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EXECUllVE S{JMMARY

Using the satellite-derived surrogate variables, land-cover types in Nigeria were described with
accuracies ranging from 26% (for scrub) to 100 % (for mangrove) (average 70.2%). Tsetse
presence/absence was described with accuracies from 67% to 100% (average 82.3%) and
abundance categories with accuracies of 30% to 100% (average 73%). Finally cattle

trypanosomosis prevalence in Togo was described with accuracies of 78% to 83% (average
80%). In each case the descriptions of the training set data is extended to predictions of land-
cover, tsetse and disease over much wider areas in West Africa. The approach adopted is also
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able to define areas of high and low suitability for tsetse, the implication being that flies will be
more easily eradicated from areas of low suitability that are often near the margins of their
local distribution limits.

Historical archives of satellite data may be used to monitor habitat changes over time, though
shorter term dry/wet periods, and the vegetation's delayed responses to these periods, make
the interpretation of such changes rather difficult.

The understanding of land-surface processes that was developed from the statistical
relationships explored in the project, and further analysis of the ERGO Nigerian data set,
revealed that although tsetse and trypanosomosis appear to have strong seasonal effects on
livestock distributions, the longer-term impact of fly suppression or removal on agricultural
activity is less easily detected, although in places it appears to be very significant.

Work by the project has lead to commissioned research with F AO, the Climatic Research Unit,
UEA, Norwich, U.K. (as part of a WWF-funded study on the impact of Climate Change in the
SADC region of Africa), the award of Darwin Initiative funding to Dr. Mike Packer and
undergraduate projects on the distributions of wild vertebrates and ticks in Africa. The project
outputs to date include 5 articles in independently reviewed journals, 5 consultant's reports,
ne D. Phil. (Simon Hay), three undergraduate student projects and presentations at 10
ilational and international meetings. Two articles are in press and at least 8 more have been
suomitted or are being prepared for submission.
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BACKGROUND

,

African animal trypanosomosis remains one of the most serious constraints on African
agriculture and rural development and affects an area on the continent of approximately 10
million km2. The ubiquity of the animal trypanosomoses, however, makes it difficult to
quantify their impact, and therefore the benefits to be gained by eradicating them Historically
this group of diseases has been heavily implicated in both the pattern and processes of human
and cattle distributions in Africa, in trans-humance, in arable ~griculture and finally in the
seasonal grazing of crop residues by cattle. Currently, human population pressure on the land
is forcing people towards a changing lifestyle (eo g. the sedentarisation of nomadic pastoralists)
and, in places, into closer contact with tsetse and diseases. Both will lead to changes in land-
use and in the distribution of human and natural resources. In extreme cases, land degradation
may follow, though the role of people and cattle in this process is still disputed, as is the
resilience of natural ecosystems to such pressures. From the perspective of development, what
is required at present is a means of rapidly assessing the distribution of people, their cattle and
the natural resource base; the pressures for change acting on each of them; and the
opportunities for development that mitigate the harmful effects of habitat over-exploitation.

,

Development does not take place in a sociological or economic vacuum, either at the individual
or societal level, so it is also necessary to include socio-economic assessments of the
alternative recommendations for development. These involve not just the benefits and costs to
the individual cattle owner (the basis of the assessment of many previous tsetse control
projects) but also the wider costs to society of, for example, the loss of wild-life areas to cattle
rearing, or the local change of habitats from woodland to grassland, to scrub and even,
perhaps, to desert. Finally the opportunity costs of funds devoted to tsetse control (and, in a
wider context, veterinary services) are rarely considered by either the tsetse control or
veterinary care communities, but it is increasingly clear that hard-pressed Governments are no
longer able to sustain the levels of veterinary services they once supported. Annual budgets
are unable to keep up with annual expenditures, and what begins as a cost -cutting exercise
eventually requires a more radical assessment of the aims and objectives of Government
involvement in veterinary services in general, and in tsetse and trypanosomosis control in

particular.

