience from 
other fisheries for orange roughy were utilized within the Bayesian stock assessment 
and how the methodology applied evolved as new data were acquired. Third, the 
manner in which the decision analysis was carried out is outlined. Fourth, some results 
of the assessment are shown. Fifth, the various pros and cons of the Bayesian methods 
applied are outlined.
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13.2  Namibian orange roughy: biology, exploitation and scientific 
research
Orange roughy is found at depths of 500m - 1 500m. It has world-wide distribution 
and is found in temperate to subtropical waters. It is believed to be very long-lived 
with some specimens aged over 100 years (Boyer et al., 2001). The age at maturity 
for Namibian fish has been estimated at 20 to 30 years. Growth is very slow with fish 
reaching a maximum of 1-4 kg. Fecundity is also low at 20 000-60 000 eggs per year. 
Mature fish form dense spawning aggregations often over pinnacles and gullies in the 
austral winter. Spawning orange roughy are harvested by deepwater trawlers that use 
specialized deep-water trawl gear and modern electronics. Hauls of 20-70 tonnes are 
possible. Fish are headed and gutted and iced or frozen at sea. On-shore processing 
plants produce fillets which are exported to the US. The resource has a landed value of 
about US$2 750 per green-weight ton (Branch, 1998). 

Biomass estimation of orange roughy with the use of trawl survey, hydro-acoustic 
and commercial catch rate data is problematic for the following reasons. Deepwater 
fisheries resources such as orange roughy (Hoplostethus atlanticus) are physically less 
accessible than other fisheries resources. They are more difficult to locate and map 
in spatial extent because of their extreme depth and highly patchy distribution. They 
are more difficult to assess for their biological characteristics, abundance and changes 
in abundance because of low hydro-acoustic target strength, difficulties in ageing 
specimens, highly aggregating behaviour, and the inability to apply mark and recapture 
tagging methods (Clark, 1996). Mature fish migrate to and from spawning grounds and 
aggregations, required for hydro-acoustic biomass estimation, can form and break up 
rapidly (Kirchner and McAllister, 2001). 

In New Zealand, where orange roughy has been assessed since the late 1980s, an age-
structured stock assessment model had been fitted to research trawl survey indices of 
abundance, mean lengths of fish from these surveys and in some instances commercial 
catch rate data (Francis, 1992; Francis et al., 1992). The estimation procedure allows 
for historical deviates from the Beverton-Holt stock recruit function and assumes 
that these are lognormally distributed with a relatively large standard deviation in 
the natural logarithm of the deviates of 1.1. The estimation procedure also treats 
the constant of proportionality, q, between the abundance indices and stock size as 
estimated parameters. The model therefore relies entirely on historical declines in the 
abundance indices and the observed catch removals to make inferences about stock 
biomass and trends in stock biomass. A time series of 6 years showing a consistently 
decreasing trend provided fairly precise stock biomass estimates (Francis 1992; Francis 
et al., 1992). 

13.3  Initiation of the fishery and stock assessment of Namibian 
orange roughy
An exploratory orange roughy fishery began in 1994. Catches rose from 29 tonnes 
to about 13 000 tonnes between 1994 and 1996 (Table 13.1). By 1996, four major 
fishing grounds, i.e., Johnies, Rix, Frankies and Hotspot had been discovered within 
the 200 nmi EEZ. From 1997 onwards the fishery progressed beyond its exploratory 
phase and was managed by a total allowable catch (TAC). The fishery management 
objectives were to maximize net economic yield and not to deplete the resource below 
the maximum sustainable yield (MSY) level. The management strategy adopted was to 
fish down the accumulated biomass for 7 years with TACs set larger than the MSY and 
then a 7-year transition in TACs to the MSY. 

The TAC was obtained from the Johnies, Rix, Frankies and Hotspot fishing 
grounds. In 1997, the virgin biomass was estimated using commercial catch per unit 
effort (CPUE) data since these were the only data available (Branch, 1998). Branch 
(1998) developed a swept area methodology to convert the tow by tow CPUE data 
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to a single swept area biomass estimate. With only a single abundance estimate, other 
methodologies such as Francis (1992) which requires a time series of relative abundance 
indices could not be applied. The only way to use this swept area estimate was to use 
expert judgment to construct a scaling parameter (q’) that could rescale this swept area 
estimate (I) to absolute biomass (B) such that B = q’I. Branch (1998) adopted a Bayesian-
like approach to construct a probability density function for q’. q’ was assumed to be a 
function of nine different “bias” factors which could affect the relationship between the 
commercial swept area estimate and the total mature biomass. These included factors 
such as the catchability of orange roughy by commercial trawl gear inside aggregations, 
and the extent to which trawls were directed at known aggregations. Density functions 
were constructed for each of these factors based on consultation with experts (for more 
details see Branch (1998) and Boyer et al., 2001). A Monte Carlo approach was applied 
using the nine individual density functions for the bias factors to develop a probability 
distribution or “density function” (pdf) for the average unfished biomass, Bo. The stock 
assessment procedure applied then took draws from this pdf for Bo and projected a 
deterministic age-structured model 14 years forward to the year 2010 to evaluate the 
potential consequences of alternative fishing down policies. The population dynamics 
model was very similar to those applied in New Zealand and the values for its input 
parameters, except for Bo , were set at the values used in New Zealand because of lack 
of biological details on Namibian orange roughy (e.g., Francis 1992). 

Unlike more conventional stock assessment methods, the initial Bayesian-like stock 
assessment procedure did not require a time series of relative abundance to estimate 
Bo and stock biomass. The validity of this method which relies on expert judgment 
to construct a prior pdf for q is based on the following three assumptions, among 
others:

1.	The spatial positions of individual trawls within each spatial stratum were 
determined on a random or systematic basis in the first few years of the fishery. 
This condition is unlikely in any commercial fishery but could sometimes be 
approached in an exploratory fishery when fishermen are searching for fish. 
However, once fish are located, this assumption will no longer be valid. Factors 
to correct for this source of bias were identified and applied in the first assessment 
(Boyer et al., 2001). 

2.	The positions of aggregations were stationary over time, i.e., from 1994-1996. 
Later analysis found this not to be the case. In these years, large catch rates were 
extrapolated to large, scarcely sampled areas giving positively biased swept area 
estimates. A recalculation in 2000 that allowed for non-stationarity in aggregation 
position and stratum definition produced much lower swept area estimates 
(Kirchner and McAllister, 2001).

3.	The pdf for the constant of proportionality, q’, was not seriously biased in central 
tendency and not too narrow (Walters and Ludwig, 1994; Adkison and Peterman 
1996). If the central tendency was seriously biased, being too narrow could exclude 
the true bias correction. This could then result in seriously biased estimates of 
Bo and stock biomass. In retrospect, it appears that the pdf for the original bias 
correction was too narrow. The initial coefficient of variation (standard deviation 

Table 13.1
Orange roughy catches from each fishing ground, the total catch and total TAC from  
1995-1999 (From McAllister and Kirchner, 2001)

Year Johnies Frankies Rix Hotspot Total TAC

1995 4 111 -- 12 2 620 6 743 --

1996 1 905 7 757 1 445 785 11 892 --

1997 2 825 8 773 3 307 612 15 517 12 000

1998 5 954 1 244 4 249 345 11 792 12 000

1999 1 495 80 721 202 3993 9 000



198 Stock assessment for fishery management

(SD)/mean) (CV) for q’ was about 0.25. This was updated to about 0.3 at the 1997 
stock assessment meeting. However, this was later updated to about 0.6 for the 
1999 assessment.

The result of applying a positively biased swept area estimate of biomass and a pdf 
for q’ that was too narrow was a markedly biased commercial swept area estimate of Bo 
for Namibian orange roughy in the first two years of stock assessment, 1997 and 1998 
(Table 13.2). In 1997 hydro-acoustic and research trawl surveys were conducted on the 
three southernmost fishing grounds. The estimate of biomass obtained from these were 
about half of the value obtained from the commercial swept area time series. In 1998, 
the stock assessment procedure was also run using a pdf for Bo based on the hydro-
acoustic swept area estimate of stock biomass and pdfs for bias factors for this swept 
area estimate. The calculated risks of different TAC policies were much higher using 
this latter estimate of Bo and alarm was raised in 1998 over the possibility that the initial 
assessment with the commercial swept area estimate was too optimistic. The estimates 
of Bo and risks and management decisions based on the risks in each year from 1997 to 
1999 are summarized in Table 13.2. 

13.4  The 1999 revised Bayesian stock assessment procedure for 
Namibian orange roughy
By 1999, the fishery and scientific research program for orange roughy had operated 
for four years. This enabled the construction of commercial swept area, hydro-acoustic 
and research trawl swept area time series for each of the four fishing grounds. All 
time series from 1995-1998 showed a decline, especially following 1997 on the three 
southern grounds (Table 13.3). The existence of a four-year time series of catch and 
CPUE indices and a two-year series for hydro-acoustic and research trawl swept area 
indices opened up the possibility of fitting a stock assessment model to these data for 
model parameter and biomass estimation. However, the time series were very short. 
Fitting a time series model to such data and treating them as relative abundance indices 
with the value for the constant of proportionality, q, (that scales stock biomass to the 
value of the index) allowed to vary from 0 to infinity could be expected to produce 
highly imprecise estimates (Smith 1993; McAllister et al., 1994). Other studies have 
indicated that constructing informative prior probability distributions for the constant 
of proportionality for abundance indices with the use of expert judgment could help 
to improve the precision in biomass estimates (McAllister et al., 1994; McAllister and 
Ianelli, 1997). This would occur because the informative priors restrict the range of 
possible values for q so that they no longer range without constraint between 0 and 
infinity. Moreover, the initial assessments already had produced a pdf for q’ for the 
commercial swept area and hydro-acoustic estimates of biomass, albeit too narrow and 
other work had already constructed prior pdfs for q for research trawl survey swept 

Table 13.2
The history of scientific advice for the management of Namibian orange roughy up until 1999. 
The biomass estimates are the median values given by the hydro-acoustic (a) and commercial 
swept area (c) estimates. The % risks for the TAC policies shown are computed in terms of the 
probability that the biomass in the final projection year shown drops below 20% of virgin 
stock size. + two more Companies indicates that two additional companies were allocated TAC 
(From McAllister and Kirchner, 2001)

Year Biomass Estimate (tonnes) Risk Criterion Management Decision Adopted

1997 300 000 (c) 20 000 tonnes TAC < 10%  
in 2010

12 000 tonnes TAC + two more 
Companies

1998 230 000 (c)
150 000 (a)

12 000 tonnes TAC < 10%  
in 2001

12 000 tonnes TAC for 1998 only

1999 75 000 (c) 
25 000 (a)

9 000 tonnes TAC < 10%  
in 2000

9 000 tonnes TAC for 1999 only + close 
Frankies
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area estimates (McAllister and Ianelli, 1997). It was thus possible to do so for the 
estimates for Namibian orange roughy. 

The revised stock assessment approach fitted the same age-structured population 
dynamics model used in the previous two assessments to the available relative 
abundance series (Table 13.3) but also used informative prior pdfs for their constants of 
proportionality and incorporated process error in the stock-recruit function (Francis 
et al., 1992; McAllister et al., 1994). The general steps for the revised Bayesian stock 
assessment procedure are as follows:

1. Formulate prior probability distributions for the estimated model parameters. 
The prior distribution for a set of parameters summarizes the information about those 
parameters from all knowledge except data used in the likelihood calculations of the 
stock assessment (Punt & Hilborn, 1997). Prior pdf’s were constructed individually for 
each parameter. Priors were applied for the long-term average value for unexploited 
biomass, Bo, the rate of natural mortality, M, and the annual deviates from the Beverton-
Holt stock-recruit function (McAllister and Kirchner, 2001). For each trial, the prior 
for Bo was uniform over the interval [1 000 tonnes, 2 000 000 tonnes]. The prior for 
M was lognormal with a median 0.055, and standard deviation for the logarithm of M 
of 0.3 (Clark et al., 1999). The assumed value for the prior SD in annual stock-recruit 
function deviates was set at 1.1. 

Informative prior pdfs were also constructed for the constants of proportionality (q) 
for each relative abundance index based on the same pdfs for “bias factors” identified in 
the previous assessments and the relationship Iy = qBy where Iy is the model predicted 

Table 13.3
Orange roughy relative abundance indices. Model input coefficients of variation (CVs) are given 
in parenthesis (from McAllister and Kirchner, 2001)

Year Hydro Acoustic Research-Swept-area Commercial-Swept-area

           Johnies

1995 17 417 (0.40)

1996 16 177 (0.42)

1997 32 171 (0.29) 57 650 (0.32) 25 471 (0.41)

1998 4 733 (0.31) 6 980 (0.30) 17 210 (0.38)

1999 - 2 137 (0.42) 6 924 (0.38)

Frankies

1995 - -

1996 - - 21 893 (0.39)

1997 19 804 (0.25) 30 995 (0.37) 36 319 (0.38)

1998 6 551 (0.34) 2 400 (0.60) 12 509 (0.38)

1999 1 751 (0.30) 3 055 (0.35) 4 143 (0.42)

Rix

1995 - -

1996 - - 12 339 (0.41)

1997 17 500 (0.29) - 16 254 (0.42)

1998 10 041 (0.31) - 13 697 (0.38)

1999 - 1 006 (0.59) 5 902 (0.40)

Hotspot

1995 19 838(0.39)

1996 3 892(0.39)

1997 2 939(0.42)

1998 2 112(0.39)

1999 2 364(0.42)
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index of abundance in year y and By is the model-predicted stock biomass in year y. 
An additional lognormally distributed prior uncertainty factor with a prior CV of 0.5 
and a median of 1 was also incorporated into the priors for q. This was because recent 
work (McAllister and Kirkwood, 1998a) had shown that risks of overfishing could be 
substantially increased if the prior CV for parameters such as q in developing fisheries 
is set too low, e.g., < 0.5, as in the 1997 and 1998 assessments. The values for the other 
model parameters (e.g., the age at maturity and growth parameters) were fixed at values 
that were assumed to be known without error. These values were obtained from ageing 
studies of Namibian orange roughy (Clark et al., 1999). The weight-length relationship 
constants were estimated from research samples taken in 1998 and assumed to be 
the same for the three grounds, Johnies, Frankies and Rix, but were different for 
the Hotspot ground (Dalen et al., 1998). The value for the Beverton-Holt steepness 
parameter (0.75) was taken from Francis (1992). 

Individual stock assessments were done on the orange roughy stock on the four 
grounds separately. It was shown by ageing analysis that orange roughy at Hotspot are 
more similar to the New Zealand orange roughy and therefore biological parameters 
for New Zealand orange roughy were used (McAllister and Kirchner, 2001).

