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SUMMARY

After an introduction outlining the differences between the biological and
statistical approaches to understanding the distribution and abundance
of organisms, this chapter gives two examples of dimension-reducing
statistical techniques whereby large amounts of environmental data can
be processed and sifted to extract useful correlates of the distributional
ranges of animal species. These techniques are illustrated using the tsetse
fly, Glossina morsitans, as an example.

The first technique is that of linear discriminant analysis which predicts
the past and present distribution of G. morsitans in Zimbabwe, Kenya
and Tanzania with an accuracy of >80%. Conclusions from the statistical
analysis coincide with previous biological interpretations of the dis-
tribution of this species in Africa. The message to emerge from the
analysis is that Global Circulation Models (GCMs) will need to achieve
a greater degree of accuracy than at present if they are to be useful
in making predictions about changing vector distributions with global
climate change.

The second technique is temporal Fourier analysis of a series of
Normalized Difference Vegetation Indices (NDVIs) of Africa derived
frOItl the Advanced Very High Resolution Radiometers (A VHRR)
of Earth-orbiting meteorological satellites of the National Oceanic and

Atmospheric Administration (NOAA) series. The analysis captures the
important characteristics (i.e. the average, amplitude and phase) of the
major annual and biannual cycles of vegetation growth. Examples are
given of features (the Gezira irrigation project in Sudan) and processes
(the timing of the peak vegetation growth along the Nile from Uganda to
the Mediterranean) which are revealed clearly by Fourier analysis. A
strong association is demonstrated between the amplitude of the first
term of the Fourier expansion (= the amplitude of the annual cycle of
vegetation growth) and savannah woodland areas of Africa, and a similar
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close association is shown between the same features of the analysis and

the areas infested with the tsetse G. morsitans.
Both discriminant analysis and Fourier analysis achieve dimension-

reduction without the obfuscation of the underlying biological processes
that is often associated with statistical processing of biological data (e.g.
as with principal components analysis). Finer resolution of biologically
important features may be possible in both space and time using satellite

sensor information at a finer spatial resolution.

INTRODUCTION
The distribution and abundance of organisms can be studied in two ways.
The first involves a biological approach, in which demographic rates are
measured and related to obvious biotic and abiotic factors that might
determine or influ~nce them. The aim is to construct models based on the
biology of the organism that describe changes in the population over
time, and these models can be used to investigate the impact of proposed
interventions on population size. While this approach is sound, it requires
data for several generations of the study species before any sensible
analysis of species' dynamics can be carried out. Resources are often
limited and, as a result, such studies cover restricted areas. If the resulting
biological models are applied to much larger areas, it must then be
assumed that the relationships of the organisms to their abiotic and biotic
environments are the same throughout their range, an assumption that is

rarely tested and seldom justified.The second approach to studying the distribution and abundance of
organisms is based on a statistical analysis of the relationship between
population data (presence or absence of a species, or records of its
abundance) and environmental factors that are often measured for other
purposes. These factors are generally abiotic (meteorological variables)
or environmental (vegetation), and rarely include any measure of the
distribution and abundance of natural enemies, parasites or predators.
The statistical approach requires extensive data sets that encompass a
wide range of environmental conditions, some suitable and some unsuit-
able for the study species. In the analysis one tries to define a set of
statistically sound rules for predicting the presence or absence of species
and their spatial abundance. Problems with the statistical approach often
hinge upon the non-linear response of the predicted variable to the set of
predictors (Ter Braak & Prentice 1988; Hill 1991). More sophisticated
mathematical techniques can be used to overcome these problems, but

are generally very difficult to interpret biologically.
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Whilst the biological approach can investigate experimentally the links
between demographic variables and the species' environment, the statisti-
cal approach relies on correlations only. Nevertheless, in an ideal world,
the two approaches should lead to the same conclusions and should
identify the same limiting factors. Though past attempts to unite these
two approaches have had limited success, there are several reasons to be
optimistic about the future. First, the increased interest in global change
has highlighted the biologists' lack of knowledge of the critical deter-
minants of the distribution and abundance of many key species (either
those threatened with extinction, or those, such as pests or vectors, whose