For many years, high resolution LANDSAT and SPOT images have found wide application in
development project areas, often providing the only maps available for remote sites. Their
high cost and relatively small coverage per scene, however, precludes their use over wider
areas, as does the sheer volume of data involved. Low resolution meteorological. satellite
images have been used in the last 10 years as inputs to famine and drought early warning
systems but, until relatively recently, were not readily available to the wider research
community. Drought and famine forecasting were based on work showing how
meteorological satellite data are related to plant photosynthetic activity, biomass and plant
phenology (e. g. the 'greening up' of vegetation after seasonal rains). FAa's ARTEMIS
program is centrally involved in such forecasting systems for Africa and continues to provide a
welcome source of processed meteorological satellite imagery free to bona fide research
projects. When correlations were discovered between the satellite image values and tsetse
mortality rates, tsetse abundance, trypanosomosis incidence and prevalence at sites throughout
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Africa (Rogers & Randolph 1991, Rogers 1991, Rogers and Williams 1993) the potential for
satellite imagery to describe and monitor key features of tsetse, trypanosomosis and land-use
patterns was clearly established. The present project was designed to explore this potential
further, and to begin to work towards a set of guidelines by which disease situations could be
rapidly assessed, control programs could be designed with more complete environmental
information to hand, and the impacts of suppression and eradication programs could be
monitored through time. The project's title, 'Trypanosomosis and Land-use in Africa' also
gave the project an acronym -TALA -by which it has become known.

During the lifetime of this project, NASA has implemented a bold decision to re-process the
entire A VHRR data archive using the most up-to-date algorithms, and to make these data free
to the user community under the PATHFINDER program. This has involved the present
project in a significant amount of data processing, but has also allowed us to explore and
assess a variety of remotely sensed meteorological and environmental indicators.
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PROJECT PURPOSE

The project falls under the Livestock Production Programme Area, within the Livestock Protection
Problem Area which has identified the African Animal Trypanosomoses as one of the most
important constraints on livestock productivity in sub-Saharan Africa.

The project was set a number of tasks, ~ follows:

I) to identify determinants of the local distributional limits of tsetse vectors and the diseases

they transmit,
2) to identify determinants of the local abundance of vectors or prevalence of diseases within
these distributional limits,
3) to establish the distribution of cattle and seasonal changes in their distributions,
4) to determine the links between the vector, disease and livestock distributions that may be
used to predict the one from the other or each from other variables,
5) to define the effects of agriculturalists and patterns of land-use on the relationship between
cattle and disease,
6) to describe the likely changes that might take place if the vector or disease were controlled
or eradicated and
7) to assess the difficulty with which the vector/disease may be controlled in different areas.



Final Technical Report: Constraints on land-use in Africa imposed by trypanosomosis Page 8



Final Technical Report: Constraints on land-use in Africa imposed by trypanosomosis
Page 9

RESEARCH ACl1VffiES

Overview and Summaa

Many of the questions in the project were addressed using statistical methods that seek
correlations between the data of interest (fly distributions, disease prevalence etc.) and sets of
predictor variables drawn either from published ta_bles or maps (e. g. meteorological data, soil
fertility) or from a rapidly expanding archive of satellite data. In the latter case, research
concentrated upon the use of NOAA AVHRR and Meteosat multi-temporal satellite imagery,
both of which provide uniform over-views of large areas that cannot be easily obtained by
other methods. Such over-views allow the extension of conclusions drawn from small study
areas to much wider regions. During the lifetime of the project, we have used several sources
of satellite data, each more detailed or more accurate than the previous ones. This has often
entailed re-analysis of field data sets using the more precise satellite imagery. As mentioned
above, the most complete and carefully calibrated A VHRR data set is available from NASA's
PATHFINDER program (James and Kalluri 1994) and we now have the complete Pathfinder
archive of daily data from 1981 (part) to 1993. Daily data have allowed us to calculate a
variety of vegetation and thermal indeces that could not be calculated from compo sited 1 a-day
or monthly data (see the later Section on data processing), and we were thus able to examine
the predictive power of a variety of raw satellite channels and the vegetation, vapour pressure
and thermal indeces that may be derived from them.