2. Formulate the likelihood function of the data for each relative abundance series. 
This function provides a formalized probabilistic measure of the goodness of fit of 
the model to the stock assessment data. It gives the probability of obtaining the data 
for each possible combination of values for the estimated model parameters. A set 
of parameter values that provide a very close fit of the model to the data will yield a 
very high likelihood of the data and vice versa. The likelihood function chosen was a 
lognormal density function indicating that the deviate between each observation and 
the value predicted for it by the model and its parameters is lognormally distributed 
(McAllister and Kirchner, 2001). In stock assessment, this is a very commonly applied 
likelihood function for relative abundance data. The product of the prior probability 
and the likelihood function for a given set of values for the estimated model parameters 
is directly proportional to the posterior probability for these values. 

3. Calculate the joint and marginal posterior probability distributions for model 
parameters and stock biomass in each year and the other management quantities such 
as the ratio of stock biomass in each year to Bo . The numerical algorithm applied for 
these calculations was importance sampling (Berger, 1985, Rubin, 1988, Gelfand and 
Smith, 1990; West, 1993), a commonly applied algorithm for Bayesian stock assessment 
(Francis et al., 1992; Punt, 1993; McAllister et al., 1994; Raftery, Givens and Zeh ,1995; 
Kinas, 1996; McAllister and Ianelli, 1997). 

4. Evaluate the potential consequences of alternative management actions. This was 
achieved by randomly sampling values for model parameters from the joint posterior 
probability distribution obtained in the previous step and projecting the population 
dynamics model into future years using these values. The combined steps of 3 and 4 are 
typically called the sampling importance resampling (SIR) algorithm (Rubin, 1988). 

5. Present the results. The posterior probability distributions for Bo , stock biomass 
in 2000 (B2000), and B2000/Bo were graphed for each fishing ground. Also graphed were 
95 percent probability intervals for stock biomass over time. For the 2000 stock 
assessment, the potential consequences of alternative constant TAC policies were 
projected for the period 2001-2010 and presented in decision tables. 

13.5  Some key features of this application
One key feature of this application of Bayesian stock assessment is its use of an 
informative prior probability distribution for q for each of the three different indices 
of abundance to deal with the very short time series of relative abundance. The 
independent construction of each prior allows the comparison of the resulting prior 
stock biomass estimates from three different sources to check for overlap in probability 
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intervals and to ground-truth each individual prior for q. The effect of implementing 
these informative priors is illustrated below by also producing results with non-
informative prior probability distributions for q that were uniform over the natural 
logarithm of q (McAllister et al., 1994). 

A second feature of this assessment is its advocacy of Bayesian probability analysis 
to identify precautionary reference points for fishery management (FAO, 1995). An 
important management reference point for many species including orange roughy is 
the ratio of population biomass at maximum sustainable yield (MSY) to the long-run 
average unexploited biomass (BMSY /Bo). This can be either used as a target reference 
point (a system state to achieve and maintain) or a limit (threshold) reference point (not 
to be dropped below), depending on the situation. In past studies of orange roughy, 
MSY-based reference points have been computed using an age-structured model with 
all parameters except for Bo and recruitment deviates fixed and uncertainty from data 
analysis accounted for (Francis 1992; Francis et al., 1992). The stochastically derived 
estimates used the average value of 0.3 Bo as the reference point. 

While the method of Francis et al. (1992) was rigorous in its treatment of 
uncertainty, it still assumed parameters such as the rate of natural mortality, M, were 
known without error. Methods that even more rigorously account for uncertainty can 
allow more thorough assessments of the reliability of estimates and the potential for 
error in them. Bayesian estimation of a pdf for BMSY /Bo would permit managers to be 
more precautionary because more parameters could be treated as uncertain. Using the 
mean value for BMSY /Bo as the reference point also ignores uncertainty in the estimate 
of BMSY/Bo. Uncertainty in BMSY/Bo could be more rigorously taken into account and 
a more precautionary reference point could be formulated by the use of values higher 
than the average. For example, a pre-specified percentile for BMSY/Bo that was acceptably 
high could be applied to set a management reference point based on BMSY/Bo. Bayesian 
probability distributions for BMSY/Bo were thus computed to identify such a reference 
point (McAllister and Kirchner, 2001). 

A third feature of this application is that in the fourth year, the procedure was 
extended to formally account for uncertainties in population dynamics model 
assumptions (i.e., structural uncertainty) rather than only uncertainty in the values 
of parameters such as Bo and M. The large drop in the biomass indices could not be 
easily explained by the relatively small catch removals. Thus four structurally different 
models for resource decline were developed. 

1.	The catch removal model. The observed declines occurred mainly because of catch 
removals and the priors for q are centred too low. 

2.	The fishing disturbance model. The observed declines occurred because of 
successive disturbances of the orange roughy aggregations by fishing. Orange 
roughy have responded by failing to reaggregate on the fishing grounds. If fishing 
is stopped, the fish may reaggregate.

3.	The intermittent aggregation model. The observed declines occurred because 
of temporary factors unrelated to fishing. Orange roughy may aggregate on an 
intermittent basis depending on various environmental conditions. Fish will 
reaggregate on the fishing grounds but the timing of this remains unpredictable.

4.	The mass emigration or mortality model. The observed declines have been caused 
by either a mass mortality event or a mass emigration and the original large 
abundance recently observed on the fishing grounds is unlikely to re-establish in 
the near future.

The mathematical features of these models are outlined in McAllister and Kirchner 
(2002). Each model was fitted to the same data (Table 13.3) and a marginal posterior 
probability was computed for each model. To obtain these probabilities, Bayes’ factors 
were computed for each alternative model based on the prior pdf for model parameters 
and likelihood function of the data with the use of an importance sampling algorithm 
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(Kass and Raftery, 1995; McAllister and Kirchner, 2002). The Bayes’ factors were 
combined with a prior probability for each model to give Bayes’ marginal posterior 
probabilities, i.e., the total weight of evidence in support of each alternative model. 
Each model was assigned an equal prior probability. This was because it was believed 
that before analysing the stock assessment data there was no other rational basis 
that could be applied to rate the credibility of each model (Butterworth, Punt and 
Smith, 1996). This procedure allowed the probability distributions for management 
quantities such as stock biomass to be combined across models with the weighting 
for each distribution given by the associated model’s marginal posterior probability. 
The resulting estimates could thereby more formally account for uncertainty in both 
the values for model parameters and the structure of the stock assessment models for 
Namibian orange roughy. 

13.6  Results
Prior medians and probability intervals for abundance indices
In order to check whether the priors for q gave consistent biomass estimates, the 
biomass indices were rescaled by the prior median value for q and 95 percent 
probability intervals for q (incorporating the prior coefficient of variation (prior 
standard deviation / prior mean) (CV) and the survey CV for each index, Table 13.3). 
The results are shown in Figure 13.1. Where there is more than one abundance index 
per year all of the 95 percent probability intervals overlap considerably indicating that 
there are no serious inconsistencies among the prior biomass estimates and trends given 
by the indices. However, the trends in the commercial swept area estimates appear to 
give smaller declines than the other two indices on the three southern grounds where 
all three types of indices are available. Moreover, on each ground, the indices suggest 
high stock biomass in the initial years of the fishery and then a large decline. 

The use of non-informative versus informative prior distributions for q
If the approach of Francis et al. (1992) which effectively used non-informative priors 
for q was applied, the results would suggest that considerably fewer orange roughy are 
left on the fishing grounds than if informative priors were applied (Figure 13.2). The 
wide probability distributions for stock biomass in both cases indicate that uncertainty 
in the estimates is very large.

To evaluate whether the models applied could fit the data adequately, the posterior 
95 percent probability intervals for stock biomass from 1994 to 1999 are plotted in 
Figure 13.3. The relative biomass indices rescaled by the posterior median value for q 
are also shown on these plots. Median values for the biomass indices falling outside of 
the posterior 95 percent probability intervals for annual stock biomass would indicate 
that the model and the prior assumptions do not fit the data very well. When both the 
informative and non-informative priors for q are applied, some of the rescaled biomass 
indices fall outside of the posterior 95 percent intervals for each of the grounds except 
for Rix. 

When structural uncertainty was accounted for, the only model that encompassed 
the rescaled indices within its posterior 95 percent probability intervals for stock 
biomass on all of the four fishing grounds was the mass emigration / mortality model 
(Figure 13.3). This model also suggested that current biomass on each of the four 
fishing grounds was very low. 

The use of decision analysis results in decision making 
The key results for fishery managers of orange roughy were presented as the risks 
associated with alternative TAC policy options (Table 13.2). These were given in terms 
of the probability of stock biomass dropping below some level of virgin biomass in 
some future year. In the first stock assessment in 1997, when alternative fishing down 
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Figure 13.1
Prior medians and 95% prior probability intervals for stock biomass given by dividing the abundance 

indices by the prior median q, and the prior 2.5th and 97.5th percentiles for q with the CVs in the 
abundance indices also incorporated. Results are shown for the Johnies, Frankies, Rix, and Hotspot 

fishing grounds. (a) Intervals produced using prior CVs for q of about 0.6 (used in 1999 and 2000); (b) 
intervals produced using prior CVs for q set at 0.3 (similar to values used in the 1997 and 1998) (from 

McAllister and Kirchner, 2001)
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Figure 13.2
Marginal posterior probability distributions for the average unfished mature biomass (Bo), mature 

biomass in 2000 (B2000) and depletion (Bo /B2000) for the (a) Johnies, (b), Frankies, (c) Rix, and (d) Hotspot 
fishing grounds. Results are shown with non-informative priors for q and informative priors for q (from 

McAllister and Kirchner, 2001)

TACs were considered, the horizon was 14 years until 2010 (Table 13.2). TAC policies 
that began at no more than about 20 000 tonnes had less than a 10 percent chance of 
dropping stock biomass below 20 percent of Bo in 2010. The Cabinet adopted a 12 000 
tonnes TAC option but allowed two more fishing companies into the fishery to share 
the same TAC. In the next assessment in 1998, when the much more pessimistic 1997 
hydro-acoustic estimate was used to produce a pdf for Bo , only a three-year horizon 
until 2001 was applied to evaluate the potential consequences of alternative TAC 
options. TAC policies of no more than about 12 000 tonnes had less than a 10 percent 
risk in 2001. The Cabinet approved a 12 000 tonnes TAC but only for the 1998 fishing 
season. In 1999, when the revised stock assessment procedure was applied, a 9 000 
tonnes TAC had less than a 10 percent risk with only a one-year projection to 2000. The 
Cabinet approved a 9 000 tonnes TAC and closed the Frankies fishing ground where the 
observed decline was the most severe. 

In the 2000 assessment, the declines had continued on the grounds remaining open. 
Only much smaller TACs, e.g., 1 500 tonnes combined across grounds, had less than a  
50 percent chance of causing further decline on all of the fishing grounds. The cabinet 
followed this advice but made the provision that the TAC could be increased if orange 
roughy appeared to be re-aggregating. Although preliminary results were presented 
from the analysis of structural uncertainty that suggested that stock biomass might not 
be so severely depleted, these results were considered too preliminary to be given any 
weight in the provision of management advice. 

Results from the analysis of structural uncertainty
More recent updates of the methodology to account for structural uncertainty provided 
the following results (McAllister and Kirchner, 2002). The probability distributions for 
stock biomass given by the different structural models suggested far larger uncertainties 
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Figure 13.3
Posterior medians and 95% posterior probability intervals for mature stock biomass from 1994 until 

2000 for the (a) Johnies, (b), Frankies, (c) Rix, and (d) Hotspot fishing grounds. The abundance indices 
rescaled by the posterior median q are also plotted. Results are shown for the catch removal and mass 
emigration / mortality hypotheses with informative priors for q (from McAllister and Kirchner, 2001)
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in stock size than any one of the models considered by itself (Figure 13.4). For some 
of the grounds, such as Frankies and Johnies, these probability distributions were 
non-overlapping (Figure 13.4). Given these widely differing results across structural 
models, the key question was how should each model be weighted? This weighting 
was obtained by computing a posterior probability for each structural alternative 
(Table 13.4). For Rix, none of the four alternative models had very low probability. 
For Frankies, only catch removal had very low probability. For Johnies and Hotspot, 
the catch removal and fishing disturbance models had low probability. On all of 
the four fishing grounds, only the mass emigration/mortality hypotheses retained 
moderate to high probability. If the same mechanism for decline is operating on the 
four grounds, these combined results give most credibility to the mass emigration/
mortality hypothesis but still convey considerable uncertainty over the mechanisms 
for decline. The probability distributions for stock biomass that result from using these 
model probabilities to combine the distributions from the different models were much 
flatter for most of the fishing grounds (Figure 13.4). In some cases, such as for Frankies 
and Hotspot, the combined distributions were bimodal, suggesting that the stock was 
either lightly exploited or heavily depleted. 

Table 13.4
Posterior Probabilities for the 4 different Hypotheses for the four major orange roughy fishing 
grounds (from McAllister and Kirchner, 2001) 

Hypothesis

Catch removal Fishing disturbance Intermittent 
aggregation

Mass emigration/ 
mortality

Rix 25% 45% 13% 17%

Frankies <1% 37% 25% 37%

Johnies <1% <1% 2% 98%

Hotspot <1% 1% 12% 87%

The estimates of risk from each of the structural alternatives could be presented in 
a single decision table (Hilborn, Pikitch and Francis, 1993; McAllister and Kirkwood, 
1998b). For the sake of illustration, results are shown only for the Rix fishing ground 
(Table 13.5). This shows the four structural hypotheses along the top and the marginal 
posterior probability for each hypotheses in the next row down. In the following rows 
the potential consequences resulting from each TAC policy under each structural 
hypothesis are shown. In the table shown, this is in terms of the 10th percentile for 
mature stock biomass in the year 2010 relative to Bo. This indicates that there is about 
a 10 percent chance that stock biomass will drop below the values shown. The final 
column integrates the results under the different hypotheses for each TAC policy and 
thereby accounts for both parameter and structural uncertainty. The table indicates 
that the largest TAC for which the risk of dropping below 20 percent Bo < 10 percent 
depends strongly on the model assumed, with the highest risks being given by the catch 

Table 13.5
Decision table of alternative TAC policy options for the Rix ground for the years 2000 to 
2010. The 10th percentiles are shown for total mature biomass in the year 2010 relative to 
Bo. This indicates a 10% probability that biomass will fall below the indicated proportion of 
unexploited biomass. CRH refers to the catch removal hypothesis, FDH refers to the fishing 
disturbance hypothesis, IAH refers to the intermittent aggregation hypothesis, MEH refers to 
the mass emigration/mortality hypothesis (from McAllister and Kirchner, 2001) 

CRH FDH IAH MEH

Prob. 0.25 0.45 0.13 0.17

TAC Combined

500 t 0.21 0.52 0.40 0.14 0.36

1000 t 0.02 0.41 0.22 0.01 0.22

1500 t 0.01 0.28 0.06 0.005 0.14

2000 t 0.01 0.16 0.02 0.004 0.08
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Figure 13.4
Marginal posterior probability distributions the average unfished mature biomass (Bo), mature 

biomass in 2000 (B2000) and depletion (Bo /B2000) for the (a) Johnies, (b), Frankies, (c) Rix, and (d) Hotspot 
fishing grounds. Results are shown separately and combined for the catch removal model, fishing 
disturbance model, intermittent aggregation model, and the mass emigration and mortality model 

(from McAllister and Kirchner, 2001)
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removal and mass emigration / mortality hypotheses. When structural uncertainty is 
accounted for, and the results are integrated across the different models, the lowest 
TAC evaluated, 500 t, would have a risk of less than 10 percent (as there is an estimated 
10 percent chance that the stock biomass will fall below 36 percent of the unexploited 
biomass; see Table 13.5).

