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An example is given of the application of remotely-sensed, satellite data to the problems of predicting the
distribution and abundance of tsetse flies in West Africa. The distributions of eight species of tsetse,
Glossina morsitans, G. longipalpis, G. palpalis, G. tachinoides, G. pallicera, G. fusca, G. nigrofusca and
G. medicorum in Cote d'Ivoire and Burkina Faso, were analysed using discriminant analysis applied to
temporal Fourier-processed surrogates for vegetation, temperature and rainfall derived from meteorologi-
cal satellites. The vegetation and temperature surrogates were the normalized difference vegetation index
and channel-4-brightness temperature, respectively, from the advanced, very-high-resolution radiometers
on board the National Oceanic and Atmospheric Administration’s polar-orbiting, meteorological satel-
lites. For rainfall the surrogate was the Cold-Cloud-Duration (CCD) index derived from the geostation-
ary, Meteosat satellite series. The presence or absence of tsetse was predicted with accuracies ranging
from 67%-100% (mean=82-3%). A further data-set, for the abundance of five tsetse species across the
northern part of Cote d’Ivoire (an area of about 140 000 km?), was analysed in the same way, and
fly-abundance categories predicted with accuracies of 30%-100% (mean=73-0%). The thermal data
appeared to be the most useful of the predictor variables, followed by vegetation and rainfall indices.
Refinements of the analytical technique and the problems of extending the predictions through space and
time are discussed. -

The sensitivity to climate of arthropods in
general, and insect vectors in particular, has
already been stressed in relation to the trans-
mission of vector-borne disease transmission.
Hay er al. (1996) explained how remote-
sensing, satellite platforms can provide data
that are suitable surrogates for the traditional
meteorological data that, in the past, have been
correlated with both vector abundance and
vector-mortality rates. They also explained the
steps in image processing that lead to a variety
of vegetation, thermal and rainfall indices, with
emphasis on those platforms such as the
National Oceanic and Atmospheric Adminis-
tration’s (NOAA), polar-orbiting meteoro-
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logical satellites and Meteosat satellites which
provide frequent coverages from which rela-
tively cloud-free views of the Earth’s surface,
or of cloud-top temperatures, can be produced.

Such multi-temporal data may be used
to give a realistic picture of average monthly
and annual values of vegetation and climate
and have recently been used to describe the
distributions of several species of tsetse fly:
Glossina morsitans Westwood in Zimbabwe
(Rogers and Williams, 1993); G. morsitans and
G. pallidipes Austen in Kenya and Tanzania
(Rogers and Randolph, 1993); and G. palpalss
palpalis (Robineau-Desvoidy), G. tachinoides
Westwood, G.  morsitans  submorsitans
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Newstead, G. /longipalpts Wiedemann and
G. fusca Walker in Togo (Rogers ez al., 1994).
These studies extended previous research in
which tsetse-fly mortality rates (Rogers and
Randolph, 1986, 1991), distribution (Gaschen,
1945), abundance (Fairbairn and Culwick,
1950) and infection rates (Ford and Leggate,
1961) and prevalence of human sleeping sick-
ness (Rogers and Williams, 1993) were related
to ground-based measures of climate based
on synoptic or contemporary meteorological
records.

The problems of processing large amounts
of satellite data have led to the development
of a variety of data-reduction methods. In
the case of multi-temporal data, principal-
components analysis of monthly, normalized
difference vegetation indices (NDVI), derived
from the advanced, very-high-resolution radi-
ometers {AVHRR) on board the NOAA series
of satellites, usually gives a first component
obviously correlated with the mean vegetation
index for the vear. The second and third
[ |||]||1('rr||.':'|[“- are relored 1o Nl'.lhl||'|.||||:\ X '|'L|"|[(_'|'| i
especially pronounved i the savannah reglons
ol Afna (Townshend and  Jusoiee, 1986,
Eastman and Fulk, 1993), An  alternative
approach o dara reduction, using temporal
that have

Fourier processing, mives results
anonal-  and

recently been related o
continental-scale, bhologeal processes [ Andres
L. 19 Ofsson and Exlundh, 1994 Rogers

;:i'a.}: ||__Jl._|r|.|

and  Willams, Verhoel e ol
When Fourier analvsis was applied to monthly
SOV data for Afnca, it was found that the
annual, bi-annual and tricannual cveles {called
‘compaonents’ in the analvsis) explioned a large

the annul NIV

Features of the Fourer analvsis of the

part ot the varabilioy o
senal
whole- Afrca DIV D were related both to eon-
[omcal patterns, such as the savannah reoons
ot Africa or the Geara irmgation scheme n
southern Sudan, and o ecologeal processes,
such as the seasonal growth of vegetation along
the River Nile (Rogers and Willums, [994)
[he present revies deseribes the application ol
these I\'n'hni~;llzk"i 1o the I,II..,"\.I_'FI'i"E.IIIII ufl rhe
distributton and abundance of eneht speaes ol
taerse in Cote d'Dvoire and Burkina Faso, West