Multi-temporal satellite data were first subjected to temporal Fourier analysis that describes
each data stream in terms of its mean value and the amplitude and phases (i. e. timing) of the

annual, bi-annual, tri-annual cycles that may be used to describe it. This processing achieves
the important aim of data reduction without much loss of information, with the additional
bonus that the Fourier descriptions have an obvious biological interpretation (something which
is not possible in alternative data reduction techniques such as principal components analysis).
Fourier analysis provides information that may be directly related to land-surface phenomena
(e. g. the amplitude of the annual cycle of the NDVI signal is correlated with the percentage
cover by deciduous savannah woodland) but also partitions the variance of the signal
orthogonally, so that the contribution of annual, bi-annual and tri-annual components to the
overall annual variation may be easily examined. This allows the production of seasonality
maps, providing important insights into the spatial arrangement of habitat types in Africa.
Fourier analysis also readily lends itself to studies of environmental change over time. Each of
the obvious changes in habitat type (e. g. gradual de-forestation as land is brought into the
cultivation cycle; degradation of vegetated habitats to bare soil; re-forestation of annual
grassland areas with perennial woodlands) is associated with obvious and predictable changes
in Fourier components. It follows from this that judicious use of maps of the difference in key
Fourier components (e. g. amplitudes, phases) over the time-span of the data archive should be
able to reveal longer term changes in habitat use. Our initial application of this approach
suggests that whilst this overall objective is probably attainable, the images are also strongly
affected by shorter-term climatic cycles (dry/wet periods), the impact of which varies spatially
(see also Goward and Prince 1995).
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The raw and processed satellite imagery and other data derived from maps and tables were
used within the project as predictor variable data-sets to describe the distribution of vegetation,
tsetse and trypanosomosis in Africa. In each case a set of training data (land-cover types, fly
distribution, disease prevalence) were available through collaborative links with other projects,
or from published maps, and these were used to define the predictor variable values
characteristic of each class or category under study. In the case of land-cover types, for
example, collaborative links with the Environmental Research Group Oxford (ERGO)
provided aerial survey data for Nigeria and in parts ofTchad and Mali that allowed us to define
up to 10 characteristic vegetation type~ (and mixtures of these types). Aerial survey grid
squares in which one of these 10 types predominated (i. e. had> 60% coverage) were used to
define the satellite and other data characteristics of each vegetation type in turn, and these
were then used to make predictions for Nigeria and elsewhere. Analysis and predictions were
based on various modifications of discriminant analytical techniques that appear to be
extremely powerful in describing biological data. As in the case of Fourier analysis, we have
used discriminant techniques because they give results that are easy to interpret biologically, in
preference to the more 'black box' techniques such as neural network analysis. Dominant
vegetation types in Nigeria are described with varying accuracy, from 26% (for scrub) to 100%
(for mangrove). Examination of the confusion matrix of this classification exercise showed
that misclassifications could be easily understood. For example active cultivation was often
confused with various forms of woodland, a habitat in which much cultivation actually takes
place; different forms of woodland and forest were also confused.

In the case of tsetse distributions we have used mainly historical maps as our training set data
(Ford and Katondo 1977, Laveissiere and Challier 1977, 1981), with additional data for Togo
from our links with GCP-TOG-OI3-BEL. When large areas of Africa were being considered,
it soon became clear that the very wide range of conditions, especially in areas of tsetse
absence, required the specification of more than one area each of presence and absence. The
set of predictor variables for sites of presence or absence were therefore first subjected to
cluster analysis (the 'k-means cluster' option in SPSS) and subsequent discrim1nant analysis
then dealt with a variable number of clusters for both presence and absence sites. In general, a
relatively modest number of clusters (up to three or four) improved predictions considerably.