increasing ranges might increase the spread of crop failures or diseases).
Second, an increasing number of ground-based environmental data sets
that can be used for statistical analyses are becoming available. Third,
there is now a substantial archive of satellite sensor data, a major ad-
vantage of whi~h is its extensive and uniform coverage of large areas
of the tropics where other, ground-based information is often patchily
or erratically recorded. Finally, the development of Geographical Infor-
mation Systems provides a means of storing and processing spatial data in
ways hitherto unavailable to the general biological community.

Unfortunately many of these opportunities come with costs, in par-
ticular those of storing the large amounts of data collected, and of detect-
ing important patterns within the data sets, the latter becoming more
difficult as the volume of data increases. The risk is that we will soon be
overwhelmed with data which, in their raw, unprocessed form, are worth-
less. The immediate need, therefore, is to develop analytical techniques
that can be used as a filter to find the useful information in the available
data sets and to present them in a way that makes biological sense. What
we require is mathematical simplification without biological corruption.
In this chapter we describe two techniques for extracting significant iufor-
mation from large data sets by finding a small number of linear com-
binations of the original variables that contain most of the relevant
information. Such 'dimension reduction' is used to extract biologically
useful information from environmental and satellite data sets relevant to
tsetse flies, Glossina spp., in Africa.

BIOLOGICAL BACKGROUND

There are 22 species of tsetse, a genus currently restricted to Africa. Both
sexes of all species live only on vertebrate blood. Three ecological groups
of flies are recognized; the forest-dwelling fusca group, the forest and
riverine palpalis group, and the savannah morsitans group. The life cycle
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of the fly is relatively straightforward. Approximately every 9 or 10 days
mature female flies produce fully grown larvae viviparously and these
burrow into the soil and pupate within a few minutes of larviposition.
Three or more weeks later the teneral adults emerge from the soil and the
life cycle continues (Buxton 1955).

The diseases transmitted by tsetse are caused by trypanosomes, flagel-
late Protozoa in the genera Trypanosoma, Nannomonas and Duttonefla
(Hoare 1972). The host-range of most trypanosome species is quite wide
(Molyneux & Ashford 1983). Species in all three trypanosome groups
infect domestic animals, with variable consequences for the hosts, but
only two subspecies of T. brucei, T.b. gambiense and T.b. rhodesiense,
affect humans, causing the generally endemic and milder West African
('Gambian') and the generally epidemic and more acute East African
('Rhodesian') slf'cping sickness respectively. Animal trypanosomiasis is
more widespread than human trypanosomiasis in Africa and, because
most large vertebrates (including man) are more abundant in the savannah
areas of Africa than elsewhere, the morsitans and palpalis groups of flies
are of greater economic importance than is the fusca group.

ANAL YSING THE DISTRIBUTION OF TSETSE

Tsetse survival in the laboratory is related to the humidity and temperature
at which the flies are kept (Buxton & Lewis 1934) and fly mortality rates
in the field are correlated with saturation deficit and temperature (Rogers
& Randolph 1985). The biological studies leading to these conclusions
unfortunately have not been carried out over large areas so that the
predictions of the pan-African distributional range of tsetse arising from
them (Rogers 1979; Rogers & Randolph 1986) must be treated with
caution. Arising from such studies are data sets for fly mortality rates (or
correlates of these rates, such as the physical size of flies) and relative
population estimates in both space and time and these data sets have
recently been correlated with satellite data derived from the National
Oceanic and Atmospheric Administration (NOAA) series of meteoro-
logical satellites (Rogers & Randolph 1991). The NOAA data were
processed to give Normalized Difference Vegetation Indices (NDVIs),
calculated from two of the five channels of the satellite's Advanced Very
High Resolution Radiometer (A VHRR),