13.7  Discussion
The management of the developing fishery for Namibian orange roughy posed some 
difficult challenges for stock assessment. The Ministry of Fisheries, as in many other 
developing countries, had relatively few scientists trained in the development and 
application of stock assessment methods. Yet the scientists were provided with financial 
support to collect biological data on the resource and to bring in overseas expertise to 
help develop and apply a stock assessment methodology for the management of this 
resource. Data on abundance were scarce at first and were initially established from the 
contribution from industry of detailed commercial catch rate information. Even after 
three different sets of indices of abundance were established, the time series was too short 
for established methods for stock assessment (e.g., Francis, 1992; Francis et al., 1992; 
Smith, 1993) to be of use. Scientific and industrial expertise from orange roughy fisheries 
in New Zealand and Australia were also available to facilitate the rapid development of 
the resource. As the fishery developed with a single exploratory licence holder and catch 
rates and profits grew quickly, other companies demanded entry into the fishery. 

Because one of the general guidelines for the management of the fishery was 
to maintain a precautionary approach to its development in the face of the large 
uncertainty over resource potential, scientific advice was needed on the resource 
potential and the potential consequences of alternative harvesting policies. A long-
term fishery management strategy was suggested that would fish down the resource 
over seven years and then allow a smooth transition to catches that might maintain 
the resource at or above the MSY level. A fundamental question for the first stock 
assessments was how large should be the initial TACs? Even then, it was recognized 
that some adjustments might be necessary as estimates of abundance were updated.

A stock assessment methodology to provide such advice thus was required to do 
the following: 

1.	Incorporate and integrate sparse data from diverse sources. 
2.	Estimate resource abundance and its potential responses to exploitation as the 

fishery proceeds.
3.	Explicitly account for uncertainty in estimates of abundance and trends in 

abundance.
4.	Quantitatively evaluate the potential consequences of alternative fishing down 

policies. 
5.	Provide precautionary fishery management advice so that the TAC options adopted 

had an acceptably low risk of depleting the resource below the MSY level.
6.	Be sufficiently transparent, understandable and credible to the various parties to 

the fishery management system. 
The Bayesian methodology applied addressed these various requirements to varying 

extents but some difficulties in implementation were encountered. The stock assessment 
methods developed for the management of the Namibian orange roughy fishery have 
helped to facilitate the fishery’s management, although some drawbacks were noted 
and subsequent revisions required, for the following reasons (from McAllister and 
Kirchner, 2001).

1.	The methods have helped to integrate diverse sources of information, contributed 
by industry members and government scientific research, to provide estimates of 
stock biomass and trends in stock biomass, and to predict the potential outcomes 
of alternative management outcomes. 
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2.	The probabilistic modelling methods applied have taken uncertainties into account 
and provided fishery managers with estimates of biological risks of alternative 
TAC options. This has served as a basis for the provision of precautionary fishery 
management advice. 

3.	From 1997 to 2000, the Namibian Minister of Fisheries actively sought the 
probabilistic stock assessment results computed for Namibian orange roughy and 
studied them carefully in making his TAC decisions. The assessment results were 
used to identify those TAC policies that had acceptably low biological risk. The 
Minister of Fisheries adopted only TAC values that had less than a 10 percent 
chance of depleting stock size to less than 20 percent of Bo. 

4.	Subjective judgments about stock assessment model formulation and inputs in 
the 1997 and 1998 assessments led to underestimates of uncertainty in stock 
biomass, over-estimates of stock biomass, and underestimates of the risks of 
alternative TAC management options. Two judgments in particular appear to be 
largely responsible for this. The first was the requirement for a consensus among 
industry members and scientists in developing probability distributions for the 
bias correction factors for the commercial swept area biomass estimate. This lead 
to distributions applied being too narrow conveying far too much certainty. The 
second was the assumption that fish aggregations are spatially stationary from 
year to year and clusters of high catch rate values can therefore be extrapolated 
to large poorly sampled areas. This led to the gross overestimation of stock 
biomass. In later assessments, these judgments were questioned and replaced with 
more rigorous ones but by then the apparent abundance had diminished very 
considerably. 

5.	The revised Bayesian assessment method applied in 1999 and 2000 more 
adequately accounted for uncertainty in bias factors for the abundance indices, 
stock biomass and risk but ignored structural uncertainty, particularly over 
whether the catchability of orange roughy on the fishing grounds had changed. 
Because of this, the methodology could not easily account for the large drop in 
the biomass indices and lost credibility before industry.

6.	A Bayesian method was developed in 2000 to account for uncertainty in the 
structural formulation of stock assessment models and considered a set of 
plausible alternative models that was balanced with respect to conjectures 
about catchability and the remaining stock biomass. Some of the alternatives 
considered more adequately accounted for drops in the biomass indices. Because 
this methodology accounts for both parameter and structural uncertainty in 
a statistically rigorous and balanced manner, it provides a more scientifically 
defensible basis for precautionary fishery management.

7.	Bayesian posterior probability distributions for biological reference points for 
Namibian orange roughy such as BMSY /Bo were computed and indicated that 
mean values from previous analyses could easily be too low. This enabled the 
identification of more precautionary reference points, e.g., the 90th percentile 
for BMSY /Bo of about 40 percent of Bo instead of the previous mean estimate of  
30 percent.

8.	The methods developed need to be refined and simplified to make versions of 
them more accessible to developing country fisheries scientists.

In contrast to the case study in this paper, a number of articles advocate the use of 
Bayesian surplus production models for stock assessment in data-poor and developing 
fisheries (McAllister and Kirkwood, 1998a, b, McAllister, Pikitch and Babcock, 2001; 
McAllister and Pikitch, 2004). These age aggregated stock assessment models also have 
relatively few parameters to estimate (e.g., the intrinsic rate of increase (r), carrying 
capacity (K or Bo), and q). To be advantageous over non-Bayesian methods, informative 
prior probability distributions would be needed for the estimated parameters. No 
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reliable methods have yet been developed to obtain informative priors for K or Bo. 
Thus an informative prior would be needed for either q or r. The current paper has 
indicated that credible methods exist to obtain an informative prior for q, providing 
that the prior CV is not made too small. However, even with an informative prior for q, 
it is not clear whether the typical sparse relative abundance data available could enable 
statistical discrimination between sets of parameter values that included high values for 
K and low values for r, and vice versa. 

Thus, it would appear that to be useful, Bayesian surplus production models should 
incorporate an informative prior for r. Bayesian hierarchical modelling could be 
applied to obtain an informative prior for r, provided that data for other populations 
with similar life history characteristics were available (Myers, Bowen and Barrowman, 
1999; Michielsens and McAllister, 2004). Demographic modelling methods could also 
be applied to provide a prior for r (McAllister, Pikitch and Babcock, 2001). However, 
the latter method would require considerable life history information, for example, 
spawner biomass per recruit, natural mortality rate at age, fecundity at age, that might 
not necessarily all be available. Tagging studies would be useful in order to help estimate 
some of these inputs. However, for some species, such as orange roughy, tagging 
studies are not possible. Thus, age-structured population dynamics that incorporate 
informative priors for q, may be the only stock assessment option for some developing 
fisheries where it is difficult to acquire precise data on life history characteristics and 
relatively few studies exist on other similar populations. 
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14.  Empirical modelling approaches

Ashley S. Halls, Robert W. Burn, and Savitri Abeyasekera

This section describes a number of approaches adopted or developed under FMSP 
projects for constructing empirical models to support fisheries management and 
development planning and evaluation. Unlike the explanatory or process types of 
models described in many of the previous sections, the models described here are 
purely descriptive,21 providing, in most cases, a deterministic output for a given input. 
In spite of this distinction, the selection of variables was typically guided by established 
theories, models and frameworks. 

The approaches are generally suited to data poor circumstances, or when among 
fishery comparisons are possible, for example under adaptive approaches to (co-) 
management (see Section 2.4). The models and approaches are described below in 
ascending order of their data requirements and complexity.

14.1  A SIMPLE MODEL TO PREDICT POTENTIAL YIELD FROM CATCH TIME 
SERIES
Empirical approaches to estimating potential yield of a fishery in the absence of any 
catch and effort data have been described in Section 4.2. Often, however, it is not 
uncommon to have a time series of total annual catches but, due to resource limitations, 
not supported by any corresponding effort data. In these cases, the application of 
biomass-dynamic modelling approaches (Section 4.5) for estimating potential yield and 
related reference points is not an option. However, the theoretical potential yield of the 
fishery, together with some indication as to when it might be achieved can be estimated 
following the approach described by Grainger and Garcia (1996). This approach was 
adopted by FMSP project R7040 (MRAG, 2000) to determine the exploitation status 
of Large Marine Ecosystems (LMEs) and is therefore briefly described here.

Time series of catches from fisheries typically follow a similar trend or generalized 
fishery development model (GFDM) comprising three or four main phases or periods 
(Figure 14.1). 

FIGURE 14.1
A simplified version of the Generalized Fishery Development Model (GFDM) after  

Caddy (1984); Grainger and Garcia (1996)

21 see Haddon (2001) for an explanation of the differences between explanatory and empirical models.
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Catches increase rapidly as the fishery expands during the initial stage of 
development. Catches are maximum during the mature stage before declining during 
the senescent stage as resources become depleted. The relative rate of increase in catch, 
r during successive time periods, t, during this cycle is given by:

where t = 1 year.
The value of r declines continuously as the fishery begins to develop, and eventually 

drops to zero when the fishery reaches its maximum production during the mature 
phase before becoming negative corresponding to the senescent stage as the stock is 
depleted or collapses. The year when theoretical maximum production is likely to be 
achieved can therefore be estimated from the abscissa intercept (t max prod = -a/b) of the 
linear regression of rate of increase in catch, r and year, t, (Eq .2) where the catch in 
year t, Ct, is a three year moving average value (Figure 14.2): 

Maximum production can then be estimated by predicting the evolution of catches 
with time iteratively, based upon the estimates of a and b of the linear regression model 
and the catch value in the first year of the modelled time series using Eq.3:

r = (Ct+1 – Ct ) / Ct	 (1)

r = (Ct+1 – Ct ) / Ct = bt + a	 (2)

Ct+1 = Ct (bt + a + 1)	 (3)

Figure 14.2
Estimation of maximum production potential and predicted year of achievement

The modelling approach assumes that fishing mortality (effort) increases with time 
driving the fishery from one phase to the next (Grainger and Garcia, 1996).

Application
Figure 14.3 below illustrates model fits to the LMEs examined under project R7040. The 
same methodology can be applied to fisheries operating at other scales for example, on 
a national, regional or even local scale providing a long enough time series is available 
exhibiting marked changes in landings. However, it is important to note that due to 
the typically imprecise nature of catch data and the large residual components of fitted 
models, predictions will themselves be imprecise and therefore should be treated with 
caution. Potential yield predictions based upon this method are particularly sensitive 
to catch variability during the initial three years of the time series. 
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14.2  Empirical Multispecies Yield Models 
A number of multispecies empirical models have been developed under the FMSP 
programme to help support management planning and evaluation, as well as to help 
guide policy level decision-making with respect to fisheries resources. These have 
been constructed on the basis of among fishery comparisons of yield and either simple 
descriptors of the resource habitat eg resource area, or some relative measure of fishing 
effort. Whilst the examples illustrated below are based upon comparisons across wide 
geographical scales, their application may be equally, if not more, relevant on a more 
local scale, particularly in the context of adaptive co-management (see Section 4.8.2).

14.2.1  Models based upon habitat variables
These models were developed under two FMSP projects R5030 (MRAG, 1993), R6178 
(MRAG, 1995) and by FAO/MRAG (Halls, 1999) primarily as a means of providing 
planners and policy makers with some approximate indication of the potential 
yield of lake or river fisheries when catch (and effort) data are unavailable or when 
alternative empirical approaches (eg Section 4.2) are inappropriate. All the models 
were generated from among fishery comparisons of easily measurable habitat variables, 
including relevant measures of resource area, indices of primary productivity and 
hydrological variables, and corresponding estimates of potential yield. A “Lakes and 
Rivers Database” developed as part of this research containing data for these and other 
variables is available on a CD-ROM published by FAO (see Dooley at al., 2005).

Figure 14.3
Time series (1952-1995) of rate of relative increase, r of total landings of finfish, molluscs 

and crustaceans in the 15 LMEs with fitted GFD model (MRAG, 2000)
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Simple and multiple backward stepwise regression methods were used to fit linear 
models to the covariates after appropriate log-transformations to ensure that the 
normality assumptions of the method were met. The most promising models were 
those that employ estimates of resource area as the explanatory variable (Figure 14.4). 
Details of these and other best fitting models are given in Annex 1 including guidelines 
for estimating confidence intervals around model predictions. Full details of all the 
models are described in MRAG (1993; 1995) and Halls (1999).

Figure 14.4
Potential yield from (a) Asian floodplain rivers; and (b) African lakes and reservoirs plotted 

as functions of resource area with fitted regression lines on loge transformed scales.  
For (a) loge catch = 2.086 + 0.996 loge area (R = 0.97; P<0.001);  
and (b) loge catch = 2.668 + 0.818 loge area (R = 0.90; P<0.001)

Application
Generally speaking, these types of models provide only very imprecise predictions 
because of the significant measurement error associated with the potential yield 
estimates used to fit the models. Potential yields were estimated using (i) the GFDM 
approach described above, (ii) as the average annual catch value, or worst (iii) from 
a single observation, all of which are subject to potentially significant measurement 
error. The utility of these estimates is therefore restricted to providing a rough 
indication of the likely potential of the fishery for policy and development planning 
purposes.

The model for predicting potential yield from African lakes (see Figure 14.4 above) 
has recently been incorporated into the FAO African Water Resources Database 
(Dooley et al., 2003) that includes a routine for calculating the confidence intervals 
around the predictions.

14.2.2  Models incorporating fishing effort 22

Despite enforcement difficulties, particularly in highly dispersed artisanal fisheries, the 
control of fishing mortality via fishing effort remains fundamental to most fisheries 
management strategies even at the local community or co-management level.