The impact of trypanosomosis on cattle distributions were explored using ERGO's Nigerian
data set in which the wet/dry season numbers of cattle were recorded in approximately 20 km2
grid squares throughout the country. From this analysis it is clear that fly presence continues
to have an impact on cattle numbers locally in Nigeria, and that this impact depends upon the
fly species involved; G. morsitans has a greater impact than G. pa/pa/is. Whether or not fly
presence actually retards agricultural development was examined by investigating the rate of
agricultural expansion in parts of northern Nigeria subjected to tsetse control. This rate was
determined from the percentage agricultural activity recorded by two surveys carried out in
1976 and 1990 and presented by ERGO in several reports (e. g. ERGO 1994). As the original
reports explain, the two surveys used different methods (the first using side-looking airborne
radar, or SLAR, images and the second using aerial surveys carried out by ERGO) but, with
some adjustments, could be made comparable by combining SLAR categories sensibly. The
comparison of the percentage of land under cultivation at these two points in time allowed the
intrinsic rate of increase of agricultural activity to be calculated (assuming that this follows a
logistic rise to some saturation level below 100%). These rates were then related to the
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Details of Research Activitv

The following sections provide details of the research activities within the project, and the
theoretical background that underpins much of the analysis.

Data sets used in the study

Meteorological data sets

Climate data for the world are prepared by the World Meteorological Organization (WMO) for
selected meteorological stations around the globe and these data are published each month by
the National Oceanographic and Atmospheric Administration (NOAA) National Climatic Data
Centre (NCDC) (NOAA 1990). Data are available as monthly summaries for 250 named -

meteorological stations throughout Africa and the distribution of the 207 stations used in this
study is shown in Fig. 1. Meteorological stations located within 20 kIn of the coast or large
inland lakes and rivers were excluded from the analysis because the corresponding 8 x 8 kIn
pixel in the satellite data could have been contaminated by the signal from these water bodies.

Figure 1 The distribution of the WMO meteorological stations used in this study (from Hay
1996).
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Temperatures are recorded from standard maximum and minimum thermometers
(NOAA 1972) fitted inside a Stevenson screen. All the meteorological measurements are
taken at noon local time.

The NOAA -NCDC publications provide for each meteorological station the WMO standard
name, country of origin, geographical location (in degrees of latitude and longitude) and
elevation in meters above mean sea level. The land surface data recorded that were used in
this investigation were the mean monthly temperature (OC), the mean monthly vapour pressure
(mb) and total monthly precipitation (mm). Humidities and vapour pressure deficits
(sometimes called saturation deficits) were calculated from the mean temperature, T (K), and
the mean vapour pressure, Vp (mb), using formulas provided by Unwin (1980).

Pre-PATHFINDER satellite data sets

The project began by using the standard measure of vegetation activity, the Normalised Difference
Vegetation Index (NDVI) (data supplied by ARTEMIS); a measure of ground surface
temperature, derived from one of the thermal infra-red channels of the same A VHRR instrument
that produces the NDVI data (data supplied by the NASA Global Inventory Monitoring and

Modelling Systems (GIMMS) group); and a measure of surface rainfall, the Cold Cloud Duration
(CCD), derived from the METEOSAT satellite (also from ARTEMIS). For more details of the
performance of each satellite series, the reader is referred to Hay et al (1996).

Nonnalised Difference Vegetation Indices (NDVIs) are derived from readings in Channels I
and 2 (ChI and Ch2 respectively) of the Advanced Very High Resolution Radiometer on board
the NOAA series of meteorological satellites and are calculated from the following formula:

ND VI = (Ch2 -ChI)
(Ch2 + ChI)

.1

Ten-day ('decadal') NDVI were obtained from the Food and Agriculture Organisation's
(FAD) African Real Time Environmental Monitoring and Information Systems (ARTEMIS)
program and their registration to a reference image was checked and, where necessary,
corrected (this involved shifting images by from 0 to 3 pixels in an East-West or North-South
direction, concentrating on the West African region). The raw imagery was then adjusted
using calibration coefficients derived by Los (1993), which corrects for satellite sensor drift,
and then maximum value compo sited (MVC) (by selecting the highest value of the decadal
pixels for each site within each month; Holben 1986) to produce a set of monthly images for
further analysis.