Yirica

MATERIALS AND METHODS

Tsetse-fly Distributions

The distributions of tsetse in Cote d’Ivoire and
Burkina Faso were taken from maps published
by the Office de la Recherche Scientific
et Technique d’Outre-Mer (ORSTOM)
(Laveissiere and Challier, 1977, 1981). These
maps are compendia of information gathered
over the preceding decades and record species’
presence at a spatial resolution of 0-167°. The
original data sources do not give complete
spatial coverage, and the maps do not neces-
sarily record fly presence in areas where a
species was thought to be ubiquitous by the
compiling authors (e.g. G. palpalis in the
southern part of Céte d’Ivoire). Thus, whilst
records of fly presence on these maps are
historically accurate, records of absence are
occasionally misleading. The distributions
of eight species of tsetse were used in the
present analysis: G. morsitans submorsitans;
G. longipalpis: G. palpalis s.).. G. tachinoides;
Co. palficera Bhgot; O fusca; O msrafusca
Mewstead; and G medicorum Austen.
Iserse=Mly Abundance

The abundance of thes in the northern part ol
Cote d'lvoire was monitored by a joint Food
and Agriculture Organizaton/ German Tech
mcal Assisrance (FAQVGTE) project that ran
frome 1979 to 1980 and produced detailed maps
af 1y deserbunons ar scales of 100 000 OURY and
P=200) 0000 { Anom.. 1982
resolution of (F230°% are used i the
analvsis. Flies were sampled vsing Challier/
Laveissiere {Challier and
1973} placed i swirable habitars by che survey

Ihe dara ar g spanal
prescnt
traps Laverssiere,
teams and lett for shorr periods before collec

ton and remosal. Geven the very laree aren
sampled and the short sampling ume n each
habutar, these data are hkely o be affecred

by a number of confoundime effects su

sampling ervors, poor weather at the time ol
the mean
trapping

sty nds

fi-h

sampling and scasonalicy,

vilues (thes/rrap per noounal
session ) were analysed
Sumie of the the region

were inadeguarely sampled by the traps used in

spedics prescnt in

the survevs, and supplementary catches using
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hand nets  were "I.'I_\l'f'l.ll:'\_! -\.':';‘-.Ir.ll:"'. of the
maps. The coverage using this method was
relatively  poor, however, and  these resules

hive not been included in the present analvsis,
which 15 based entirely upon the trap catches
. palpales,

ol O morsprans, G fonpipaips,

wndes and G, fusca.

Satellite Data

NIV are derived from readings in channels
1 and (Chy and G, respectively) of
the AVHRR on board the NOAA
metcorological satellines, being caleulated as
(Chs = Chi [ Chy+Chy) '

Prince e af (1990} have described the ap
plication of NDV] data 1o a range of hiologmeal
problems and Hay & gl {19%) not only
descmbed their applicanon to arthropoed vec-

qeres ol

but also reviewed
alternative vegetation indices. 1982-90 ten-day
‘dekadal’ maximum-value-composite (MVC)
NDVI data (Holben, 1986) were obtained from
the Food and Agriculture Organization’s
(FAO) African Real Time Environmental
Monitoring using Meteorological Satellites
(ARTEMIS) program at 7-6 X 7-6 km resol-
ution. The registration of these images was
checked against a geo-referenced ‘master’
image, and corrections made where necessary.
This involved shifting images by 0-3 pixels
in an east—west or north—south direction, de-
pending on the scene. The raw imagery was
then corrected for satellite-sensor drift in
channel 1 using calibration coefficients derived
by Los (1993), and then maximum-value com-
posited by selecting the highest value of the
dekadal pixels for each site within each month,
to produce a set of monthly images for further
analvsis.

AVHRR-channel-4-brightness temperature
correlates with air temperature at the Earth’s
surface (Hav er al., 1996). Dekadal data
at 7-6 X 7-6 km spatial resolution from the
archives of the Global Inventory Monitoring
and Modelling Systems (GIMMS) group at
the NASA Goddard Space Flight Center were
maximum-value composited for the period
1987-1992. Monthly imagery was later pro-
duced, again by MVC, and used in the present
analvsis.

tors of discase specihcally

Cold-cloud-duration (CCLY) imagers was
obtained from the FAD-ARTEMIS I"r.ruh:m
as 3-vear, monthly means for the period 1958

1992, The CCD imagery has been correlated
with surface ramiall measurements as part of
the Tropical Applcatons in Meteorology of
Sateline and other data (TAMSAT) program
within the arca covered by the
survevs (Smders, 1991 )

present tserse

Dhigital-elevation-model (DEM) data were
obtammed from a 0083 -resolution  elevation
surface for Afnca, produced by the Global

Land Information Svstem (GLIS) of the
United  Stares  Geolomeal  Survey,  Earth
Resources  Ohbservation Svstems  (L/SGS,

EROS) data centre
resampled to a 706 »
to ensure compatibility with the other data

lavers

The ongmal hles were
7+h km resolution image

Satellite-data Processing and

Data Reduction

Multi-temporal satellite data produce multi-
variate data-sets for each unit area (pixel)
within an image. Each of the 12, monthly
MVC of each of the image types forms a single
axis in a multi-variate space defining the en-
vironment of the vector. Many of these axes
are strongly correlated with each other be-
cause, for example, a pixel with a high NDVI
in one month is likely to have a high NDVI in
other months. This indicates that data reduc-
tion (i.e. ordination) could be achieved, with-
out loss of information, by replacing the raw
imagery with some combined signal derived
from these highlv correlated values.