NDVI = (Ch2 -Chl)/(Ch2 + ChI),

where ChI = A VHRR Channel I reading (= radiance at 58o-680nm
wavelength, visible red) and Ch2 = A VHRR Channel 2 reading (=
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provide further data layers for the analysis. Of the techniques tested we
have found that linear discriminant analysis, whilst not the most accurate
(Gareth Staton, personal communication), provides considerably more
biological insight than many of the alternatives. The theory of this tech-
nique is shown diagramatically in Fig. 11.1. Using discriminant analysis a
new observation is assigned to one of several categories that have pre-
viously been characterized in terms of means, variances and co-variances
of a number of predictor variables which previous experience suggests
may be important in discriminating between the categories. In the ex-
amples in the literature (e.g. Marriott 1974) the categories are classes
such as species or species' groups and the discriminating variables are
measurements of different parts of the organisms concerned. In the
present case there are only two categories, presence and absence of tsetse
(there are very few extensive data sets containing information on fly
abundance), and the predictors are environmental variables such as
temperature, rainfall, etc. Each category is characterized by a group
mean in the n-dimensional space of the predictor variables and the way in
which the sample points cluster around this group mean is described by
the covariance matrix of the predictor variables. Given a new point in the
n-dimensional space, it is possible to determine the probability with which
it belongs to each group. This is analagous to the univariate case where
both the difference from the group mean and the standard deviation
around the group mean are used to determine in which percentile an ob-
servation lies. In the multivariate case co-variances between the predictor
variables are also important in determining category characteristics and
therefore assignment rules, since an observation may be well within the
cluster of points around one group mean, but physically closer (in n-
dimensional space) to another group mean.

One of th~ a!.sumptions of discriminant analysis is that tnt: valiances
and co-variances of the predictor variables are the same around each of
the group means (as in Fig. 11.la). Observations from all groups are
combined to estimate the within-group co-variance matrix of the pre-
dictor variables, and this is used to determine the probability that an
unclassified/new point belongs to each group in turn (Green 1978). There
are reasons to believe that this assumption may not be strictly valid for
distributional data (since species presumably select, or are selected by, a
rather well-defined and non-random subset of environmental conditions),
but discriminant analysis is relatively robust to violations of the initial as-
sumptions (Marriott 1974). Alternatively assignment can be made on the
basis of the co-variance matrix of each category separately (Tatsuoka

1971).
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The output of discriminant analysis for a single observation is a set of
simple probabilities of belonging to each group in turn, and all probabilities
within the set sum to 1.0 (i.e. it is assumed that the observation is drawn
from the populations that gave the co-variance matrix or matrices used to
make the prediction). Probabilities of presence are worked out for each
site in turn (i.e. each cell within the geographical data base), using that
site's set of predictor variables, and a map of the result is produced.
(Two-group discrimination can be treated as a linear regression between
the distributional data, coded 0 for absence and I for presence, using
the same set of predictor variables. The resulting predictions of group
membership are identical.)

In the present examples, the within-group co-variance matrix was
calculated for a subsample of points (a 'training set') chosen randomly
from the observed data set. Whilst a record of fly presence is indisputable
evidence of the (at least temporary) suitability of that site for tsetse, a
record of fly absence may arise because of the genuine unsuitability of
that site, or because the site has not been surveyed. These unsurveyed
sites, if they contain tsetse, will incorrectly contribute to the group of
'tsetse absence' and there will be a tendency to underestimate areas of fly
presence. If possible, therefore, only sites known to have been surveyed
should be included in the training set. In the absence of good 'tsetse
absence' data we might resort to determining the tsetse's environmental
envelope using packages such as BIOCLIM (Nix 1986).