A VHRR channel 4 radiometric brightness temperature imagery correlates with thermodynamic
air temperature at the Earth's surface (Hay et a/., 1996). Decadal data were generated by
MVC for the period 1987-1992 from the archives of the GIMMS group at the NASA Goddard
Space Flight Centre (GSFC), Maryland, USA. Monthly imagery was later produced by further
MVC of the three decadal images each month.

Cold Cloud Duration (CCD) imagery was obtained from the FAD ARTEMIS program, initially
as the 5-year monthly averages for the period 1988-1992, but later as monthly images. The
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CCD imagery has been correlated with surface rainfall measurements as part of the Tropical
Applications in Meteorology of Satellite and other data (TAMS AT) program (Snijders, 1991)
over the whole of the region from which came the tsetse and land-cover data used in this

project.

Digital Elevation Model (DEM) data were obtained from a 0.083 degree resolution elevation
surface for Africa, produced by the Global Land Information System (GLIS) of the United
States Geological Survey, Earth Resources Observation Systems (USGS, EROS) data centre.
The original files were resampled to a 7.6 x 7.6 kIn resolution image for compatibility with the
other data layers.

PATHFINDER satellite data sets

The PATHFINDER AVHRR Land (PAL) data set was obtained from the Earth Observing
System Data and Information System (EOSDIS) Distributed Active Archive Centre (DAAC)
at the Goddard Space Flight Center (GSFC) (Asrar and Greenstone 1995). The PAL Global
Area Coverage (GAC) data were derived from visible and infrared radiance imagery collected
by the afternoon ascending node satellites, namely NOAA -7, NOAA -9 and NOAA -11
(Kidwell 1995) for the period July 1981 to date. The definitive description of the PAL
processing chain and the data set it generates is given in Agbu and James (1994) and James
and Kalluri (1994), and shown here diagramatically in Fig. 2. For further details the reader is
referred to Hay (1996).

PATHFINDER products are mapped to a global 8 x 8 kIn equal area grid using the Goode's
Interrupted Homolosine projection (Steinwand et at. 1992, Steinwand 1994) and are
distributed from the GSFC DAAC as global coverages containing the 12 bands of information
detailed in Table 1. They are stored as scaled 8 and 16 bit binary information in Hierarchical
Data Format (HDF) (NCSA 1990, Brown et at. 1993). The global image is 5004 pixels by
2168 lines corresponding to an image size of approximately 228 Mb (approximately 35 Mb
when UNIX compressed). A separate ancillary HDF file of approximately 55 Mb, contains the
latitude and longitude, elevation, and a land -sea mask.

Within the project, the HDF files were uncompressed, and the African continent was extracted
from the global data.. All the daily data for 1988, 1989 and 1990 were processed, a total of
(228 x 365 x 3) ~ 250 Gb of information. These years were chosen as they were average
climatic years for Africa and subject to few extreme conditions, determined by reference to the
NOAA meteorological data, and were prior to the Mount Pinatubo eruption of June 1991
which had significant effects on A VHRR data quality (Stowe et al. 1992, Jeyaseelan and
Thiruvengadachari 1993). The final year (1990) also coincided with the date of ERGO's aerial

survey in Nigeria.
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Figure 2 A diagram of the Pathfinder A VHRR Land data processing chain.
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The monthly data were then sorted into two 10 day (decade_OJ and decade_O2) and a variable
third 8, 9, 10 or 11 day decade (decade_O3) directories. There remained therefore
approximately 100 files per decade (bands 6 and 12, Table 1, were discarded). Programs were
written using the ERDAS Imagine 8.2. spatial modeller to convert the scaled binary PAL data
into real geophysical values (with the exceptions of bands 2 and 3, which are thematic data not

requiring re-scaling).