Decisions concerning the control of effort to maximize yield require knowledge of 
the underlying response of the catch to changes in effort. Under adaptive management 
strategies (Section 2.1.3), even imprecise knowledge of the response is likely to help 

22	 A.S. Halls, R.W. Burn, and R.L. Welcomme.
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accelerate the adaptive learning process. Several multispecies biomass dynamics and 
age-structured models have been developed to elucidate such responses to guide the 
setting of fishing effort levels to achieve common target and limit reference points (See 
Section 3.5). However, the data and institutional capacity requirements to employ these 
models invariably render their use impractical particularly in the developing world 
(Hilborn and Walters, 1992).

The most rudimentary approach to elucidating the relationship between catch and 
effort in multispecies fisheries is to ignore any species interactions and fit some form 
of production model to catch and effort data aggregated across all species (eg Ralston 
and Polovina, 1982). Such an approach assumes that any species interaction effects 
are captured (at least statistically) in the overall empirical relationship between yield 
and effort. Even aggregated production models of this type require a long time series 
of (aggregated) catch and effort data exhibiting plenty of contrast to achieve reliable 
models describing the response. 

When little or no data are available for a particular fishery, among fishery comparisons 
may provide an indication of the likely response. This comparative approach assumes 
that observations from discrete fisheries or units can treated as samples from a 
hypothetical fishery. Assuming the fishery covers the entire area, differences in scale 
are accounted for by standardising both yield and effort by area. 

This type of among fishery comparisons may be particularly relevant when data 
and information sharing among discrete local fisheries is promoted as part of an 
adaptive management strategy (see Section 2.1.3 for further explanation). Building 
on earlier work described by Bayley (1988), Project R7834 adopted this approach 
using aggregated species catch data and estimates of fishing effort assembled from the 
literature and the “Lakes and Rivers Database” described above. 

The expanded data set contains 258 estimates of CPUA and corresponding fisher 
density estimates for floodplain-rivers (36), reservoir and lakes (143) and coastal reef-
based fisheries (79). Similar to Bayley (1988) up to two observations for each river 
corresponding to different years are included in the floodplain-river dataset. The data 
sets are downloadable from FTR ref.no.7834 at http://www.fmsp.org.uk/FTRs.htm. 

Relative fishing effort (intensity) was expressed as the number of different fishers 
active during the year divided by the surface area of the resource; the same area as 
that used to calculate aggregated catch per unit area (CPUA) estimates. For reef-based 
ecosystems, few estimates of the number of active fishers were available. Instead, 
estimates of the total human population size associated with each fishery were used 
assuming that the proportion of fishers is approximately equal among the observations. 
After testing all possible combinations of untransformed, log-transformed and square-
root transformed variables, the best performing model for all ecosystem categories was 
described by the following empirical variant of the Fox model (Equation 4).

in which i = fishing intensity and a, b and c are fitted constants.

Floodplain rivers
Based upon a combined data set for floodplain-rivers from all major continents 
examined,23 the fit of Equation 4 is remarkably good (Figure 14.5). Fishing intensity 
explained 80 percent of the variation in CPUA (corrected R2 = 0.80). The model predicts 
a maximum yield (MY) of 13.2 tonnes km-2 yr-1 (95 percent CI [1.9, 225]) or 132 kg ha-1 yr-1 
at a fisher density, iMY of approximately 12 fishers km-2 (95 percent CI [8.8, 17]).

ln(Yield + 1) = i0.5 exp(a + bi0.5) + c (4)

23 Separately fitting the data for floodplain-rivers from Africa and Asia resulted in very similar curves 
whose coefficients could not be distinguished at P = 0.05. Insufficient data were available to test for 
differences between South American floodplain-rivers and those of other continents. 
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Lakes and reservoirs
The parameters of Equation 4 were found to be significantly different for African and 
Asian lakes and reservoirs. The resulting curves (Figure 14.6 and Figure 14.7) imply 
that much higher yields (MY=880 kg ha-1 y-1) are achieved in Asian compared to 
African lakes (MY=172 kg ha-1 y-1) and they appear to be able to sustain much higher 
levels of fishing effort (iMY=78.3 fishers km-2) and (iMY=10.9 fishers km-2) respectively. 
This may reflect one or a combination of different factors including the common 
practice in Asia of stocking lakes and reserves to augment natural recruitment, a greater 
proportion of part-time fishermen in Asia compared to Africa, and natural differences 
in production.

Figure 14.5
CPUA vs. fisher density for floodplain rivers (all continents). Curve is least squares fit of Eq. 

4 to 36 floodplain rivers in Africa ( l ); Asia ( p ); and South America ( n ); R2 = 0.8

Figure 14.6
CPUA vs. fisher density for African lakes and reservoirs. Curve is least squares fit of Eq. 4;  

n = 97; R2 = 0.61
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Reef-based fisheries
For reef based-fisheries, fisher density was found to explain only 18 percent of the 
variation in CPUA (Figure 14.8). The maximum yield for these systems is predicted 
to be in the order of 6 tonnes km-2 yr-1 (95 percent CI [1.3, 265]) at 540 fishers (total 
population) km-2 (95 percent CI [287, 1372]). This relatively poor fit is likely to reflect 
imprecise estimates of (i) fisher density based upon estimates of total population 
number rather than numbers of fishers; (ii) the surface area of the resource; and (ii) 
variation in the habitat covered by the term “reef”. 

Figure 14.7
CPUA vs. fisher density for Asian lakes and reservoirs. Curve is least squares fit of Eq. 4;  

n = 37; R2 = 0.76

Figure 14.8
CPUA vs. fisher density for reef-based fisheries. Curve is least squares fit of Eq. 4; n =79;  

R2 = 0.18
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Application
For floodplain rivers, the estimates of optimal fishing intensity (iMY) and maximum 
yield compare well with earlier predictions made by Bayley (1988) and Welcomme 
(1977). However, estimates for African lakes are generally much greater than those 
reported by Bayley (1988) of 2.4 fishers per km2 and 98 kg ha-1 y-1 compared to 10.9 
fishers per km2 and 172 kg ha-1 y-1 reported here.

The iMY prediction for reef-based fisheries compares well with that reported Dalzell 
and Adams (1997) of 581 people km-2 (n = 41, R2 = 0.44) based upon a subset of the 
same data. Although their corresponding prediction of maximum yield of 16.4 tonnes 
km-2 y-1 is significantly higher than the 5.8 tonnes km-2 y-1 predicted here, Dalzell (1996) 
suggests that maximum yields are more likely to be in the region of 5 tonnes km-2 y-1.

The models described above were fitted to data from fisheries located across a very 
wide geographical scale. Whilst they provide tentative guidance on approximate levels 
of fishing intensity that maximize yield within different ecosystems, the reliability of 
model predictions is likely to improve as the scale over which comparisons are made 
is reduced. 

14.3  MULTIVARIATE MODELS 24

The above models described in Section 14.2.2 assume that fisher density alone provides 
an adequate index of fishing mortality and that production potential is similar among 
sites. In reality, (age-dependent) mortality rates may also vary in response to any 
management strategies, i.e. the combination of management rules and regulations such 
as closed seasons and areas, gear controls, minimum landing sizes… etc, implemented 
to improve or sustain yields and associated management outcomes. Compliance 
with these rules and regulations, often influenced by the prevailing institutional or 
management arrangements, may also be important in determining mortality rates. 
Production potential is also likely to vary among sites either naturally or in response 
to any stocking or habitat enhancement activities. In other words, a host of factors 
is likely to influence yield and related management outcomes beyond just simple 
measures of fishing effort. 

Passive adaptive management approaches (Section 2.1.3) may seek the best 
management strategy in a haphazard way rather than by the application of explanatory 
models of the type described below. This approach can be wasteful and it can take 
many years to achieve success. Appropriate institutional arrangements may also be 
sought in this way. However, where opportunities exist to share knowledge and 
compare outcomes among fisheries, empirical multivariate models can be constructed 
to help managers understand and predict the performance of different management 
strategies and institutional arrangements whilst also taking account of any natural 
variation, thereby potentially accelerating the passive adaptive learning process. 

Two complementary approaches for constructing models of this type are described 
below. The first – the application of the General Linear Model (GLM) is appropriate 
for dealing with quantitative management performance indicators (or outcome 
variables) such as indices of yield or abundance. The second – the application of 
Bayesian network models is better suited to deal with more qualitative performance 
indicators such as equity, compliance and empowerment that must be subjectively 
measured or scored along with many of the explanatory variables. The application of 
both approaches in the context of adaptive management was developed under project 
R7834 using data assembled from case studies of co- or community-managed fisheries 
or management initiatives undertaken during the last two decades. These studies 
documented a total of 119 discrete local management units or areas under national 
(government) control among 13 different countries in Africa, Asia and Melanesia. The 

24  A. S. Halls, R.W. Burn and S. Abeyasekera.
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units represented a range of different ecosystems and management arrangements. Each 
management unit was treated as a separate observation for the model development. In 
practice, it is likely that the data will be assembled over a much smaller spatial scale 
such as a country, region or district. 

Mutidisciplinary model variables
For the purposes of methodological development, indicators of management 
performance (outcome variables) and corresponding explanatory variables were 
selected on the basis of various established fisheries models, and the Sustainable 
livelihoods (SL) and Institutional Analysis and Development (IAD) frameworks (see 
Oakerson, 1992; Pido et al., 1996; DFID, 1999). However, other frameworks could 
serve as a basis for model development or hypothesis formulation. Examples of these 
variables and their indicators are summarized in Table 14.1 below. 

Table 14.1
Examples of Multidisciplinary Model Variables

(a) Management Performance (Outcome) Variables

Category Outcome Variables Indicator Units Notes

Production/Yield

Sustainability/

Biodiversity

Annual production per 
unit area Catch per unit area (CPUA) tonnes/km2 or tonnes/km (specify)

Annual production per 
unit area CPUA - Trend 0;1;2 Total landings: increasing (0); 

stable (1); declining (2) 

Sustainability 
(Resource)

Catch per unit effort 
(CPUE)

Tonnes/
fisher/year

All species combined or specify 
for each target species. 

Sustainability 
(Resource) CPUE -Trend 0;1;2 Declining (0); static (1); rising (2)

Biodiversity Species richness Number of 
species

Well-Being 
(Fishers/
Households)

Household income 
from fishing

Household income from 
fishing $/year

Assets eg TV, Bikes, Tin 
Roofs…etc

Assets eg TV, bikes, tin 
roofs…etc 0;1;2 Low (0); medium (1); high (2)

Savings and 
investments Savings and investments 0;1;2 Low (0); medium (1); high(2) or 

state mean value(s)

Food security Number of fish meals/
week 0;1;2 Declining (0); static (1); rising (2)

Institutional 
Performance

Empowerment Participation in 
management 0;1;2 Low (0); medium (1); high (2)

Equity Distributional among 
community members 0;1;2 Low (0); medium (1); high (2)

Compliance with rules 
and regulations

Compliance with rules and 
regulations 0;1;2 Low (0); medium (1); high (2)

Conflicts Frequency of conflicts 0;1;2 Low (0); medium (1); high (2)

(b) Explanatory Variables

Category Explanatory Variables Indicators Units Notes

Resource

Production potential Water transparency (Secchi 
depth) m May not be valid 

indicator in rivers

Production potential Primary production 0;1;2
g/C/m2/year:Low <150 
(0); medium 150-300 
(1); high >300 (2)

Abundance/Biomass (Total annual catch)/
(Numbers of fishers)

Tonnes/
fisher

All species combined 
or specify for each 
target species. 

Ecosystem Type Ecosystem Type 0;1;2..n
River (0); fringing 
floodplain (1); beel 
(2); lake (3); ….etc

Waterbody type Permanence 0;1;2 Seasonal (0); 
perennial (1); both (2)

Rule enforcement potential Area under co-management 
per fisher km2/fisher or km of coastline/

fisher (specify)
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Environment

Environmental health of 
habitat Health of critical habitat 0;1;2 Low (0); medium (1); 

high (2)

Nutrient recycling Depth of reserve, lake, 
fishing area ...etc m

Habitat descriptors % Coral cover %

Technological 

Exploitation intensity Fisher density N / km2 or km of coastline 
(specify)

Exploitation intensity Number of villages N

Exploitation intensity Number of fishers N

Exploitation intensity Mean size of fish caught in 
Month x, with gear x cm

Stocking density Stocking density kg/ha

Habitat alteration activities Habitat alteration activities 0 - 5 Destructive (0); none 
(1)……beneficial (5)

Market Attributes

Economic value of resource Mean unit value of target 
species US$/kg

Market facilities/
infrastructure

Transport/infrastructure/
landing sites...etc 0;1;2 Poor (0); medium (1); 

good (2)

Cost of marketing (market 
fees)

Cost of marketing (market 
fees) 0;1;2;3 None (0); low (1); 

medium (2); high (3)

Price control mechanism Price control mechanism 0;1 No (0); yes (1)

Fisher/Community
Characteristics

Social cohesion Social cohesion 0;1;2 Low (0); medium (1); 
high (2)

Dependence on fishery for 
livelihood

% of household income 
derived from fishing %

Level of local (ecological) 
knowledge

Level of local (ecological) 
knowledge of fishers 0;1;2 Low (0); medium (1); 

high(2)

Management Strategy 
& Decision-making
Arrangements

Legitimacy / widely accepted Legitimacy of local decision-
making body 0;1;2 Low (0); medium (1); 

high (2)

Membership to decision-
making body Democratically elected? 0;1 No (0); yes (1)

Clear access (property) rights Clear access (property) rights 0;1 No (0); yes (1)

Management plan Present/implemented 0;1 No (0); yes (1)

Management measures 
(operational rules) Mesh / gear size restrictions 0;1 No (0); yes (1)

Management measures 
(operational rules) Gear ban(s) 0;1 No (0); yes (1)

Management measures 
(operational rules) Closed seasons 0;1

No (0); yes (1) if yes 
specify month(s) 
closed

Management measures 
(operational rules)

Reserve area as a % of total 
management area %

Representation in rule 
making 

Representation in rule 
making (fishers) 0;1;2 Low (0); medium (1); 

high (2)

Formal performance 
monitoring?