Table I; I. I and Fig. I 1.2 show the results of applying linear dis-
criminant analysis to the distribution of the tsetse Glossina morsitans in
Zimbabwe, Kenya and Tanzania. Table 11.1 includes the rank order of
the variables as judged by the Mahalanobis distances (Marriott 1974), and
determined in a step-wise fashion by first choosing the single variable that
gave the greatest separation in multivariate space between sites of tsetse
presence and absence (i.e. the highest squared Mahalanobis distance)
then selecting a second variable, using the same criterion, to add to the
first, and so on. The map of fly distribution in Kenya and Tanzania was
compiled by Ford and Katondo (1977), but that for Zimbabwe is based
on records prior to game elimination by European colonizers, the
rinderpest panzootic at the end of the last century, and the activities of
the Tsetse Control Division of the Department of Veterinary Services,
Zimbabwe, in the present century, each of which has contributed to the
eradication of flies from areas they previously inhabited (Ford 1971).

Several conclusions can be drawn from these analyses (Rogers &
Randolph 1993). First the averages of the key predictor variables may
differ by rather small amounts between areas of fly presence and absence.

~~~
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FIG. 11.2. Predicted distributions of G. morsitans in (a) Zimbabwe and (b) Kenya and
Tanzania based on linear discriminant analysis using a subset of the observed distributions
(also shown). The fly map for Zimbabwe (from Ford 1971) pre-dates a rinderpest panzootic
that killed many vertebrate hosts of tsetse at the end of the last century, after which flies
disappeared permanently from much of their previous range. The fly map for Kenya and
Tanzania is the current distribution for this species, from Ford & Katondo (19m.
Predicted distributions are on the probability scale shown in the figure. From Rogers &
Williams (1993). (a) is drawn in the Plate CarTee projection and (b) in the Hammer-Aitoff
projection (Snyder 1987).

~
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FIG. 11.2. Continued.

For example the average difference between Txmm, the maximum of the
mean monthly temperature (the most important predictor), in areas of fly
presence and absence in Zimbabwe is about 3°C whilst for the four key
temperature variables for the same species in Kenya and Tanzania it is
less than O.4°C (details in Table I I. I). Making any predictions of changing
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vector distributions under different scenarios of global change will there-
fore require a degree of accuracy of Global Circulation Models (GCMs)
that few presently possess. Second, the analysis suggests that the major
limiting variable for a species may change from place to place (for tsetse
it is temperature in Zimbabwe but Vegetation Index in Kenya and
Tanzania). It may be important, therefore, to carry out separate analyses
for different parts of a species' range to check for changes in the order of
importance of the variables included in the analysis. Third, at the very
edge of the range of tsetse, as in the case of Zimbabwe which is near the
southern continental limits of tsetse in Africa, a single predictor variable
may be sufficient to describe fly distribution, whilst throughout the con-
tinental range of flies several variables may play an important role. In
Zimbabwe, adding all the other variables to Txmm improves the fit from
82% to only 850;0 correct. In Kenya and Tanzania adding temperature
and elevation to NDmax (the maximum NDVI, the most important
predictor for these two countries) improves the overall fit from 690;0
correct to 84% correct. It is likely that different variables are relatively
more important in different areas of these two countries. Fourth, the
rather small proportion of false negatives, an incorrect prediction of
absence, to false positive results, an incorrect prediction of presence,
suggests that whilst the analysis has correctly identified the major en-
vironmental constraints, the present tsetse distribution maps may under-
estimate the actual distribution of vectors. (However, the smaller
proportion of false negatives to positives may arise from the fact that a
smaller proportion of Kenya and Tanzania is inhabited by the flies rather
than uninhabited by them.) False positive areas should be targeted by
survey services since they may reveal the presence of vectors at low
density. At the very least they represent 'ecological corridors' along
which tsetse could move into new areas. Fifth, the statistical procedure