The simplest combination is obviously the
arithmetic mean, and seasonal variability may
be captured by the variance or standard devi-
ation of the mean. More complex ordination
techniques generally involve projecting the
data onto a rotated (usually orthogonal) set of
axes (called ‘principal components’) such that
the first new axis captures the largest pro-
portion of data variance, the second captures
the largest proportion of the remaining vari-
ance, and so on. Principal-components analysis
(PCA) retains the same number of axes as the
original data-set, but the sequential partition-
ing of the variance often means that many of
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the axes in principal -Compenent  spawe are
eflcctisels  redumdini bevause shes expliin
vnly 1 seny small proportion of the farunce in
the onpinal Jdata-set (Green, 1978) Projechion
of the uongpinal dati-set onte the phncpal
compinent dges ansolves applving & sories of
coctients or weights o the @w Jdats. effec-
cveby 1 achsene e devired agis routwa (the
weights are 1he cosives of the angles between
the grixinal and rotared co-oedimate aves). Dara
vabues in the oripmal co-ordinare svstom all
conrribute {via their werghred values) to cih
princpa-component - axis swore, Thus, Tor ex-
ample, & sencs of 12, monthly 1mages, from
January=December, mas be subpected 1o PCA
and esery month mould then vontribute w
wach of the |} resubting principal com penent
anes. B, bewever, anly the first few principal-
cormporient axes caplan thr great mapnty of
rhe vaemnee 0 he oryonal dats, onby these
nced be wsed i further anabvsis, PCA s
independent of the smle of the onginal 1wes
and it is generally aecesaany to standardize (or
translurm) The raw yariables v roughly similar
rarunces heipee wnulyws, or ¢lse 1o use 1he
verrelation matriy Tn the amuhads (Mlartion,
1974, This mabkes i Jiffcult to ertend the
results of PCA o saher tmes and places
becatrse prnoal -component-ais rotaiion is
uniguets determined by the orppnal set of
ohsenaiional dana fthe tranmg wt’).

An entiecly different approsch to the same
prohlem of data reduction was wggesied by
the btcrarure on lme-seres analysis {c g
Chatficld, 1980, The rime-scries 5, may be
descibwed b¥ 2 Fourker senes representioon
where

o8
rp=dy+ 8 [aco8(2mpl V)

ral

+& sind Imard N ayoarun {1}

.oy amd the pectheients o
define: as follows
L= F
dype = S 1 2N
L = AT rcostLaprd N0

b’ = Ecgmi2mard NN

Pnnd dlp 1T

)y

where p=1, . [{(%/2}— ||. The component
at g frequency ep=2zpd Y wn called the
piiv hartotw and, fer ol PRNSY these
harmonics mas be writicn in e eguisalen
furm

4 e0sint +Bysine, = R os{ind Hidn ) 13)

where B, is the amplicude of the pth rarmanic

e

and Ppos the phase of the prh hermodic
{Chatdield, 980 L
=rin -,, - ﬁF.-"'d'PJ.
The eflect of Foutior analysis 5 to partiiion the
variahility f 1the mve-scrwes into forthogsnal
and thus uncorrehsted) componcnts ac freguen-
cies of /N, dod Y wef; t, of petiods
equal o 3 WA A3 L 2N tmes the
duration of the ohsersations, . |F maonthl
oservations gre Uken, Fourier amalves can
partiturn  the  tme-series  Inb freguences
equivalent o periods mnpng fnom as lang
the whole rime-serics, Jown @ I monchs
(hicher freguencies, 1 o shorier period cveles,
cannot be distingurshed by monthly daa). 1ol
Fouricr analvsi esactly doscribes the oripnal
data wt [wncr the Fourkr series Tnoeqn (1}
conbiins & paramctens 1o desonbe N obser-
vations |, hut not all hattnotles may be con-
rributing equally to this desonption  The
fullewing relathonship, knanwn ws Parseval's
theorem, applies to the Fuurier representation
H
N:-
Tho,—# = N R/A4at . ()

e

Thus cquation s1tes that 3 quankin +ery suri-
lar to the samance of rhe orpraal gbservations
[the lefi-kand side of the equanon, but with
the divosor ¥ rather than £V — 1]] s she sum
of the rontrtbutess of gach ol the harmonies
{or values of g from | 0 /2, whete R,’.f 2is
the contributsan of the pth harmone

T combsration of the orthogonakiy of rhe
Termonivs sn the Fourier-series representabon
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of multi-temporal satellite data and the (per-
haps illusory) biologmcal transparency of the
interpretation of these harmonics makes this
approach o date reduction especially artractive
ter lologists (Rogers and Williams, 1994) In
it may be possible to reduce @ monthly
or dekadal data stream covening 10 or more
years to just seven vartables (the mean of the

effect,

whole senes and the amphrude and phases of
the first three Fourner components) without a
significant loss of information

For 1he presemt smudy, each of the XDV
channel-4-brightness-temperature and  COCL,
monthlv-image data-sets were subjected 10
temporal Fourier processing and the means,
amplitudes and phases of the annual, hi-annual
and tri-annual cveles caloulated. These van-
ables were mmage lavers for
anilvsis, ar the same spanal resolunon as the
original imagery. The combined (e annual
plus bi-annual plus tri-annval cvele) Fourer
descmpnon of the original signal was also
calculated  (a summation  that  essentialh
smooths the onginal data-set) [
mum, masimum and range were recorded for
use 10 the analvsis. In addinion, certain combi-
nations ol the Fourier-processed signals were
calculated, such as the ratio of NDVI to mean
values of channel-4-brightness remperarares,
which has been shown to
mdicator of vegetation tvpe than enther van
ahle alone (Lambin and Ehrlich, 1995, 199
4 full lisr of predictor vanables used in this
study s gven m Table 1,