Formal performance 
monitoring by community? 0;1 No (0); yes (1)

Sanctions for non compliance Sanctions for non-compliance 0;1 No (0); yes (1)

External Decision-
Making Arrangements

Enabling legislation for co-
management

Enabling legislation for  
co-management 0;1 No (0); yes (1)

Local political/institutional 
support 

Local political/institutional 
support 0;1;2;3

Anti (0); Weak (1); 
indifferent (2); strong 
(3) 

Effective coordinating body Nested structure of co-
management arrangements 0;1 Absent (0); Present (1)

Exogenous Factors
External financial assistance Expenditure on community $/year/

fisher

Capacity building support 
from NGO’s

Support for community from 
NGO’s 0;1;2;3

none (0); weak (1); 
medium (2); strong 
(3) 

(b) Explanatory Variables

It is important to note that these are only examples of the types of variables that 
may be employed and represent only a small subset of potentially appropriate variables 
identified by project R7834. In applying the method in a specific fishery, the choice 
or variables and their indicators should be identified in a participatory manner with 
resource users and managers. These multidisciplinary variables are typically recorded 

table 14.1 cont.
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on a variety of different measurement scales, including quantitative, binary and 
categorical (nominal and ordinal), and either measured empirically or subjectively 
scored. Details of all the model variables and data used to develop the methodological 
approaches can be downloaded from www.fmsp.org.uk (FTR Report R7834). 

Hypothesis Matrix
A convenient way to summarize variables for initial inclusion in models is by means of 
a hypothesis matrix that summarizes which explanatory variables are believed to affect 
management outcomes either directly or indirectly (see Annex 2). The construction of 
the matrix may be guided by appropriate frameworks and/or through consultation and 
discussion with resource users and managers.

Preliminary Data Screening and Variable Selection
Before either approach is applied, assembled data sets of variables should be scrutinized, 
checked, and reduced and transformed as necessary. Annex 3 of this manual gives 
recommendations for field applications of the methods including guidelines for 
data collection, variable selection, minimum sample sizes, and model validation and 
updating. An FAO manual entitled “Guidelines for Designing Data Collection Systems 
for Co-Managed Fisheries” is currently being prepared which provides further guidance 
for designing data collection and sharing systems to support models of this type.

Data Scrutiny and Checking
When data are assembled from a number of fisheries that vary substantially from each 
other, various types of errors in the data are inevitable and these have to be corrected 
before the full data set is ready for analysis. Any inconsistencies found in the data 
should be resolved. The data should therefore be first listed and scrutinized. Simple 
summary statistics (for quantitative variates) and frequency tables (for qualitative 
variates) should be produced and examined for any inconsistencies and data errors. 

Dimension Reduction
To be useful, most statistical models should be parsimonious and not overloaded with 
redundant variables. It may therefore be necessary to reduce the number of variables 
in the dataset for inclusion in the models described below. Replacing the original set of 
variables with a smaller set is called “dimension reduction” and is reasonable to attempt 
in cases where there are possible redundancies among the variables. These redundancies 
would occur, for instance, when two or more variables are highly correlated and can be 
regarded as measuring essentially the same thing. Often, such variables can be regarded 
as “proxies” for some unobservable latent variable.

Two statistical methods are recommended for dimension reduction: variable-
clustering and principal components analysis (PCA). The idea of clustering variables 
is similar to the more familiar clustering of cases, except that a more appropriate 
measure of “distance” is used. In fact it is more usual to think of “similarity” between 
two variables, the converse of distance. It is natural to base this on some measure of 
correlation between variables. Because the data types are typically mixed, some being 
measurements on an interval scale while others were ordinal or binary, the square 
of Spearman’s rank correlation similarity measure derived from rank correlation is 
suitable. The package S-PLUS 6 (Insightful Corp., 2001) can be used for this analysis; 
the S-PLUS function for variable clustering is varclus, which is part of the hmisc 
library.

To illustrate the method, we present the results of analyses undertaken by project 
R7834 for one set of explanatory variables selected from the Decision-Making 
Arrangements group of variables. An outcome variable EQUITY (distributional equity 
among community members) was included with a view to having a prior look at how 
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it might depend on the attributes in this group. The dendrogram below summarizes 
the results.

Figure 14.9
Dendrogram illustrating similarities among variables

The figure shows that the variables REP_FISH (representation of fishers on the 
decision-making body) and TRANSPAR (transparency of rule making) are closely 
related, and probably contain similar information. In the interests of parsimony, only 
one of these variables should be retained. In some cases, variables may be retained for 
modelling even though they are closely related statistically. This may occur when the 
contextual meanings of the variables were different and model interpretation would 
benefit from retaining them all. 

With some of the groups of variables examined, it may be possible to gain further 
insights into the complex relationships between them by using PCA. Given the varied 
data types (especially with ordinal variables taking values 0, 1, 2) we should not perhaps 
expect great success with this approach (which generally works best with measurement 
variables). However, as an exploratory tool, it may be useful, at least to further explore 
possible relationships. As an example, PCA was tried on the variables EQUITY, 
RESPECT (respect for decision-making body), STABBODY (stability of decision-
making body), CLR_ACC (clear access rights), REP_FISH (representation in rule 
making), DEM_ELEC (democratically elected decision-making body), CONF_RES 
(conflict resolution mechanisms), EFFECT_CS (effective control and surveillance) 
and POACH2 (incidence of poaching). The first two components accounted for 85.5 
percent of the variance. A biplot (Figure 14.10) of the first two components is shown 
below.
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Biplots like this are very useful summaries of PCA because they simultaneously 
represent the data points and the variables. Their interpretation is extensively described 
by Gower and Hand (1996), but for our purposes it suffices to note that the length 
of a vector represents the variance of the corresponding variable and that the angle 
between two vectors is a measure of the correlation between the variables (a small 
angle indicating a high correlation). The numbers on the plot are the ID numbers of 
the fisheries in the R7834 project database. (Note the direction of the STABBODY 
variable is unexpectedly opposite to that of RESPECT, but this is because of the way 
numeric codes were assigned to the former variable, 0 representing “stable”.)

Taken together, these two exploratory tools, variable clustering and PCA with 
biplots, can be very helpful in selecting sets of variables for inclusion in models, 
especially the network models described below.

Exploratory Data Analysis
Following data checking, cleaning and reduction, exploratory data analyses using 
graphical and data summary procedures should be undertaken. Such exploratory and 
descriptive methods of analysis are essential at the first stage of data analysis since they 
form a valuable tool for identifying important features of the data and further scrutiny 
of the data for any unexpected patterns or extreme observations. They are also useful 
for getting a preliminary idea of the behaviour of the data and the distributional patterns 
exhibited by individual variables and to guide appropriate data transformations to meet 
the assumptions behind the methods described below.

14.3.1  The General Linear Model Approach 25 
The use of multiple linear regression techniques is common in research investigations. 
A typical objective is to explore the dependence of a key quantitative outcome, often 
called the dependent variable (y), on one or more explanatory variables that are believed 
to have a potential influence on y. Sometimes there is also interest in using the model 
equation as a predictive tool. 

Figure 14.10
PCA Biplot

25	 S. Abeyasekera and A.S. Halls
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When dealing with multidisciplinary data sets, we are often confronted with a mix 
of different data types, e.g. quantitative measurement variables, binary responses and 
categorical variables such as those in Table 14.1. The appropriate model for dealing with 
these different measurement variables is then the general linear model (GLM). This is 
essentially a more general version of the model used in a multiple linear regression 
analysis. The aims of model development remain the same, i.e. to explain, via a series 
of potential explanatory variables, the variation in y, or as a predictive tool. It must 
be recognized however that variables, which contribute to explaining the variation in 
y, are not necessarily implying causation. Non-statistical considerations will help in 
determining whether or not causality is likely.

Model description
To illustrate the form of the model equation for a GLM, we consider a situation 
where the aim is to study the influence of two explanatory variables x1 and x2, and 
two categorical variables R (with 3 levels) and S (with 4 levels) on a response variable 
y when measurements on y, x1 and x2 are made on n co-managed sites or units. The 
model equation is then: 

In this equation, m represents a constant, similar to the intercept in multiple linear 
regression, while eijk represents the residual component and reflects the random (or 
residual, or unexplained) variation in y after the effect of x1, x2, R and S have been 
taken into account. The parameters b1, (and b2) give the change in y for a unit change 
in x1, (and x2) when all other explanatory variables are held constant. The parameters 
rij and sik, show changes in the overall model constant in accordance with changing 
the levels of R or S respectively. We draw attention to the fact that when the model is 
fitted, the underlying mathematics requires a constraint to be imposed upon the model 
parameters. The constraint used depends on the software. In SPSS (2001) for example, 
the default setting fixes the last level of R and the last level of S to zero, i.e. ri3 = 0 and 
si4 = 0, in the example above. 

When the categorical variables are nominal (e.g. type of ecosystem, or type of gear 
used), their inclusion in the model allows a test of whether the mean values of the 
outcome differ significantly across the different levels of the factor. So for example, 
if catch per unit area (CPUA) is the dependent variable being modelled, and the 
explanatory variables include the type of gear being used (GEARTYP2) with four 
levels, i.e. (i) gillnets; (ii) hook & line or speargun; (iii) nets; (iv) traps or other, then the 
overall significance level for GEARTYP2, obtained via the modelling process, indicates 
that the mean CPUA differs across the different gear types used.

When a particular categorical variable considered for inclusion in the model is 
ordinal (e.g. level of ecological knowledge or wealth variation among fishers, recorded 
as low, medium, high), there is a choice to be made. The categorical variable can either 
be regarded as a quantitative variate (1 d.f. in the corresponding analysis of variance 
(anova) table which results from the GLM), or it can be regarded as a nominal variable 
(d.f. = number of levels-1). The former poses some difficulties. First, it assumes that the 
effect of the ordinal variable is a monotonic increase or decrease. Secondly, most of the 
ordinal variables in the profiled data set were scored on a 0,1,2 scale. So even if the effect 
was linear, the number of levels can be too low to identify this linearity. Moreover, it 
assumes that the “distance” from the “low” category to the “medium” category is the 
same as the “distance” from the “medium” category to the “high” category. We have 
therefore initially regarded all ordinal variables as nominal since this accounts for the 
total contribution to variation in the outcome from each such variable. 

Our procedure has been to determine the subset of attributes (explanatory variables) 
that best explains the variation in the outcome variable (y) of interest and then 

yijk = m + b1 x1i + b2 x2i + rij + sik + eijk  ,         i = 1,2,...n;  j = 1,2,3;  k = 1,2,3,4  
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investigate whether the main contribution from the ordinal variables in the model was 
due to a linear effect. If this was found to be the case, the model was refitted with just 
the linear component. However, we have found that for purposes of interpretation 
and reporting, regarding the ordinal explanatory variables as nominal was the most 
effective in the majority of cases. A binary variable (only 2 categories) can also be 
included in the model as nominal or as a quantitative variable, but the choice is less 
crucial here since the results of the tests of significance will be identical in either case. 
Some care is needed however in interpreting the corresponding model parameters since 
this can vary according to the software package being used.

Model assumptions
The model carries some assumptions that need to be checked for their validity at the 
data analysis stage. The assumptions strictly relate to the residual components e, but 
practically they require that the y values are independent of each other, have a constant 
variance, and follow a normal distribution. It is this last assumption that restricts 
the outcome variable y in a GLM to a quantitative measurement variate. Although 
inferential procedures associated with GLMs are quite robust to small departures 
from normality, management performance measures such as equity, compliance, 
empowerment etc that are often subjectively measured with, for example, a three-point 
ordinal scale (low, medium, high) are non-normal and therefore not suitable as the key 
outcome variable in GLM models. The GLM-based approach we describe here should 
therefore be restricted to genuine measurement data such as the catch per unit area or 
the catch per unit effort as the dependent (outcome) variables. The Bayesian network 
modelling approach described in Section 14.3.2 below offers an alternative approach to 
modelling these more subjectively measured, non-normally distributed management 
performance variables to complement the GLM approach described here.

The variance homogeneity assumption and the assumption of independence are 
both very important to ensure the validity of model-based results. Independence 
would normally be assured by collecting the data according to some well-defined 
random sampling procedure. Checking the validity of the variance homogeneity 
assumption for each model investigated is possible through a residual analysis. This 
analysis involves looking at a series of plots where the residuals, i.e. the deviation of 
model predictions from observed value, are plotted in different ways. The most useful 
is a plot of residuals versus model predicted values. This will show a random scatter if 
the assumptions underlying the model are reasonable. This is illustrated in the example 
below. Residual analysis is also useful for identifying outliers, i.e. observations far 
removed from the pattern exhibited by the remaining data.

Example application
Here we illustrate the application of the GLM approach for constructing models of 
catch per unit area (CPUA) measured in tonnes per km-2 - a key quantitative variable 
from the dataset described above. The analysis was carried out using SPSS version 11 
(SPSS, 2001).

Using the hypothesis matrix, a total of 35 explanatory variables were identified as 
having a potential influence upon CPUA. Since it is impractical to include so many 
variables in the model simultaneously, subsets of these variables were considered 
in turn, e.g. sets of attributes corresponding to categories of explanatory variables 
given in Table 14.1. The subset of variables from each set, contributing significantly 
to the outcome variable CPUA, were first selected through a backward elimination 
procedure. The contributors thus selected from each set were then considered together 
and a variable selection procedure applied to determine a range of suitable alternative 
models. Interactions between these effects were also examined, e.g. to examine whether 
the effect of ecosystem type was different across the different waterbody types. It was 
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not possible however, to examine all interaction effects due to the non-availability of 
sufficient cases within all 2-way combinations of the categorical variables.

With respect to CPUA, we began with the following set of key identifiers. 
PERMEN	 -Waterbody type: Seasonal (0), perennial (1), both (2).
ECOTYPE	 -Ecosystem type: Rivers(1), beels(2), lakes(3), reefs(4), others(5).
VILLAGES	 -Number of fishing villages.
FISHERS1	 -Number of fishers of all types. 
The significance of each variable in influencing the value of CPUA was judged on 

the basis of the ANOVA table (Table 14.2) generated by the SPSS software. Since the 
variable VILLAGES appears to be the least significant variable when added to a model 
containing the remaining three variables, it was dropped from the model and the model 
refitted with the remaining variables. The resulting probabilities for the remaining 
attributes were then 0.017, 0.453 and 0.420 for ECOTYPE, PERMEN and FISHERS1 
respectively. At the next step, PERMEN was dropped and the model re-fitted giving 
probabilities of 0.015 and 0.536 respectively for assessing the significance of ECOTYPE 
and FISHERS1. Since FISHERS1 was still non-significant, ECOTYPE alone was fitted 
giving a significant probability of 0.013 (Residual df=25; R2=39 percent).

Table 14.2
An example of an ANOVA table for CPUA

Explanatory 
variable d.f. Type III MS F Sig. Prob.

ECOTYPE 4 1526.9 1.81 0.177

PERMEN* 1 338.8 0.40 0.536

FISHERS1 1 313.4 0.37 0.551

VILLAGES 1 0.13 0.00 0.990

Residual 16 845.6

* only 1 d.f. since there were no data corresponding to the “seasonal category

At this stage, explanatory variables discarded during stage 1, in this example 
VILLAGES and PERMEN, were brought back into the model to assess whether the 
removal of FISHERS1 would now indicate their importance. This was found not to 
be the case in this example and therefore ECOTYPE alone was regarded as the only 
variable from the subset to contribute significantly to variation in CPUA.