of linear discriminant analysis and the potential biological significance of
the results are transparent to the user in ways that 'black-box' techniques
for analysingvector distributions are not. Some of these other techniques
involve fitting a large number of arbitrary parameters. The final values of
the parameters are chosen to give the best fit, but they may not, in the
end, give a significantly better fit to vector distributions than does linear
discriminant analysis (Rogers & Randolph 1993).

In this initial analysis those variables that are most useful in making
statistical predictions about the distribution of tsetse also make biological
sense. It has long been known that Zimbabwe represents the cold-
temperature limits of tsetse, and fly distribution limits very often follow
elevation contours. However, many of the temperature variables are

:~
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highly correlated with each other, and the one that appears most im-
portant may be acting as a surrogate for another temperature variable. In
Zimbabwe, for example, both Txmm and Tnmm, the maximum and
minimum of the mean monthly temperature respectively, are higher in
tsetse than in non-tsetse areas; Tnmm is less variable than Txmm and so
statistically may be a slightly less accurate predictor.

Future developments of this technique will be used to compare linear
discriminant analysis with non-linear approaches to predicting tsetse dis-
tributions, treading a delicate line between statistical accuracy and bio-
logical realism. What we wish to avoid is a statistically perfect prediction
of a fly distribution map that we know is inaccurate. Applied carefully,
these new techniques should continue to throw light on the environmental
conditions on which tsetse depend.

SATELLITE SENSOR IMAGERY
AND VEGETATION CLASSIFICATION

NDVIs provided several of the data layers used in the discriminant
analysis o.f tsetse (maximum, minimum, average and range of NDVIs for
each site), and are clearly of at least regional importance. In the past the
information content of temporal sequences of NDVIs has been extracted
using techniques such as principal component analysis (Tucker et af.
1985; Townshend & Justice 1986). As in other uses of this approach (e.g.
Jeffers 1978) it is quite difficult to interpret biologically the principal
axes obtained. The first principal axis contains more than 80% of the
information in the 12 monthly NDVIs for an average year (D.J. Rogers,
unpublished) and is strongly correlated with the annual average NDVI,
whilst the second axis appears to be related to seasonal changes in the
vegetation index (Tucker et af. 1985). In an attempt to extract biologically
useful information from sequences of NDVIs, temporal Fourier analysis
(Chatfield 1980) was performed on the 36 monthly images for the years
1987-89 (spatial Fourier analysis is often used in image processing pack-
ages to filter out periodic noise in the images arising from faults in the
satellite sensors (Cracknell & Hayes 1991), but has previously been used,
as here, for temporal analysis of NDVIs by Menenti et af. 1991).
Fourier analysis describes the seasonal NDVI as the sum of sinusoidal
components with frequencies of one to six cycles per year. The first term
in the Fourier expansion (hereafter the 'first component') gives the best
fit of a sinusoidal wave to the annual cycle of vegetation growth, the
second term (the 'second component') gives the biannual cycle, and so
on. The analysis gives both the phase and the amplitude of each term,

~~
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FIG. 11.3. An example of temporal Fourier analysis of the Normalized Difference
Vegetation Index from a site in southern Sudan, east of Jongiei on the White Nile (3I.6°E,
7°N), for the years 1987-89. The upper graph shows the observed NDVI (thin line) and the
fitted Fourier curve, the sum of the first three terms ('components') of the Fourier
expansion (thick line). Details of these components are shown in the lower graph. The first
component (the solid line), with a frequency of one cycle per year, has a much larger
amplitude than the second (dashed line) or third (dotted line), with frequencies of two and
three cycles per year respectively, and so makes a major contribution to the overall fit (all
three components are drawn around the mean NDVI). Thin vertical lines indicate the phase
(= timing) of the first peak of each of the Fourier components.
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PLATE 11.1. Fourier analysis of monthly NDVIs for the whole of Africa for the period
1987-89 inclusive. Analysis is based on the 36 monthly images, each the average of three,