Al satellite imagery was further processed
by selecting a block of 2 % 2 pixels positioned
at the centre of each gnd square on the
fly-distribution, and the mean values for each
square were used in further analyses.

stored a5 new

and 15

br a more stable

Data Analysis

The reduced-dimension data-set produced by
the methods outlined above form the set of
predictor variables for describing the species’
distributions and abundance. Of the methods
available, such as correspondence analysis (Ter
Braak, 1986; Hill, 1991), projection pursuit,
nearest neighbour and neural network analysis
(Williams et al., 1992), this review concentrates
on the use of various forms and modifications

of discrimimant analvsis; these are relanveh
casv o oapph and provide biological imsight
into the nature of the limits to the distribution
and abundance of vector speaes. The simple
proflem of describing the distmibunon ol s
vector 1s taken o illustrate the technigues

[n s simplese form, discriminant analyvsis
assumes 3 mulu-vanate normal distribunon of
the predictor variables and a common withm-
group co-variance of the vanables for all points
defiming vector presence and vector absence
The mean values of the predicior vanables in
sites of vector presence and absence, and the
within -Eroup -;.'tr-l':l;':i.lnt':.' malnx, are L'Hri“l:i“-'d
from representative samples from reliahle dis-
tribution maps (the “raimng sets’), Means of
mult-vanate distributions are referred to as
centronds and are defined by marthematical vec-
tors (x,,) where mis the number of dimensions
1.gr|.!.h||_~_~. The Mahalanobis distance, [,
ts the distance between two multi-variate dis
tnibution centroids, or between a sample poing
and a centrmd, and is a generalization of the
rraditional squared Euclidean distance, i

(e

L x, —x1=dd

D= (X —x  C0 (3 =% ) =d'C d (5)
where df; and Dy, are, respectively, the

Euclidean and Mahalanohis distances between
sroup 1 (e.g for vector absence) and group 2
for vector prescnoe), , with
the subscripts a#gain refermng 10 the rwo
groups (or, alternatively, 1 and 2 might refer
to a point and a centroid), and €, 15 e
inverse of the w1thm-groups co-variance
(= msperswn) marrx (reei, 1576). (in &g
(5), the subscript 7 for the number of variables
has been dropped for clarity.] Thus, the
Mahalanobis distance is the distance between
the sample centroids adjusted for their com-
mon co—variance In the case of the Euclidean
distance, d,z, the co-variances are zero, so that
the co-variance matrix C,, equals C, ™' or I,
the identity matrix (with values of 1 along the
diagonal and 0 elsewhere) This reduces
the equation for D%, to that for d},. If the

e das (x)— x4)
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TABLE |
Predictor variables used in the analyses of tsetse fly distributions in Cite d'[voire and Burkina Fasv, and their
observed maximum and minimum values in the traiming-set data

Abbreviation Name Maximum Minimum
ALTITUDE
Elev Elevation (m) 829-8 0
VEGETATION
NDmean Normalized difference vegetation index (NDVI) mean 0-492 - 0-082
NDpl NDVI phase 1 11-23 313
NDal NDVI amplitude 1 0-19 0-012
NDp2 NDVI phase 2 4-78% 16
NDa2 NDVI amplitude 2 0-083 0-009
NDp3 NDVI phase 3 3-925* 0-05
NDa3 NDVI amplitude 3 0-033 0-002
NDmax NDVI maximum 0-597 — 0061
NDmin NDVI minimam 0-4 - 0106
NDrange NDVI range 0-408 0-04
RAINFALL
CCDmean Cold-cloud duration (CCD) mean (h) 111 27
CCDpl CCD phase 1 69 2-65
CCDal CCD amplitude 1 (h) 66-75 23
CCDp2 CCD phase 2 42 0-5
CCDa2 CCD amplitude 2 (h) 72:25 2-75
CCDp3 CCD phase 3 3975 0-025
CCDa3 CCD amplitude 3 (h) 278 1
CCDmax CCD maximum (h) 2236 819
CCDmin CCD minimum (h) 52-2 - 30-61
CCDrange CCD range (h) 192-4 856
TEMPERATURE
CH4mean Thermal (AVHRR-channel-+) radiance mean (°C) 41 21
CH4pl Thermal phase 1 27 0-8
CH4al Thermal amplitude 1 (°C) 11-5 1-15
CH4p2 Thermal phase 2 52 1-025
CH4a2 Thermal amplitude 2 (°C) 38 0-125
CH4p3 Thermal phase 3 38 0-225
CH4a3 Thermal amplitude 3 (*C) 18 01
CH4max Thermal maximum (°C) 50-35 219
CH4min Thermal minimum (°C) 348 186
CH4range Thermal range (°C) 26:6 2:5
MIXED
NDp-Cdp NDVI phase-CCD phase 693 0-10
NDm/CDm 100 x NDVI mean/CCD mean 0-742 -0-130
NDm/CH4m 100 x NDVI mean/thermal mean 2-097 —0-369
NDpl-CH4pl  NDVI phase 1-thermal phase 1 10-025 2175
NDal/CH+al 100 x NDVI amplitude 1/thermal amplitude 1 3674 0-065

*Values are the timing of the maxima of the first of the bi-annual or tri-annual cycles.