Repeating the above process for each of the remaining sets of categories of 
explanatory variables (Table 14.1) resulted in seven alternative models. They are 
described in Table 14.3 and Table 14.4.

The probabilities quoted in Table 14.3 reflect the relative importance of each model 
attribute. Table 14.4 shows the magnitude and direction of the effect of each attribute. 
In the case of each categorical variable, the parameter corresponding to the base level 
(first or last level according to which is easier for interpretation) is set to zero. Values 
for the remaining parameters show changes from the base level. Although ECOTYPE 
was a highly significant factor in all the models, it is not shown in Table 14.4 since it 
acts as a stratification variable whose effect must be eliminated before exploring the 
effect of other variables.

Each of the models in Table 14.3 were subjected to a residual analysis before they 
were regarded as being acceptable. We provide in Figure 14.11, an illustration of a 
residual plot for the second model shown in Table 14.3, i.e. the one where explanatory 
variables entering the model are ecosystem type, gear type and fisher density. There is 
no obvious pattern or outliers in this data, and hence the model seems acceptable. 
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Table 14.3
Model summaries for CPUA

Model Explanatory variable Variables in model Prob. for 
sig.

Residual 
d.f.

Residual 
M.S. Adjusted R2

1

PRIM_PRO, i.e.
Primary Production  
(g/C/m2/year), with 
ecotype and fisher 
density

ECOTYPE
PRIM_PRO
FISH_DEN

0.000
0.014
0.033

12 36.2 85%

2

GEARTYP2, i.e.
Type of gear, with 
ecotype and fisher 
density

ECOTYPE 
GEARTYP2 
FISH_DEN

0.000
0.006
0.004

16 33.3 85%

3

HARM_GR, i.e.
Destructive fishing 
practices, with ecotype 
and fisher density

ECOTYPE
HARM_GR
FISH_DEN

0.000
0.000
0.013

13 28.1 88%

4
BAN_DRIV, i.e.
Ban on fish drives, with 
ecotype.

ECOTYPE
BAN_DRIV

0.000
0.000

18 25.7 89%

5

SIZE, i.e. landing size 
restrictions, and 
NUMB_RES, i.e. number 
of reserves, with their 
interaction, and with 
ecotype.

ECOTYPE
SIZE
NUMB_RES
SIZE x NUMB_RES

0.000
0.000
0.001
0.013

14 12.1 93%

6

MANG_TYP, i.e.
Type of management
and OA_COMM, i.e.
if open or restricted 
access, with ecotype and 
fisher density.

ECOTYPE
MANG_TYP
OA_COMM
FISH_DEN

0.000
0.005
0.018
0.043

17 32.6 85%

7

LOC_BODY, i.e.
Local decision making 
body, and OA_COMM, 
i.e. if open or restricted 
access, with ecotype and 
fisher density.

ECOTYPE
LOC_BODY
OA_COMM
FISH_DEN

0.000
0.001
0.015
0.011

18 30.8 85%

Table 14.4
Predicted Changes in CPUA from a base level of each significant explanatory variable

Model Explanatory variable Variable Levels Changes from 
base level n

1

PRIM_PRO, i.e.
Primary Production
(g/C/m2/year)
(with ecotype and fisher density)

Low
Medium
High

0
5.6

20.8

7
7
4

2

GEARTYPE2, i.e.
Type of gear 
(with ecotype and fisher density)

Gillnets
Hook & Line or Speargun
Nets
Traps or other

0
–2.5
16.4

–0.91

10
9
3
3

3
HARM_GR, i.e.
Destructive fishing practices?
(with ecotype and fisher density)

No
Yes

19.8
0

11
9

4
BAN_DRIV, i.e.
Ban on fish drives
(with ecotype) 

No
Yes

0
23.6

19
5

5

SIZE, i.e. landing size
restrictions, and 

No
Yes

0
15.5

19
3

NUMB_RES, i.e. number of reserves, 
according to SIZE.

“Slope” for size=No
“Slope” for size=Yes

–0.57
-2.90

-

6

MANG_TYP, i.e.
Type of management
and

Govt.
Co_mgt
Self/Trad.

0
15.4
12.4

6
5

15

OA_COMM, i.e. if open or restricted 
access. 
(with ecotype and fisher density)

Open
Restricted

0
6.4

11
15

7

LOC_BODY, i.e.
Local decision making body and

Absent
Present

0
15.0

6
20

OA_COMM, i.e. if open or restricted 
access. 
(with ecotype and fisher density)

Open
Restricted

0
6.4

11
15
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The effect of quantitative variates, e.g NUMB_RES and FISH_DEN is shown in 
Table 14.4 in terms of the corresponding model parameter, i.e. the “slope” in standard 
multiple regression models. This reflects the increase in CPUA (negative values imply 
a decrease) for a unit change in the attribute. 

The results in Table 14.4 are indicative of the way in which a number of explanatory 
variables can affect CPUA. For example, a fishery with a high level of primary 
production is likely to have a CPUA that is 20 tonnes km-2 yr-1 higher than a fishery 
with low primary production. Using nets (other than gillnets) can give 16 tonnes km-2 
yr-1 higher CPUA compared to using gillnets. Banning destructive fishing practices or 
banning fish drives can increase CPUA by about 20 tonnes km-2 yr-1. 

The “slope” coefficient for the number of reserves depends on whether or not there 
are landing size restrictions. In the absence of landing size restrictions, the number 
of reserves has no effect (“slope” = - 0.57 is non-sig). However, if there are landing 
size restrictions, then results of Table 14.4 indicate that an increase in the number of 
reserves by 1 unit can lower CPUA by approximately 3 tonnes km-2 yr-1. However, 
it is important not to place too much emphasis on this particular result because 
approximately 50 percent of the observations had no reserves whilst three had very 
high values. The aim here (and that of project R7834) is to demonstrate the approach, 
rather than draw specific conclusions from the data. 

14.3.2  Bayesian Network (BN) models 26

Bayesian Network (BN) models (Jensen, 2001; Cowell et al., 1999; Pearl, 2000) are 
not statistical models in the usual sense, but rather, probabilistic expert systems that 
are specifically designed to model complex patterns of causality in the presence of 
stochastic uncertainty. A BN can be a powerful tool for analysing “what-if” scenarios 
and for identifying combinations of conditions (for example management strategies 
and institutional arrangements) that tend to lead to successful outcomes. BNs have 
been successfully applied in many diverse fields including medical diagnosis, forensic 

Figure 14.11
Residual plot from modelling catch per unit area (tonnes per km-2) 

on ecotype system, type of gear and fisher density (km-1 yr-1)

(The random scatter is indicative of non-violation of model assumptions)

26	 R.W. Burn & A.S. Halls
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science and genetics (Jensen, 2001); an interesting application to fish and wildlife 
population viability under different land management strategies is presented by Marcot 
et al (2001).

An overview of Bayesian Networks
Perhaps the most familiar and general class of statistical models comprises those that 
seek to account for variation in a response variable y (which may be multivariate) in 
terms of a set of explanatory variables. This class includes all regression and generalized 
linear models. The relationships between the variables can be represented graphically 
as in Figure 14.12, an example of a graphical model.

It often happens, however, that the 
relationships between variables are not 
as simple as this model allows. The 
effect of one x-variable on the response 
y may be mediated through another x-
variable, or through two or even more 
x-variables. It could also happen that 
some of the x-variables affect some 
of the others. The roles of “response” 
and “explanatory” variables become 
blurred, with variables taking on each 
role in turn. In the simple example in 
Figure 14.13, variables E and D could 

be regarded as “responses”, and A and B as “explanatory”. But C seems to play both 
roles. It looks like a response with A and B acting as explanatory variables, and it is an 
“explanatory” variable for E.

It is customary for statisticians to warn that a 
significant correlation between variables (or a term 
in a regression model) does not necessarily imply any 
causal relationship. In contrast, the network models 
presented here deliberately set out to model patterns 
of causality. The arrows in the above diagram represent 
causal links. A rigorous discussion of the role of 
causality in scientific inference is presented by Pearl 
(2000). The causation does not have to be deterministic 
and can incorporate a degree of uncertainty. Indeed, 
the variables are modelled as random variables and the 
links are probabilistic. A link from A to C would be 
interpreted as meaning that the value of A affects C by 
influencing its probability distribution. A BN consists 
of a set of nodes (variables) connected by directed 
(causal) links without cycles (see Jensen, 2001 for an 
introductory account, or Cowell et al., 1999 for a more 
rigorous treatment). Most of the currently available 
software for analysing BNs requires all nodes to be discrete variables. Continuous 

variables can be accommodated by grouping 
their values into intervals. The causal links 
between nodes are formally quantified by 
conditional probability tables (CPTs). As an 
example, Table 14.5 shows the structure of the 
CPT for the node C in Figure 14.13, assuming, 
for simplicity, that all nodes are binary, taking 
values F or T.

Figure 14.12
Explanatory and response variables

Figure 14.13
Indirect mediation of effects 

of explanatory variables

Table 14.5
CPT for Node C

C

F T Total

F F p000 p001 1

F T p010 p011 1

T F p100 p101 1

T T p110 p111 1
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If sufficient data are available, estimates of the entries in the CPT of a node can 
be obtained by simply cross-tabulating the variables representing its parent nodes. 
Alternatively, they can be subjective probabilities or degrees of belief, ideally encoded 
from expert opinions. Formal procedures for eliciting prior beliefs from panels of 
experts and building probability distributions from them are described by O’Hagan 
(1998). For Project R7834, most CPTs were estimated by cross-tabulations of the 
dataset, but where data were too sparse, reasonable subjective estimates were used, 
although without using the above formal procedures.

In the simple example of Figure 14.13, if the states of the nodes (i.e. the values 
of the variables) A and B were known, then it would be possible to use the rules of 
probability to calculate the probabilities of the various combinations of values of the 
other nodes in the network. This kind of reasoning in a BN can be called “prior to 
posterior”, in the sense that the reasoning follows the directions of the causal links in 
the network. Suppose now that the state of node E were known. What could be said 
about the other nodes? The updating algorithm of Lauritzen and Spiegelhalter (1998) 
allows us to calculate the posterior probabilities of all other nodes in the network, 
given the known value at E, or indeed, given any combination of known nodes. In the 
jargon of expert systems, “knowing” the value of a node is called “entering evidence”. 
This is “posterior to prior” reasoning and allows us to infer something about the states 
of nodes by reasoning against the direction of the causal links. The updating algorithm 
is a very powerful tool in BNs and enables us to make useful predictions and examine 
“what if” scenarios with ease. Various software packages are available which facilitate 
the construction of BNs and implement the updating algorithm. Project R7834 used 
the Netica program (Norsys, 1998) which is very user-friendly and there are no great 
demands or pre-assumed knowledge to be able to use it. 

In addition to its analytical capabilities, it has facilities for designing and editing 
network models and for maintaining files of data. It is also inexpensive and a free 
version can be downloaded from the world-wide-web (www.norsys.com/netica) and 
so is suitable for use in low-budget situations. 

An important property of BNs is conditional independence. Consider the network 
fragment in Figure 14.14.

Knowledge of the state of Z would enable us 
to infer something about the possible states of X 
(i.e. calculate the posterior probabilities of X), 
using the updating algorithm, or in this simple 
case by using Bayes’ rule from probability theory. 
From this we could estimate the probabilities 
of the states of Y. However, if the state of X 
were known then knowledge of Z would tell 
us nothing about Y in addition to the what we 
deduce from knowing the state of X. Y and Z 
are said to be conditionally independent given 
X. Conditional independence is a fundamentally 

important property of BNs without which the updating algorithm would not work. It 
is also important at the stage of building a BN model because it implies that at any stage 
of development of the model, we can focus just on one node and its parents without 
having to consider the joint effect of all possible interacting nodes. This amounts to a 
great simplification in the model building process.

Building a Bayesian Network
Network construction is generally an iterative process. The first step is the qualitative 
stage of specifying the nodes and the causal relationships between them. To begin with, 
this is a tentative specification representing a hypothesis (or a collection of related 

Figure 14.14
Conditional independence
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hypotheses) perhaps drawn from a hypothesis matrix (see section 14.3) and subject to 
modification after closer investigation of the validity of the links. Usually we would 
start by focusing on a particular outcome or set of outcomes and then propose nodes 
representing immediate (proximate) causes. Then we decide whether there should be 
any causal links between the nodes representing these immediate causes and then look 
for causes of theses causes, if there are any, and so on. At each stage, we again insert any 
possible causal links between the nodes so far included. In principle, this process could 
be continued for several stages of causality, but a good model should be parsimonious 
and represent the principal features of the patterns of causality that exist among the 
variables. Further guidance on methods for constructing BN models is given by Jensen 
(2001).

When sufficient data are available, cross-tabulating the data for a node and its 
parents leads to a multi-dimensional contingency table. The strength of the joint 
effects of parent nodes on a child node can be assessed by fitting log-linear models 
to this table, or alternatively, in the case of binary nodes, by fitting logistic regression 
models (McCullagh and Nelder, 1989). A consequence of conditional independence is 
that there is no need for concern about the simultaneous effects of nodes other than 
the parent nodes of the node. It should be stressed that this model-building process is 
not based on statistical criteria alone, but also involves judgements based on contextual 
knowledge of the data. In those situations where little or no hard data are available, 
the causal links and their CPTs will be derived from a process of elicitation of expert 
knowledge alone.

Once the BN is constructed, it can be used for investigating the effects of given states 
of one or more nodes simultaneously by “entering evidence” into those nodes. Often, 
the focus of interest is the effect of combinations of nodes on particular “outcome” 
nodes. It is possible to quantify these effects by computing the corresponding 
reduction in entropy (Jensen, 2001) in the network (called “mutual information” in the 
Netica documentation). Roughly speaking, this compares the change in the amount of 
uncertainty in the model before and after entering the evidence. Although the absolute 
numeric values of this measure may not be directly meaningful, it does enable a ranking 
of nodes according to the importance of their effect on other nodes.

Example model construction
Using the same dataset described in Section 14.3, we illustrate below the construction 
of a BN model for exploring the principal determinants of “successful” management 
where “success” is modelled by the joint behaviour of three outcome variables 
intended to represent sustainability, compliance with management rules and equity of 
distribution in the community. In addition to these three main outcome variables, it 
turned out that secondary outcome variables could be added to the model at virtually 
no cost in terms of complexity and performance. These additional outcomes were 
stability (the stability of the decision-making body), respectability (the perceived 
respectability in the community) and poaching.

Variables representing proximate causes of the outcome variables, followed by 
secondary causal effects, were added to the model after following the general procedure 
outlined above. A representation of the resulting BN is shown in Figure 14.15.