Cloudy and mixed pixels as determined from the CLA VR data layer were eliminated at this
stage and such pixels given a mask value to indicate this status during later maximum value
compo siting. .

TABLE

The information stored in the 12 bands of Pathfinder A VHRR Land (PAL) data, including
scaling details.

Band Data layer Units Offset Gain Geophysical
minimum

Geophysical
maximum

1 NDVI 128 0.008 1ratio

thematic

thematic

radians

radians

0 31

31

1.0472

1.3963

6.2832

100

100

340

340

340

366.23

2 1 1

1 03 1

10481.98

10

10

10

10

-1.04720.00014

0

0

0

0

160

160

160

0.0001

0.0001

0.002

0.002

5

CLAVR

QC Flags

Satellite Zenith

Solar Zenith

Relative Azimuth6

Channell7

radians

% reflectance

% reflectance

Kelvin

Kelvin

Kelvin

ddd.bh

8

-31990

-31990

-31990

0.005

0.005

0.005

0.01

9

10

11
001.001012

Channel 2

Channel 3

Channel 4

Channel 5

Observation
Data/fime
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field d~

In addition, the TALA project undertook field visits to Ghana, and gathered photographic and
botanical data on land-use along the major road North, from Accra through Kumasi to Tamale.
Information on the distribution of Forest Reserves in Ghana was obtained from the Forestry
Department in Kumasi, together with copies of a complete set of LANDSAT digital data
covering most of the country.

Vegetation data

Naturally vegetated, non-vegetated and human-modified landscapes of a region together
constitute the land-cover of that area. Many factors and processes, natural and anthropogenic,
determine the spatial pattern of land-cover and how it varies through time. An understanding
of these processes may be used in studies of the distribution and abundance of animal
populations, which are intimately associated with particular types of land-cover, and for
resource management, planning and global change studies.

In order to be useful, land-cover/resource maps must provide reliable and precise descriptions
of the land-cover of a given area at a given time. They must also be able to provide such
information over large areas and frequently enough that changes in cover are effectively
detected.

The development of satellite remote sensing techniques for land-cover mapping across large
areas is currently hindered by a lack of suitable sample data (i. e. ground truth data) to use in
training some classifications (i. e. "supervised classifications") or testing others (i. e.
"unsupervised classifications"). Such ground-truth data are very costly to acquire, making
large area surveys prohibitively expensive. The best examples we have to date include
ERGO's aerial surveys of the whole of Nigeria, and parts of Tchad, Mali and elsewhere.
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Despite the lack of similar data for much larger areas, it is nevertheless possible to use
unsupervised classification methods with meteorological satellite data to produce whole-Africa
land-cover maps that can be tested either on the basis of our collective experience in different
parts of Africa, or of published vegetation maps (White 1983) or of limited ground-truth data
sets gathered for this or other purposes (Millington 1995).

Previous attempts to produce continental-scale land-cover maps (e. g. Tucker et ai, 1985;
Townshend et ai, 1987) have used time-series ofnormalised-difference vegetation index data.
Recent work by Eric Lambin and Danielle Ehrlich 1Lambin & Ehrlich, 1995; Ehrlich &
Lambin, 1996) has examined the use ofNDVI data alone or in combination with surface (Price
1983 split-window) temperature as a ratio (Ts/NDVI).

Short time series of data lack the information needed to define meaningful classes of land-
cover based on the seasonal evolution of the vegetation signal from each cover type, whereas
long time series' of data inevitably integrate land-cover phenomena over long periods of time
during which changes in land-cover may have taken place. Ehrlich & Lambin (1996)
concluded that for short time-series of data, T /NDVI is the most useful variable since it is not
as influenced by interannual climatic variation as are NDVI data alone. For long time-series,
however, they found no detectable difference between the classifications produced using the
ratio data or NDVI alone.