+Negative values are possible in Fourier harmonics.
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problem is to predict only to which of the
groups of ‘presence’ or ‘absence’ a new point
belongs, it is simply necessary to calculate the
two values of D’ between the point and each of
the two centroids. The point is then assigned
to the group to which it is closest in multi-
variate space (i.e. the one which gives the
smallest D?). This assignment rule is obviously
an over-simplification since the values of D’
may differ by only a little, or by a very large
amount. There is always a probability, how-
ever slight, that the observation in fact belongs
to the group to which it was not assigned.
The ‘posterior probability’ replaces the
simple prediction of group membership by
calculating the probability with which any
observation belongs to each group as follows

2
¢~ D12
P(llr) =
S pe a2
and "
pae” 2"
PQx)=F5—5 (6)
el
agl ge

where P(l|x) is the posterior probability that
observation x belongs to group 1 and P(2.x)
the posterior probability that it belongs to
group 2 (Green, 1978). p, and p, are the prior
probabilities of belonging to the two groups,
defined as the probabilities with which any
observation might belong to either group,
given prior knowledge or experience of the
situation (often, when applied, based on the
training-set data). In the absence of any prior
experience, it is usual to assume equal prior
probability of belonging to any of the groups.
Where there are only two groups, for absence
and presence, p, and p, are both 0-5. Equation
(6) assumes that observation x must come from
either group 1 or group 2; the possibility it
belongs to neither is discounted. Once again,
the assumption in eqn (6) is of multi-variate
normality, the other terms of the multi-variate
normal equation cancelling out (Tatsuoka,
1971).

The above formulae apply only to those
situations in which a common co-variance
matrix can be assumed. In many cases of
distribution data, however, this does not apply
because animals do not live within a random
subset of environmental space, but within a
rather unusual subset, with specific environ-
mental conditions which cannot be described
by general environmental conditions. The re-
sult is that the co-variances of the variables
within a distributional range are often different
from those of the same variables outside the
distributional limits. This requires a modi-
fication of eqns (5) and (6), to allow for
different, within-group co-variance matrices.
Equation (6) is then modified as follows

2
7 Icll-llze—bllz
=72

P(l|x)= "
Z pglcal T12g7 Dy 2
g=1

and

2
C.|~1/2,-D2/2
P(2x) = zﬁzl 2| y

Z p,lcgl - 1/2(—D3/2
g=1

&)

where |C,i and |C,! are the determinants of
the co-variance matrices for groups g=1 and
£=2, respectively [the Mahalanobis distances
in eqn (7), calculated from eqn (5), are now
evaluated using the separate within-group
co-variance matrices] (Tatsuoka, 1971). With
unequal co-variance matrices, the discriminant
axis (strictly speaking a plane) that separates
the two groups in multi-variate space is no
longer linear.

It is relatively straightforward to extend
eqns (5) to (7) to situations in which more than
two groups (absence/presence) are encoun-
tered. The most obvious example is when
vector abundance data are ‘binned’ into more
than two groups, with each bin defining a
range of vector densities. Examples are given
here of binning the abundance data for the five
species of tsetse in northern Cote d’Ivoire into
three or five abundance classes, with approxi-
mately equal sample sizes (although using the
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rule that na sbundance level appeared o qure
rhah one chas},

A mure suhtle application of cyns {3) o {7}
15 ahen distribunional Jaw of & sngle species
are Jrawh from more thun onc dia seurcr,
cktemding scrms 4 wide grogryphic) Teon
i lere Meere muy be regdonul variiton i srcas of
et absener that o different co-saranee
mairices m differom areas. There may alwe
he ditterent wub-sponibe- or sryip-varaoion
responses of the yectors o envitenmencal con-
icooes 0 the different reghos, agin TEquinag
different co-vananct  matrices defming I
peoserur i the different s The statmseical
sgmifcance ol an¢ thifl:n:ms found muy be
tesred wsing Barrlenn's ¢ apjiensimanion {#) for
testiE go=varame muthis egualits EGreen,
[935), Jdehned as 1abows -

i
B={m=0n| 0, E {m, =16, 19}

EL

wheee m s the tral number of obenations of
all proups {m=my+m.+ . sg) aml 13 the
twfal number of groups {i.z. two in the sample
case of presences sbsence). H is ipproaitnately
Juntrihaied 25 2 wath :[1{; ~ Tha}n+1)]
degrees of frecdom. where « is the number
ol sanables cuntributing to the co-varmnce
pumces. €, amd € respectively reder 1o
the derermimants of the with-groups co-
vartanee mdiria of sl proups combined or of
cach groap, g, wparstely. . f prior, the best
approach to anulysing mulipic data-seis from
larye arcas 8 o heep them separare wmumally
and then 10 combine co-varisnce  matrices
appropristels onl; when they can be shown
ner b doffer sgpmbcandy. [n pracice, however,
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observed and predicted distributions for each
of the eight species present, and the accuracy
of each, using the 10 most important predictor
variables. Table 2 lists the predictor variables
in order of importance for each species and
lists the accuracy of predictions when one, five
or all 10 predictor variables were used. When
the three data-sets for each species (two from
Cote d’Ivoire and one from Burkina Faso)
were kept separate in the analysis, and when
variables were chosen during training on their
ability to distinguish presence and absence
within each countrv only (between-country
comparisons were confused by the large vari-
ation in some of the predictors across the full
geographical range), the accuracies of the final
maps increased considerably for some species
(e.g. G. morsitans, 83% correct; G. longipalpss,
91% correct; G. tachinoides, 85% correct)
but decreased for others (e.g. G. palpalis,
50% correct). This was possibly because, for
G. palpalis, areas of absence in one of the
samples were rather similar in satellite charac-
teristics to areas of presence in another. This
indicates a certain degree of adaptation of
the tsetse species to local conditions (the
geographical area covered includes the two
sub-species of G. palpals).