The strength of the association between each node and its parent nodes was assessed 
by fitting logistic regression models. The results of this analysis are summarized in 
Table 14.6.
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Figure 14.15
The initial qualitative stage of BN model development

Having completed the qualitative specification of the model (i.e. the nodes and 
causal links), we need to specify the conditional probabilities that govern the links 
between parent and child nodes. For most of the nodes these conditional probabilities 
were estimated by cross-tabulating the original data. In the event, some of these 
estimates were based on quite small numbers of cases in the cross-tabulation, resulting 
in extreme estimates (1 or 0). When it was judged to be possible, but unlikely, that such 
an extreme occurs, these probabilities were subjected to small adjustments (0.95 or 
0.05, for example). As examples of probabilities estimated in this way, Table 14.7 shows 
the conditional probabilities for the node Conflict resolution and Table 14.8 represents 
the conditional probabilities for the node Fisher representation.

Table 14.6
Results of logistic regression analyses

Child node Parent nodes Deviance d.f. Signif., P

Equity Conflict resolution 10.11 1 0.001

# gears 4.98 1 0.026

CPUE chg. Fisher density 7.13 1 0.008

Ctrl & surveillance 6.29 1 0.012

Compliance Clear access rights 19.10 1 <0.0001

Ctrl & surveillance 13.08 1 0.0003

Poaching Compliance 20.13 1 <0.0001

Ctrl & surveillance 3.90 1 0.048

Ctrl & surveillance Fisher representation 41.87 1 <0.0001

Clear access rights Fisher representation 18.10 1 <0.0001

Fisher representation Management type 12.67 2 0.002

Democ. elected 20.89 1 <0.0001

Conflict resolution Fisher representation 43.05 1 <0.0001

# gears Management type 17.58 2 0.0002

Democ. elected Management type 30.87 2 <0.0001

Respectability Fisher representation 12.47 1 0.0004

Stability Management type 7.13 2 0.028
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The representation of the model (output from the Netica software) in Figure 14.16 
shows each node with probability bars (on a percentage scale). The initial values of 
these probabilities are the overall average “posterior” probabilities of the states of 
the nodes, as estimated from the data. The exceptions are the nodes with no parents 
(Management type and Fisher density), where they are “prior” probabilities, in this 
case simply the proportions of occurrences of the levels of the variables in the data 
(so for Management type, 12.0 percent of cases were “government”, 55.0 percent “co-
management” and 33.0 percent “traditional”).

Table 14.7
Conditional probabilities for Conflict 
resolution

Conflict resolution

Fisher rep. No Yes

Low 0.77 0.23

Med/high 0.06 0.94

Table 14.8
Conditional probabilities for Fisher representation 

Fisher representation

Mg’t. type Dem. Elec. Low Med/
high

Gov’t. No 0.95 0.05

Gov’t. Yes 0.95 0.05

Co-mg’t. No 0.91 0.09

Co-mg’t. Yes 0.11 0.89

Trad. No 0.33 0.67

Trad. Yes 1.00 0.00

Figure 14.16
Bayesian network model for the outcomes Equity, CPUE change and Compliance (see the 

text for an explanation of the contents of the boxes)

Using the Model
As a first example, we use the model to investigate the effect on the outcomes of 
Management type. If we set this node (or “enter evidence”) to, say “government”, 
the resulting posterior probabilities in all nodes are updated with the result shown in 
Figure 14.17.



234 Stock assessment for fishery management

Figure 14.17
Exploring the effects of government management on outcomes

Compare the probabilities now displayed in the nodes with the overall average 
probabilities in Figure 14.16. We see, for example that the posterior probability of 
high Equity has changed from 72.8 percent to 58.4 percent. Note also the effect on 
the subsidiary outcomes: the probability of med/high Poaching, for example has 
changed from 53.1 percent to 78.2 percent. By successively entering the three possible 
management types, the effects on the main outcomes can be compared and these results 
are summarized in Table 14.9.

Table 14.9
Posterior probabilities of favourable (main) outcomes by management type

Outcome
Management type

Overall Gov’t. Co-mg’t. Trad.

Equity (high) 73% 58% 80% 67%

CPUE change (static/rising) 48% 27% 50% 53%

Compliance (med/high) 59% 30% 62% 66%

In the same way we can obtain the posterior probabilities of the subsidiary outcomes 
(shown in Table 14.10).

Table 14.10
Posterior probabilities of favourable (subsidiary) outcomes by management type

Outcome
Management type

Overall Gov’t. Co-mg’t. Trad.

Poaching (low) 47% 22% 49% 53%

Stability (stable) 76% 95% 66% 86%

Respectability (high) 61% 38% 63% 66%
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Evidence can be entered into any node, or indeed any combination of nodes 
simultaneously, and posterior probabilities for all remaining nodes in the network 
obtained by applying the updating algorithm. To illustrate this, we can examine 
the posterior probabilities resulting from setting all three main outcomes to their 
“favourable” states: med/high Compliance, static/rising CPUE change and high 
Equity. The resulting posterior probabilities could be obtained as in the previous 
example, but for the purposes of illustration, Figure 14.18 shows the result in a slightly 
different form.

It gives what is called the most probable explanation. This is the configuration of 
states that are most likely to be conducive to favourable results in the three outcomes 
simultaneously. The bars in the nodes no longer represent probabilities, but the 
required favourable state of each node is indicated by 100 percent. The lengths of the 
bars for the other states in the same node now represent the relative importance of 
those states, in the sense that a high percentage (close to 100 percent) would indicate 
that the actual state is probably not critical. We are thus able to deduce which nodes 
are critical for favourable outcomes. For example, referring to Figure 14.18, we see that 
Fisher representation appears to be an important feature because the “low/med” state 
scores only 2.73 against the preferred state “high”. Note also the Management type 
node, where although “co-management” is the state most likely to produce favourable 
outcomes, “traditional” fisheries score 83.5, which indicates that the corresponding 
posterior probabilities of the main outcomes would also be quite high. The relative 
importance of attributes to outcomes can be assessed by measuring the entropy 
reduction. Table 14.11 summarizes the results of this analysis.

Figure 14.18
The configuration of states that are most likely to achieve favourable states in all three of 

the main management outcomes simultaneously
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Application
These probabilistic expert systems 
offer a powerful tool for managers 
and decision makers to identify 
combinations of conditions or 
factors that tend to give rise to 
desirable management outcomes 
or performance and provide a 
powerful visual tool for analysing 
“what-if” scenarios to guide 
changes to future management 
activities or plans. Indeed, the 
very process of constructing the 
model itself is a useful exercise in 
the elucidation of characteristics 
of the situation being modelled.

We wish to re-emphasize that 
the purpose of including the model described above is to illustrate the general 
methodological approach, rather than to report specific conclusions from the data. 
These global-scale comparisons were principally designed to ensure that, during 
the methodological development stage, consideration was given to a wide range 
of variables that might be postulated to have an important influence on different 
aspects of management performance, and whilst these results may encourage further 
investigation into traditional management practices, these comparisons have, perhaps 
more importantly, served to illustrate that management performance is likely to 
be mediated through a number of interacting factors that should be taken into 
consideration when forming appropriate institutional arrangements, and formulating 
and implementing management plans.

This approach should hold promise in the context of refining adaptive management 
strategies pursued at a national or local scale where similar, but more context-specific 
models can be constructed from among fishery comparisons of a subset of relevant 
variables. Lessons generated by the formulation and exploration of such models could 
then be used to iteratively adapt management plans or institutional arrangements. As 
more evidence become available through time, improved estimates of the conditional 
probabilities can be derived. The qualitative structure (the nodes and links) can 
also change adaptively in response to this “learning” process (Cowell et al., 1999). 
Another development that may turn out to be important in adaptive management is 
the “dynamic BN”. This incorporates the time dimension so that the model evolves. It 
consists of a series of snapshot models, one for each time period, with links between 
appropriate nodes at time t to nodes at time t+1. This may be useful for supporting the 
adaptive management of a single fishery over time.
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Table 14.11
Relative importance of attributes to outcomes as 
measured by reduction in entropy

Outcome Important attributes Entropy reduction

Compliance Ctrl & surveillance 0.3427
Fisher representation 0.2636
Clear access rights 0.1377
Management type 0.0357
Democratically elected 0.0225

Equity Conflict resolution 0.0918
# gears 0.0524
Fisher representation 0.0490
Management type 0.0221
Democratically elected 0.0170

CPUE change Ctrl & surveillance 0.1944
Fisher representation 0.1276
Fisher density 0.0967
Management type 0.0185
Democratically elected 0.0110
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Annex 1

Table A1
Summary of the best fitting regression models for predicting multispecies potential yield from river, 
lake, coastal lagoon and reef fisheries where a and b are the constant and slope parameters of the linear 
regression model: Y = a + bx, and where n is the number of observations, R is the correlation coefficient, 
and P is the probability that the slope parameter, b = 0. Sb is the standard error of the estimate of the 
slope coefficient, b, s2

Y.X is the residual mean square, and X–  is the mean value of the observations of the 
explanatory variable.

River Fisheries

Relationship Continent a b Sb n X
–
 s2

Y.X R P Reference/Project

ln catch vs ln FPA Asia 2.086 0.996 0.083 13 4.31 0.531 0.97 <0.001 MRAG (1993) /R5030

ln catch vs ln length Asia -14.88 3.234 0.585 5 8.06 0.680 0.96 0.01 MRAG (1993) /R5030

ln catch vs ln DBA S. America -3.60 0.936 0.218 15 12.87 1.457 0.77 0.001 MRAG (1993) /R5030

Lake Fisheries

Relationship Continent a b Sb n X
–
 s2

Y.X R P Reference/Project

ln catch vs ln Area Africa 2.668 0.818 0.042 94 4.34 1.131 0.90 <0.001 Halls (1999)

ln catch vs ln Area (NS) Africa 2.761 0.786 - 88 - - 0.90 <0.001 MRAG (1995) /R6178

ln catch vs ln Area (NS) Asia 2.895 0.856 - 39 - - 0.76 <0.001 MRAG (1995) /R6178

ln catch vs ln Area (S) Asia 4.545 0.552 - 25 - - 0.76 <0.001 MRAG (1995) /R6178

ln catch vs ln Area (NS) S. America 2.646 0.665 - 12 - - 0.60 0.040 MRAG (1995) /R6178

Reservoir Fisheries 

Relationship Continent a b Sb n X
–
 s2

Y.X R P Reference/Project

ln catch vs ln Area (NS) Africa 2.274 0.876 - 45 - - 0.91 <0.001 MRAG (1995) /R6178

ln catch vs ln Area (S) Asia 3.048 0.413 - 54 - - 0.50 <0.001 MRAG (1995) /R6178

ln catch vs ln Area (NS) Asia 2.278 0.823 - 57 - - 0.70 <0.001 MRAG (1995) /R6178

ln catch vs ln Area (NS) S. America 2.767 0.726 - 70 - - 0.73 <0.001 MRAG (1995) /R6178

Lake and Reservoir Fisheries 

Relationship Continent a b Sb n X
–
 s2

Y.X R P Reference/Project

Ln CPUA vs ln Rainfall (NS) Asia -13.73 2.113 - 12 - - 0.72 0.009 MRAG (1995) /R6178

Ln CPUA vs ln Total P (S) Asia 0.507 0.821 - 27 - - 0.74 <0.001 MRAG (1995) /R6178

Ln CPUA vs ln Total N (S) Asia -3.969 1.302 - 25 - - 0.62 0.001 MRAG (1995) /R6178

Ln CPUA vs ln surface Chla (NS) Asia -3.468 2.183 - 8 - - 0.90 0.002 MRAG (1995) /R6178

Ln CPUA vs ln Zoo prod (NS) All 4.822 -0.984 - 8 - - 0.80 0.020 MRAG (1995) /R6178

Lagoon Fisheries & Floodplain Lakes*

Relationship Continent a b Sb n X
–
 s2

Y.X R P Reference/Project

ln catch vs ln Area Africa 2.583 0.953 - 31 - - 0.73 <0.001 MRAG (1995) /R6178

ln catch vs ln Area Asia 2.016 0.871 - 4 - - 0.99 0.002 MRAG (1995) /R6178

ln catch vs ln Area S. America 1.626 0.920 - 32 - - 0.72 <0.001 MRAG (1995) /R6178

ln catch vs ln Area* Asia 3.165 0.847 - 13 - - 0.95 <0.001 MRAG (1995) /R6178

Key  S – stocked, NS - not stocked), FPA – Floodplain area (km2); length – river length (km); DBA, drainage basin area (km2);  
Area – lake or lagoon surface area (km2); Rainfall – Mean annual rainfall (mm y-1); Total P – total surface phosphorus concentration 
(μgl-1); Total N – total surface nitrogen concentration (μgl-1); surface Chla – chlorophyll a concentration in the surface waters (μgl-1); 
Zoo prod- zooplankton production (g dwt m-2 y-1).
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Prediction intervals for yield corresponding to new observations of X, newŶ  is given 
by:

}ˆ{)2-;2/-1(ˆ
newnew YsntY ×± α   where 

}ˆ{ newYs is the standard error of the estimate given by:
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 is the residual mean square (the variance of Y after taking into account 
the dependence of Y on X), and Sb is the standard error of the estimate of the slope 
coefficient, b (Zar, 1984, p272-275).
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Annex 2 
Example hypothesis matrix for guiding 
multivariate empirical model development  
(see section 14.3)

Outcome Variables
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Resource (Group I)
Production potential Y Y Y 2
Abundance/Biomass Y Y Y Y Y Y 10 Y Y
Rule enforcement potential 1 1 1 1 Y Y Y

Environment (Group I)
Environmental health of habitat Y Y Y 3 3 3 4 2 2
Nutrient recycling Y Y Y 3 3 3 4 2
Habitat descriptors / factors Y Y Y 3 3 3 4 2 2

Technological 
(Group I)

Exploitation intensity Y Y Y Y Y Y 4 2 Y
Stocking density Y Y Y Y Y 4 2
Habitat alteration activities Y Y Y 3 3 3 4 Y 2 Y

Market Attributes
(Group II)

Economic value of resource 9 9 9 Y Y Y Y Y 14
Market facilities/infrastructure 9 9 9 Y Y Y Y 11  
Cost of marketing (market fees) 9 9 9 Y Y Y 5 11 Y
Price control mechanism 9 9 9 Y Y Y Y  Y Y

Fisher/Stakeholder/
Community Characteristics
(Group III)

Social cohesion 1 1 1 1 Y Y Y
Dependence on fishery for livelihood Y Y Y Y Y Y Y
Level of local (ecological) knowledge Y Y Y Y Y Y 4 Y Y

Decision-making
Arrangements & 
Management strategy
(Group IV)

Legitimacy / widely accepted 1 1 1 1 Y Y Y Y
Respectability 1 1 1 1 Y Y Y Y
Traditional decision-making body? 1 1 1 1 Y Y Y Y
Stability of decision-making body 1 1 1 6 6 Y Y Y
Membership to decision-making body 1 1 1 7 Y Y Y Y
Clear access (property) rights 1 1 1 1 Y Y Y
Management measures (operational rules) Y Y Y 4 Y Y Y
Reserve area as a % of total management area Y Y Y 4 Y Y
Representation in rule making 1 1 1 1 Y Y Y Y
Level of transparency in rule making (general) 1 1 1 1 Y Y Y Y
Formal performance monitoring by community? 1 1 1  Y Y Y
Sanctions for non compliance 1 1 1 1 Y Y Y

External Decision-Making
Arrangements
(Group V)

Enabling legislation for co-management 1 1 1 1 Y Y 12 Y
Local political support for co-management 1 1 1 8 Y 12 Y
Effective coordinating body 1 1 1 8 Y Y Y

Exogenous Factors
(Group VI)

External financial assistance Y Y Y 8 Y Y
Capacity building support from NGO’s Y Y Y 8 Y Y Y Y

 

Key
Y - Direct dependence
1 - Indirectly through compliance
2 - Indirectly through abundance/biomass
3 - Indirectly through production potential 
4 - Indirectly through CPUA
5 - Indirectly through income

6 -	 Indirectly through institutional sustainability
7 - 	Indirectly through empowerment
8 - 	Indirectly through improved management
9 - 	Indirectly through exploitation intensity

10 - Indirectly through conflict
11 - Indirectly through economic value
12 - Indirectly through legitimacy
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Annex 3 
Recommendations for field applications of 
the methods described in Section 14.3 

Sampling Requirements
The case study data used by project R7834 were drawn from studies carried out in 
several countries and therefore the sampling procedure for selection of co-management 
units can be described as being purposive. Although strict random sampling is not 
always crucial, the “global” setting to which the results may tentatively apply is 
inappropriate for recommendations at a local level. The data collection approach 
was merely intended to demonstrate the general approach to model-based inferential 
procedures. 