IO-day images produced by selecting for each pixel the maximum NDVI during the period
(= maximum value compositing), to eliminate clouds. The average NDVI is put in the red
gun of the computer screen, the phase of the first Fourier component in the green gun and
the amplitude of this component in the blue gun. Values in each gun of the colour image
were then stretched across the full range of intensities within the image processing system.
International boundaries are also shown (Hammer- Aitoff projection).

PLATE 11.2. Close-up of part of Plate 11.1 showing the Gezira irrigation project area
between the White and Blue Niles, just south of Khartoum. Different parts of the irrigation
project are labelled (the green parallelogram marks the limits of the map. Scale: Managil to
Kosti is c. 130km) (from RIM 1987).
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(a)

(hI

PLATE 11.3. Enlargement of part of Plate 11.1 showing (a) the Upper and (b) the Lower Nile
basin. Courses of the White and Blue Niles and the months of peak NDVI along the river,
probably associated with the seasonal growth of vegetation associated with seasonal river
flow, are shown. The long time interval between peak growth at the point of entry into Lake
Nasser and peak growth just down river of the Lake is presumably determined by the
irrigation schedule of the Aswan dam (scale: Cairo to Khartoum is c. 1600 km).
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PLATE 11..4.. (a) Results of an aerial survey of woodland in Nigeria carried out by the
Environmental Resource Group Oxford in 1991 (RIM 1992).. Each grid square is c.. 20km
on a side. (b) enlargement of part of Plate 11.1 for Nigeria, with the same state boundaries
as in Plate 11.4a. Notice the correspondence between the heavily wooded areas of Plate
11.4a and the blue areas of Plate 11.4b, i.e. areas where the amplitude of the first Fourier
component is particularly pronounced (Plate Carree projection). (The different colour
shading of Plates 11.2, 11.3 and 11,4 in comparison with Plate 11.1 is due to colour
stretching of only parts of the i~age, to reveal the features of interest.)
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PLATE 11.5. The amplitude of the first Fourier component is shown on a map of Africa
(produced by turning off the red and green guns of the computer SCTeen that gave Plate
11.1) and the pan-African distribution of the tsetse G. morsitans is shown (within the white
continental boundary lines). Plate 11.4 suggests that the brighter blue areas are associated
with seasonal woodlands, the habitat of the savannah species of tsetse. This conclusion is
here supported on a pan-African scale (Hammer-Aitoff projection).
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FIG. 11.4. Continued.

amplitude fluctuations in the savannah zone of Africa (Fig. II .4b and c).
Thus this analysis confirms, but presents in a different way, the con-
clusions drawn from principal components analysis of similar images
(Tucker et at. 1985). The annual cycle of vegetation growth appears to be

~
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well captured by Fourier analysis, as can be seen from the examples in

Fig. 11.4.
The Fourier analysis of the NDVIs for the whole of Africa for 1987-

8g is shown in Plate 11.1 (facing p. 260), where the average NDVI (one of
the outputs of the analysis) has been put in the red gun of the screen, the
phase of the first component in the green gun and its amplitude in the
blue gun. Areas of the image in Plate I I. I which are predominantly red
indicate sites with a large, but unvarying NDVI (= 'forests'); areas which
have a blue tinge have seasonally highly variable NDVIs, whilst those
which are bright green have a late peak of maximum vegetation growth.
The fact that they are green means that neither the average NDVI nor
the amplitude of the annual cycle of vegetation growth is very pronounced
in such areas. Areas with a high average NDVI plus a late peak of

vegetation growth appear either yellow in Plate 11.1 (since red plus green
= yellow in colour monitors), or white if the seasonality is also very

pronounced (red + green + blue = white).
The Fourier image in Plate I I .I reveals information about both

patterns and processes connected with vegetation types in Africa. One
example of a pattern is shown in Plate 11.2 (facing p. 260), a close-up of
the Gezira irrigation scheme in Sudan, between the White and Blue Niles
just before they join at Khartoum. This scheme is one of the oldest large-
scale irrigation projects in the continent and is supplied mostly by the