Figure 2 (a—) shows the observed and
predicted abundance classes of the five species
sampled in the north of Cote d’Ivoire and
Table 3 lists the predictor variables used and
the accuracy of the predictions. Given the
relatively small ranges of density in each class,
the results are surprisingly good. Table 4 lists
the mean values of the predictor variables
for the five density classes for each of the
three most widespread species, G. morsitans,
G. tachinoides and G. palpalis. In many cases
there is a gradual, monotonic increase or
decrease in the mean values of the predictor
variables across the density classes. Only very
slight differences between the predictor vari-
shles are found in areas of ahsence or presence

4t the different densines

DISCLUSSI0N

Advances in MUECTO-COMPULIng technology,

the increasing availabilicy of remotely-sensed,

satellite imagery and the development of novel
image-processing and analytical techniques all
contribute to an increasing ability to predict
the distribution and abundance of natural
resources and disease vectors using remotely-
sensed, satellite imagery. The success of the
approach described in this review is all the
more remarkable when the relatively poor
quality of the distribution data is remembered,
together with the long periods of time over
which they were recorded. The satellite data
were gathered during the 1980s, when particu-
larly severe droughts affected much of the
study area, resulting in rapid changes of the
distributional limits of some of the species
considered. Glossina tachinoides, for example,
extended its range south, and apparently
replaced G. palpalis over large areas of central
Cote d’Ivoire (Clair, 1987; DJR, unpubl. obs.).
Curiously, and perhaps significantly, when
each data-set is kept separate within the
analysis, the predicted area of suitability for
G. tachinoides shifts southwards into the same
central and southern regions of Cote d’Ivoire
that the species invaded in the 1980s. These fly
advances may be facilitated by only slight
changes in the average environmental con-
ditions in the newly invaded areas. For
example, the present analysis indicates that the
difference between the mean NDVI in sites of
presence or absence of G. tachinoides varies
between — 0-08 and +0-04 (in Cote d’Ivoire
and Burkina Faso, respectively), each a
small fraction of the total range shown by
this variable across these two countries (0-53;
Table 1). As some areas become more suitable
for flies, however, other areas become less
suitable, so that the distributional limits shift
slowly with time. The expansion and subse-
quent contraction of tsetse-fly distributions
have been previously recorded, but global
environmental change will bring about perma-
nent range shifts in addition to these relatively
chort—term variations.

\s more predicror variables are added into
the analvsis, the predictions rend to become
more dccurate (Table 21 and more well-
defined. so rthat with 10 predictor variables
the analyvsis identihies areas of suitabality with
either relatively  high or relatively  low



TABLE 2
The 10 most important predictor variables used to describe the distribution of tsetse in Céte d’lvoire and Burkina Faso, and the accuracy of predictions when using
one, five or 10 variables*

ANK

Species af mmetse fiy
i £y i |:..l-rj| . ?-jlwf“rfll‘:.ﬁ'lﬂl_\ Co. patdinlrs (s tackenodes O paflicera (s fhrea ;. migrafusca e, medfer v
1 CHé4range CCDp2 NDmax CHé4range CH4mean CH4min CH4mean CCDp2
2 CCDmin NDmax CH4a2 NDm/CH4m  NDrange CH4mean CH4p3 CH4al
3 NDp-CDp CH4al CH4al CH4p2 CHdrange NDrange NDrange NDmin
4 NDa2 NDpl CH4mean NDmean CCDa2 CHé4p2 NDal/CH4al NDal/CH4al
5 NDal/CH4al NDal CH4min CH4mean CCDp2 CH4p3 CH4p2 CCDmax
6 CCDa2 CCDmean  NDm/CH4m CH4a2 CCDal CCDp2 CH4al CCDmean
7 NDa3 CCDal CH4a3 NDa2 CCDpl CH4a3 NDal NDal
8 NDmean NDp3 CCDp2 Elev CCDmax CCDal CCDpl NDmax
9 CH4a2 CH4mean CCDa3 CH4al NDp2 CCDmean CCDmin NDpl
10 NDm/CH4m CH4a3 CH4p2 CCDmin NDa3 NDm/CCDm  CCDrange CH4range
Number of variables used
1 5540 =1 s 19 1 S 101 [ I [/ ey S 10 s 10 1 5 1w 1 5 10
\CCURACY
Correct (%) 64 65 67 59 67 71 8 8 8 66 70 74 88 83 88 52 77 79 88 8 92 32 64 0O