In real field applications, it is recommend that the population of interest is clearly 
identified at a regional or national level and the modelling approaches applied to data 
from all, or an appropriately selected sample of management units within that region 
or country. The relevant sampling unit for this work must be a fisheries management 
unit with a clear specification of what the unit consists of in terms of its community 
members and fisheries sources.

Variables for inclusion in future monitoring programmes
It is recommend that the attributes identified in Chapter 6 of the R7834 project 
final technical report as being important in determining outcomes be included. 
Consideration should also be given to excluding those variables found to be redundant 
or unhelpful for a variety of reasons (Annex VI of the same report). A pilot or frame 
survey employing PRA techniques may provide a more efficient means of establishing 
the range of potentially important model variables and hypotheses for testing.

A common problem encountered when “profiling” the management units was the 
need to assign a single value to inherently multivariate or multi-dimensional variables. 
For example, the variable Gear Type allows only one gear to be recorded whilst, in 
reality, several gears may be used in the fishery. In this case, the most important gear 
in terms of catch weight was recorded. This problem could be overcome by adding 
additional variables to record other important gears in order of importance (eg Gear 
Type 1, Gear Type 2, Gear Type 3…etc) particularly when the focus of analysis is at 
a more local scale, and when many other attributes are likely to be constant and can 
be excluded. Another way might be to score gears according to important attributes 
or characteristics such as their catchability, habitat destructiveness, by-catch...etc. 
Selecting additional variables from those remaining should, therefore, be undertaken 
judiciously taking into consideration available resources and local conditions. Other, 
alternative variables should also be considered. 

For example, many variables such as Representation in Rule Making were “scored” 
in a subjective manner with three point ordinal scales eg low (0); medium (1); high 
(2). Explicit guidance notes for scoring these variables need to be developed to make 
these subjective assessments more objective. These guidance notes could be used to 
generate “composite scores” for the variable where the variable score is the sum of 
scores assigned to a number of variable indicators. For the variable Representation 
in Rule Making these indicators may include the presence or absence of a forum for 
discussion and dialogue, the involvement of women in decision-making and whether 
the decision-making body has been democratically elected or not. In the example 
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below (Table A2), representation in rule making is lowest at site 3 and highest at site n. 
This type of approach is commonly employed in marketing research and was adopted 
for elements of the World Bank (1999) study. This approach has the added advantage 
that it will reduce the total number of potential model variables without loss of any 
valuable information. 

Table A2
Example of the calculation of a composite score for Representation in Rule Making

Variable Indicators Site 1 Site 2 Site 3 Site n

Forum for discussion  	 Yes (1); No (0) 1 0 0 1

Women involvement    	 Yes (1); No (0) 1 0 0 1

Democratically elected body  	 Yes (1); No (0) 0 1 0 1

Representation in rule making – composite score 2 1 0 3

Data collection
The validity of results from the application of the model-based approaches described 
in Section 14.3 depend, of course, on the reliability of the data being used. We strongly 
recommend that primary data be used where possible in using these models. Since 
many of the variables of interest depend on the perceptions of fishers and other 
stakeholders, we recommend that primary data are collected through an approach 
similar to that adopted by Pomeroy et al (1997) where a 15 rung ladder was used to 
score attributes on a 0 to 15 scale. This is particularly beneficial for scoring outcome 
variables such as CPUE change or changes in the well-being of households, because 
the resulting variable, suitably aggregated to the co-management unit level, can then be 
regarded as a quantitative variate suitable for use in general linear models. The more 
specific requirement that the aggregated variable follows a normal distribution, is also 
satisfied through this approach because of a basic theorem in statistics (the Central 
Limit Theorem) which says that an average (mean value) over a sufficient number of 
observations gives rise to a normal variable.

Data at different hierarchical levels
Our fourth recommendation relates to the need to distinguish between various 
hierarchical levels at which the data may be collected. Some of the variables in the case 
study data set, for example, involved variables such as household income, number of 
months fished per year and depth of reserve, which were aggregated over households 
or fisheries sources (lower levels of the hierarchy), to the co-management unit level 
– at a higher level. This aggregation was necessary because the model-based approaches 
developed in the project assumed that all data reside at a single level. If this is not 
the case, then other modelling approaches, e.g. multi-level modelling techniques, are 
needed.

Some care is also needed in avoiding any confusion with regard to a stratification 
variable being considered as a variable at the higher level. For example, the case study 
data came from different countries and different types of ecosystems. Although the 
data could be considered as arising from within each country or within each ecosystem, 
neither country, nor ecosystem type can be regarded as making the data hierarchical 
since there were no specific variables that were measured at the country level (e.g. type 
of government) or at the ecosystem level (e.g. size of the river, beel, lake or other).

Selection of outcomes and explanatory variables
The first step in this process should be the preparation of a list of all potential variates 
that are believed to have an affect, directly or indirectly, on management outcomes 
(e.g. sustainability or equity), and a list of all variates that could be regarded as proxy 
indicators of them. The latter set comprises the outcome variables and should be clear 



Annexes - Empirical modelling approaches 243

indicators of whether the performance of a fishery is good or bad, e.g. catch per unit 
effort, household income from fisheries. A selection of explanatory variables from 
each of these lists is then needed, to give subsets of variates which can be measured 
relatively easily by a fisheries scientist or other person who has a good understanding 
of the processes concerning the fishery of interest, and knowledge of the underlying 
environmental and resource conditions. 

The next step would involve a consideration of the chosen set of outcome variables, 
and select those explanatory variables thought to have a possible influence on each 
chosen outcome. This step again requires expert opinion and was adopted in our work 
here through the development of the hypothesis matrix see Section14.3 and Annex 2. 
Although not undertaken by project R7834, it was realized retrospectively, that this 
step should have been followed by an identification of the relative importance of each 
explanatory variable in terms of its potential effect on the chosen outcome variable. A 
simple ranking exercise should be adequate for this purpose. Consideration should also 
be given to the ease with which each variable can be measured in the field. This would 
lead to a much reduced, and more manageable set of variables for analysis purposes.

Data Cleaning and exploratory analysis
The data collection stage must naturally involve collecting information on variables 
identified from above as appropriate for investigating and identifying the way in which 
changes in co-management outcomes are influenced by a host of multi-disciplinary 
attributes associated with the community and with the fishery sources comprising the 
management unit.

The data would then normally be computerized using appropriate database software 
(e.g. Access) and checked for possible errors and other oddities. Simple data summaries 
in the form of summary statistics and graphical procedures are recommended at this 
stage. Any suspect data has to be checked with the original source and corrected or 
some decision made whether to discard the erroneous value(s).

The next stage is exploratory data analysis. Such analysis procedures form a key 
component at initial stages of data analysis and are strongly recommended. This step 
is very important in understanding the behaviour of the data, identifying patterns of 
association between different variables, identifying odd observations (outliers) and 
determining whether any scored attributes demonstrate sufficient variability to be 
appropriate for inclusion in the modelling procedures. Errors in the data may also 
emerge at this stage and must be dealt with in an appropriate manner (see also section 
14.3).

Data analysis
Initial stages of modelling require further screening of attributes to ensure that the 
explanatory variables share a sufficient number of cases in common with the outcome 
variables being modelled. The guideline employed by project R7834 was to ensure 
that at least 15 cases are available for both. However, the total number of cases, i.e. 
(co-)management or fishery units included in the analysis must be considerably more 
during the model development process since the greater the number of variables in the 
model, the greater is the number of sampling units needed for analysis. A very rough 
guideline for the GLM approach is to have at least 25 cases more than the total number 
of quantitative explanatory variables plus the sum of the number of category levels 
corresponding to each classification variable. For example, if GLM modelling is to be 
undertaken with 2 quantitative variates (e.g. fisher density and the number of reserves) 
and 2 qualitative factors (e.g. ecosystem type – 5 levels and gear type – 4 levels), then 
about 36 cases will be needed for a sensible application of GLM modelling with just 
the main effects of each of these attributes. However, if two-way interactions between 
the attributes are also to be investigated (i.e. ecotype by fisher density, ecotype by 
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gear type, etc), then many more cases are needed (e.g. about 75 cases) to minimize the 
chance of empty cells within the two-way categories identified by these interactions. 

For the Bayesian network models, the sample size requirements are based on 
ensuring, as far as possible, that all category combinations corresponding to each 
node and its parents have sufficient numbers of cases so that the relevant conditional 
probabilities can be calculated to give meaningful results. BNs are less vulnerable to 
missing data provided reliable expert judgements are available which can be suitably 
encoded.

Both modelling approaches are quite advanced techniques, made more complex by 
missing data. Although the final set of results reported here, and in the Final Technical 
Report of Project R7834 may appear straightforward, they were the result of many 
months of hard work by experienced statisticians. We therefore strongly recommend 
the involvement of well-experienced and qualified statisticians in the application of the 
methodological model-based approaches described in Section 14.3 of this manual.

Model validation and sensitivity analysis
A commonly used technique for checking the adequacy of statistical models in general 
is cross-validation. The idea is to fit the model to a subset of cases in the dataset, use 
the fitted model to predict outcomes for the remaining cases and then compare the 
predicted with the actual values. A model which succeeds in predicting outcomes with 
low error can be regarded as performing well. A variant of this method omits each 
case, one at a time, fits the model to the remaining cases and again compares predicted 
with actual outcomes for the omitted case; the entire procedure is repeated for each 
case. Although this latter method appears to be fairly computer-intensive, there are 
computational “tricks” which achieve the required comparisons in an efficient way.

In practice it would be important to assess the extent to which a BN depends on the 
evidence encoded in it. The Netica software has provisions for carrying out a closely 
related analysis, namely sensitivity to findings. This provides a quantitative assessment 
of the extent to which each node is affected by entering evidence into a given node. 
Ideally, an approach along the lines of the cross-validation described above would be 
used. However, in BNs validation and “learning”, that is, the adaptive development 
of a model as new observations become available, are activities that overlap to a large 
extent.

Opportunities for rigorous validation under Project R7834 were severely limited by 
the problem of missing data. In spite of this, it is strongly recommended that in future 
work, serious consideration is given to model validation.

Updating models
Both modelling approaches described in Section 14.3 can be adapted to deal with 
further data that may become available over time. How this is done depends on the 
regularity of updating the database. We consider each approach in turn.

GLMs: Additional information that becomes available on an ad hoc basis would 
probably be best accommodated by repeating the analysis from scratch. If, however, it 
is anticipated that data are to be collected at regular intervals (the same set of variables, 
of course), then it would be possible to incorporate the time dimension in the analysis. 
Eventually, given sufficient time, this would enable the estimation of trends. The 
methods of analysis would have to be extended to cope with correlated data structures. 
There are various statistical approaches to dealing with this situation (Diggle, Liang 
and Zeger, 1994).

BNs: There are two ways in which BNs can accommodate updated information. The 
first is learning in BNs. This is a feature which makes them particularly attractive in 
the context of adaptive management. There are procedures for updating the conditional 
probabilities in the model based on information provided by new cases (evidence) as 
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they become available (Cowell et al, 1999). The other approach is to use a dynamic BN. 
In this model, each period of observation is represented by a “static” network model 
similar to what was described in Section 14.3.2. Dependencies between time periods are 
modelled by links between appropriate nodes. The Netica software has capabilities for 
constructing and analysing dynamic models.
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CEDA
Windows 95, 98, 2000, XP
5MB free disk space (+ 1.6MB for graph server)
64MB RAM
1,024x768 high resolution monitor

Run CEDA3_Installer.exe to install the software

LFDA
Windows 95, 98, 2000, XP
5MB free disk space (+ 1.6MB for graph server)
64MB RAM
1,024x768 high resolution monitor

Run LFDA5_Installer.exe to install the software

YIELD
Windows 95, 98, 2000, XP
9MB free disk sapce (+ 1.6MB for graph server)
64MB RAM
1,024x768 high resolution monitor

Run Yield_Installer.exe to install the software

Graph Server 
(this package REQUIRED for CEDA, LFDA, Yield)
 
Windows 95, 98, 2000, XP
1.6Mb disk space
64Mb RAM
1,024x768 high resolution monitor

Run graphserverinstaller.exe to install the software

ParFish
Windows 2000/XP (has NOT been tested on 95/98 but would probably run on it)
10Mb free disk space
64Mb RAM
1,024x768 high resolution monitor

Run ParFishSetup.exe to install the software

Software installation
The CD-ROM included with this publication includes the installation files for the FMSP software packages: 
LFDA, CEDA, Yield and ParFish. Also included is a graphics server package which is used by the other 
programmes and should be installed first, before the other software. Double-clicking on the installer files will 
load the software on to your hard drive, along with the help files, tutorials and example data sets. Once installed, 
the programmes may be run from the Windows start menu. The software should be compatible with Windows 
operating systems from Windows 95 onwards.