pure waters of the Blue Nile which, through a series of irrigation canals,
move down a gradient towards the White Nile. (The history of the Gezira
project is described briefly in RIM 1987.) The original Gezira scheme was
initially expanded into the Managil Extension, and other schemes were
later added around these. Much of the cultivated area is presently under a
4-year crop rotation (of cotton, wheat, legumes such as ground nuts, and
fallow), but ~ome of the schemes are more permanently cropped with
sugar cane. Some areas, such as the White Nile Corporation Schemes,
have much lower yields than others, and this can be partly attributed to
poorer irrigation. The non-cropped areas outside the irrigation scheme
provide grazing for the considerable numbers of livestock owned by the
workers within the scheme, and the whole is a rather intricate, inter-
dependent patchwork (RIM 1987). A map of the Gezira scheme is super-
imposed on the image in Plate 11.2, and a strong correspondence can be
seen between the map and the underlying image. The brightest areas in
Plate I 1.2 are those that are best irrigated, while the sugar schemes have
a speckled appearance.

An example of an ecological process revealed by Fourier analysis is
shown in Plate 11.3a and b (facing p. 260) for the upper and lower Nile

~
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basin respectively. The White Nile and the main Nile can be detected in
these images (the map overlay shows the course of the river) through
a combination of differences between the riverine vegetation and the
surrounding vegetation. These differences are of several types. In southern
Sudan the Sudd can be picked out because it has a high and constant
average NDVI throughout the year whereas the surrounding vegetation
has a lower average and shows strong seasonality. Further north it is the
riverine vegetation which shows strong seasonal variation whilst the sur-
rounding semi-desert or desert shows little seasonal change. The seasonal
variation in the NDVI along the course of the river is presumably related
to the seasonal flow of water along the river (Shahin 1985; Howell et al.
1988), determined by regional rainfall patterns. Of particular interest is
the phase (= month) of peak vegetation growth of the annual cycle of
vegetation change, which is indicated along the course of the river
in Plate I 1.3. The outflow of water from Lake Victoria shows little
seasonality and there appears to be little seasonality in the NDVI along
the Victoria Nile. Beyond Lake Albert, however, the river develops a
seasonal flow because of water received from various rain-fed tributaries.
Peak vegetation growth occurs during July/August. Continuing along the
Nile, the peak of vegetation growth occurs later in the year the further
along the river it is measured, so that at Khartoum it occurs around
December of the same year. Here the highly variable influx of the Blue
Nile contributes significantly to the total volume of water in the main Nile
(Shahin 1985). Peak seasonality nevertheless appears to follow a reason-
able timing up to Lake Nasser where all signs of a seasonality different
from that of the surrounding vegetation disappear. However, beyond the
Aswan dam there is a remarkably strong seasonal signal of vegetation
growth with a peak in September/October, approximately half a year
later than the peak at the entry point into Lake Nasser. This is associated
with the timing of the release of waters by the Aswan dam authorities
(subject to international agreements with other countries along the Nile).
Another dam at Nag Hammadi appears to delay the seasonal peak still
further, after which the peak vegetation growth along the remainder of
the Nile follows a sensible sequence, ending in the Nile delta in March,
approximately 20 months after it was first detected near Lake Albert,
almost 3000 miles away but only 750 m higher. It appears therefore that a
('statistical') drop of water from Lake Victoria takes almost 2 years to
reach the Mediterranean!

It is possible to look at the Fourier analysis of the NDVI for points
along the course of the Nile, and some examples are shown in Fig. 11.5.
The slight difference in seasonality of the first Fourier component detected
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FIG. II.S. Fourier analysis from selected points near to, or on, the Nile River. (a) West of
Jonglei (i.e. just downriver from Bor) (30.6°E, 7°N), (b) on the Nile near Jonglei (30.8°E,
7°N), i.e. in the Sudd, (c) in the desert east of Qena (32.9SoE, 2S.8S0N), on the sharp bend
in the Nile between the Aswan Dam and Nag Hammadi, (d) at Qena (32.7SoE, 2S.8S0N) on