False positive (%) 31 31 29 4 33 28 7 [ 4 30 28 24 12 17 11 47 22 21 12 1 8 68 36 0
False negative (%) 5 4 4 1 1 1 6 6 8 4 2 2 1 0 0 1 1 0 0 0 0 0 0 0
Sensitivity 089 091 09 09 097 098 093 0:93 090 0-90 095 095 093 096 096 095 093 097 093 098 10 091 10 09

Specificity 045 046 04 04 059 064 059 064 074 053 0:56 063 0-87 0-82 0-88 047 075 0-77 088 0-89 091 032 064 10

*See Table 1 for an explanation of the abbreviations.
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FABLE 3
The 16 mosi smporiani predicior varabies used 10 descrive the apparent density of tsetse (fhes/trap.day) m
A + - . . -
northern Céte d'lvoire, and the accuracy of the predictions of the abundance classes (five Jor all species except
QG. fusca)*

Species of tsetse fly

G. morsitans

G. longipalpis G. tachinovdes G. fusca
RANK
1 NDp-CDp CCDa2 CH4p3 NDm/CH4m CCDa2
2 NDm/CCDm CCDal CH4a2 Elev CH4a2
3 CH4al NDp-CDp NDmax CH4a2 NDpl
4 CCDp2 CH4a2 CCDa3 NDp2 CH4al
CH4p2 CCDp2 CH4min CCDmin Elev
CH4range NDal/CH4al CH4max NDm/CCDm CCDp2
NDa2 CH4min CCDpl CCDrange CCDmin
8 CCDmax CCDa3 CCDal NDrange CCDrange
9 CCDa2 CH4mean CH4p2 NDa3 NDp1-CH4pl
10 NDp2 CCDp3 NDa3 CHé4range NDmax
Density and [accuracy of prediction (%)]
0-00-0-00 (58) 0-00-0-00 (81)  0-00-0-38 (78)  0-00-0-00 (65)  0-00—0-00 (98)
0-01-0-01 (100)  0-01-0-02 (80)  0-39-0-85 (50)  0-01-0-02 (78)  0-01-0-01 (100)
0-02-0-07 (72) 0-03-0-08 (76)  0-86-1-49 (30)  0-03-0-09 (78)  0-02-0-13 (100)
0-08-0-50 (51) 0-09-0-20 (94)  1-53-2-53 (59)  0-10-0-30 (62)
0-51-122 (63) 0-25-2-62 (83)  2-57-7-45 (58)  0-31-8-33 (65)

*See Table 1 for an explanation of the abbreviations.

probability; and intermediate probabilities (i.e.
within the range 0-35-0-65) are very scarce
(Fig. 1). With the exception of G. palpalis, the
percentage of false positives (i.e. false predic-
tions of presence) always oumumbers the
percentage of false negatives (false predictions
of absence), often considerably (Table 2 and
Fig. 1). The former indicate areas of apparent
suitability for flies that are not occupied by
them, or in which flies were not recorded
by the surveys. This is a feature of many
distribution maps (i.e. species do not always
occupy all areas that are suitable for them, or
are not always found, even when they occur
there). False-negative predictions, however,
indicate a more serious situation where the
technique, for one reason or another, has failed
to define the full range of conditions in which
the flies can survive. The percentage of false
negatives is highest (8%) for G. palpals, the
most widespread species, and the errors arise

because the analysis fails to identify its re-
corded northern limits in Burkina Faso [Fig.
1(c)]. The same environmental changes that
caused a southward extension of G. tachinoides
may, however, ~have caused a retreat of G.
palpalis (a species adapted to moister con-
ditions) from the northern part of its range,
thus explaining the high error rate.

Whilst the ability to describe the training-
set data is the first criterion for a successful
statistical description of a species distribution,
the technique is only of real use when it can be
used to describe distributions in other places,
and at other times. The maps presented in
Fig. 1 show predicted distributions of the
study species in Ghana and Togo. The predic-
tions for Togo show both similarities and
differences with the recently mapped tsetse
distributions in this country (Rogers et al.,
1994; Hendrickx et al., 1995). Predictions for
G. palpalis and G. tachinoides are rather better



TABLE 4
Mean values of the predictor variables for each of the apparent density classes of G. morsitans, G. palpalis and G. tachinoides in northern Céte d'lvoire®

Predictor variable

8T

G. morsituns

NDp-CDp  NDm/CCDm CH4al  CCDp2 CH4p2 CHdrange NDa2  CCDmax CCDa2  NDp2  Sample

DENSITY

0-00-0-00 1-97 0-56 7-69 329 1-95 1571 0-04 13625 32:32 3:57 65

0-01-0-01 1-88 0-57 810 3:32 1-96 16-42 0-04 127-43 28-49 3-50 17

0-02-0-07 1-53 0-55 8-32 3-34 2-00 16-9 0-04 13249 2713 343 39

0-08-0-50 1-38 0-55 8-44 315 2:03 17-29 0-04 133-15 2677 349 41

0-51-12-18 1-4 0-53 8-81 309 1-96 17-89 0-04 13543 27-80 351 43
G. palpalis

CH4p3 CH4u2 NDmax CCDmean CH4min CHémax CCDpl CCDal  CH4p2  NDa3  Sample

DENSITY

0-00-0-38 1-16 1-38 0-47 12-98 21-00 3823 5-30 42-09 1-92 0-01 41

0-39-0-85 1-23 1-42 0-48 13-96 2093 3779 533 41-62 1-93 0-01 42

0-86--1-49 1-40 148 0-49 15-01 2122 3808 542 42-75 2:01 0-01 43

1-53-2-53 1-55 171 0-51 13:37 20-59 3698 5-62 44-77 1-95 0-01 41

2:57-7-45 1-74 1-63 0-50 14-39 21-31 3779 5-64 46-62 2-06 0-01 45
G. tachinoides

NDm/CH4m Elev CH¢4a2 NDp2  CCDmin  NDm/CCDm CCDrange NDrange NDa3 CH4range Sample