the Nile and (e) at Tahta (3I.4SoE, 26.7S"N) just downriver from Nag Hammadi (for most
place names see Plate 11.3).
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FIG. 11.5. Continued.

between the Aswan dam and Nag Hammadi and beyond Nag Hammadi
itself can be seen in Fig. II.Sd and e to hide a much more dramatic
difference between these two sites revealed by looking at both the first
and second Fourier components. Whereas the annual signal dominates at
the first site, the biannual signal is stronger than the annual signal at the
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limits are strongly correlated with rainfall (or vegetation determined by
rainfall), but the southern limits have been much more difficult to predict
(Nash 1948).

CONCLUSIONS

It is relatively easy to extract biological conclusions from the two methods
of analysis presented here although, as emphasized in Chapter 7, it must
be remembered that correlations do not necessarily imply causation.
When correlations are consistent, however, and when they are supported
by intensive biological studies, we may be more certain of their biological
significance.

The statistical analyses presented here should help to refine research
questions to be addressed by future field work, the need for which
becomes more urgent as indications of long-term climatic change are
more widely demonstrated and accepted. The stimulus to discover the
determinants of animal (and plant) distributions is ironically greatest at
the moment when long-term distributions are on the point of disruption
by human activity, in much the same way that diseases stimulate the study
of the healthy human body, or mechanical breakdowns show the need to
understand how machines work properly. Statistical analysis works best in
a constant world and, in a changing environment, the same methods of
analysis may mislead more than they direct. Nevertheless the option to
investigate the biological determinants of distribution and abundance is
no longer open, because of a lack of time to carry out such studies.
Answers are required quickly and they will need to be based on statistical
analysis.

This study has shown how satellite sensor imagery can have an im-
portant role in detecting patterns and processes in biological systems.
Temporal Fourier analysis appears to be a novel and exciting way to
extract hitherto unused aspects of NDVI information. The output of
Fourier analysis is more easily interpreted in terms of the seasonality and
amplitude of vegetation growth and is therefore more understandable
biologically than the output from other methods of analysing NDVIs. The
images used in this study had a spatial resolution of c. 8 km, much coarser
than the maximum of I. I km of which the NOAA series of satellites is
capable. Ground-based receivers near to, or beneath the track of, the
orbiting satellites can receive the full resolution I. I km data in all five
wave bands of these satellites. This would allow the processing of the
NDVI Channels I and 2 in different ways to give a variety of vegetation
indices, some of which are probably more useful for heavily vegetated~
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areas than is the NDVI, which was originally formulated to detect changes
in the sparsely vegetated regions of the Sahelian zone of Africa (Jackson
& Huete 1991). Other potentially useful information is available in the
non-NDVI infra-red bands that have been used in the past to study
wetlands (Van de Griend et at. 1985; Xue & Cracknell 1992). Novel
combinations of the spectral signals and the much finer spatial resolution
of the 1.1 km data at the high temporal frequency of the NOAA satellites
must be explored if full advantage is to be taken of these satellite sensor
data for biology and conservation. Problems of sensor calibration, at-
mospheric aerosol effects and view angle must also all be overcome
(Goward & Huemmrich 1992) before such imagery can usefully comple-
ment the higher spatial resolution LANDSAT and SPOT imagery.

New space platforms are currently being planned which increase both
the spatial and spectral resolution of remotely sensed information. The
wealth of data that these promise to provide could overwhelm biologists
unless a start is made soon on developing techniques of dimension re-
duction that provide useful, large-area information for each of the many
problems of research and conservation that will need to be addressed in
the very near future. Literally and metaphorically we would like to see
both the wood and the trees.

~~
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