DENSITY

0-00-0-00 1-34 3435 1-62 3-66 9-79 0-55 129-1 0-29 0-01 1592 110

0-01-0-02 1-19 3578 1-42 344 4-80 0-56 123-2 0-28 0-01 1698 27

0-03-0-09 1-15 3328 1-44 331 7-05 0-55 1220 0-30 0-01 17-49 23

0-10-0-30 1-08 3140 1-41 328 2:47 0-54 1256 0-29 0-01 18-27 26

0-31-8-53 1-11 3042 1-38 3-34 531 0-54 1231 0-29 0-01 18-25 23

*Gee T'able 1 for an explanation of the abbreviations.
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than those for G. morsitans and G. longipalpss,
although there has also been a southward
extension of G. tachinoides in Togo that i1s not
predicted by the present analysis, and does not
appear on previous maps for tsetse in Togo
(Ford and Katondo, 1977). Clearly, therefore,
the distribution of tsetse in Togo, and presum-
ably elsewhere, has changed from the historical
picture that forms the basis of much of the
present analysis and, in the light of recent
environmental changes in Africa, it is unlikely
that non-contemporary satellite data will give
an entirely satisfactory fit. The ideal approach
to tsetse mapping is therefore to use contem-
porary satellite and fly-distribution data to
define the areas of suitability for each tsetse
species and, from this, to make predictions for
other places and times.

A further complication arises from the ad-
aptation of each species to local conditions,
about which very little is known at present.
Species such as G. morsitans, and even its
subspecies, occupy vast areas of Africa (e.g.
greater than 40° of longitude for G. m. submor-
sitans) and almost certainly show biological
variation across such distances. Behavioural
and ecological differences within G. pallidipes,
a widespread species in East and southern
Africa, have -already been shown (Rogers,
1990; Baylis and Nambiro, 1993). These effects
mean that the characterization of a species’
habitat in one area may not easily be extended
to other, remote areas. Given contemporary
satellite and distributional data, however, the
approach suggested may be used to estimate
the degree of difference in habitat types across
wide geographical areas. Whilst satellite data
may not immediately explain within-species
differences across large geographical areas,
they may, in the first instance, illuminate such
differences and hence lead to a better biological
understanding of them.

Of the three main satellite data types used in
the present analysis (NDVI, AVHRR-channel-
4-brightness temperature and CCD imagery),
the thermal channel data appear most fre-
quently in the predictor variables for fly distri-
bution. On 19 occasions, one or other thermal
variable is in the top five predictor variables for
the eight species of tsetse considered, whilst

NDVI and CCD variables appear 10 and six
times, respectively (some combination of these
variables making up the remainder). Consider-
ing only those species for which the abundance
data are also available, the figures become 14
for thermal, six for NDVI and two for CCD
data. Thermalchannel data also predominate
in describing the abundance data, but less so
than for the distribution data (with nine, three
and seven occurrences for the thermal, NDVI
and CCD data, respectively). The low import-
ance of the CCD imagery in determining
distribution and its relatively greater import-
ance in predicting abundance indicates that
fly distribution limits in this part of Africa
may be more sensitive to temperature, whilst
abundance within the distributional limits is
some function of rainfall, which determines
vegetation growth.

CONCLUSIONS

It is clear that remotely-sensed satellite
imagery can be a powerful tool in our ability
to investigate large-area phenomena such as
the distribution and abundance of the insect
vectors of disease. The application of temporal
Fourier processing to multi-temporal, meteor-
ological, satellite imagery allows characteriz-
ation of habitat ‘fingerprints’ in the form of
means and the seasonal timing and seasonal
extremes of values of temperature, rainfall
and vegetation surrogates. Insect-vector distri-
butions clearly depend on habitat types and so
should be amenable to statistical descriptions
based on such habitat fingerprinting. In future,
satellites giving data with higher spatial and
spectral resolution will provide a much more
fine-grained view of natural habitats (Hay
et al., 1996) and it is timely to prepare now for
the wealth of new data these satellites will
provide.

A statistical description of a tsetse-fly habi-
tat or distribution is, however, no substitute
for a full, biologically based understanding of
the same phenomenon. Such an understanding
comes from a study of the underlying demo-
graphic processes but, as explained elsewhere
(Rogers and Randolph, 1993; Randolph, 1994),
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the information on such processes is often
lacking, leaving the statistical approach as the
only one available at present. The long-term
aim of the present work is to produce risk
maps for tsetse-borne diseases based on a
sound biological understanding of epidemio-
logical processes. Satellite imagery provides a
way of revealing the patterns in epidemiologi-
cal processes from which such an understand-
ing will eventually arise.
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