There seems to have been little attempt to use the other data, or derived products, available
from the NOAA-A VHRR in land-cover classification, despite the fact that middle infra-red
data appears to be potentially useful as it contains information relevant to the biophysical
properties of vegetation (Boyd et ai, 1996, Foody et aI1996).

In the project, White's map (White 1983) was taken as the 'standard', with which
unsupervised classifications were compared. A digitised version of this map was obtained from
NRI. Selected areas from White's map were also taken as the training sites for supervised
classifications.

Assorted GIS data layers

The project also acquired data in digital or paper map formats covering a variety of subjects
and areas and from a number of collaborations. The Ford and Katondo (1973) tsetse
distribution maps were obtained in digital format from ILRAD, and the gridded maps for parts
of West Africa (Laveissiere and Challier 1977,1981; Anon 1982) were entered into MS Excel
spreadsheets for further analysis. The F AO soil map for Africa (F AO/UNESCO 1977) and its
recent classification into a soil fertlity map were obtained from F AO, whilst the project
digitised a geological map for West Africa. Finally, assorted digital1ayers were produced for
Togo (a vegetation map) and Ghana (a road/rail map).
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Yee:etation Indi~

Ch -ChSA V I = 2 1(1 + L)
Ch2 + ChI + L

..2

where, L, is a weighting parameter that varies with vegetation coverage. The values of L
recommended for sparse, intermediate and densely vegetated conditions are 1.0, 0.75 and 0.25
respectively (Huete 1988).

More recently, the Global Environment Monitoring Index (GEM!) has been proposed by Pinty
and Verstraete (1992), again with the intention of reducing the variability introduced by the
soil background and, in addition, of reducing atmospheric effects. Soil effects are theoretically
minimised because the GEM! gives a more constant index of vegetation activity against a much
wider range of soil conditions than does the NDVI. The GEM! was derived from first

principles (Verstraete 1995, pers. comm.), rather than empirically, although the physical basis
for the index is not fully explained in the literature, and it is defined as follows;

GEM! = 1](1 -0.251])- ..3
Ch1-O.125

1- Ch 1

where

2(Ch22 -Ch.2) + 1.5Ch2 + D.5Ch.
17= Ch2 + ChI + 0.5

Initial application of GEM! to A VHRR data for Africa suggests a three-fold advantage over
the NDVI. Firstly, the GEM! was found to be less sensitive to atmospheric variations.
Secondly, it had a much enhanced ability to detect clouds. Finally, the GEM! had a higher
dynamic range in sparsely vegetated, xeric environments, revealing details of features such as
geological formations and land surface topology that are not visible in other imagery (plasse
and Verstraete 1994).
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Within the project, the RVI, the SA VI, with the L parameter set to 0.5 for intermediate
vegetation coverage, and the GEM! were calculated from the visible channel data. Vegetation
Indeces that required the calculation of a soil line were not included in the analysis because of
the problem of obtaining sufficient 8 x 8 kIn pixels of bare soil over all areas of Africa.

Land surface tem~erature indices

The theoretical basis of determining land surface temperatures from split-window techniques is
explained in Hay et al (1996). These techniques often rely on ancillary data to quantify
atmospheric water content and surface emissivity, but any requiring other than A VHRR data
were excluded from further consideration. When emissivity, &, was a required parameter in the
split-window equation it was calculated from a logarithmic relationship determined between
NDVI and emissivity in Botswana by Van de Griend and Owe (1993) where;

& = (A + B) x In(NDVI) .4

and A = 1.0094 and B = 0.047. The relationship was significant with a correlation coefficient
of 0.941 (r = 0.89) at the 0.01 level. Emissivity was assumed to be equal in the channel 4 and

5 wavebands, and this assumption is also made in all the applications of split window methods
described below.

Of the many split-window algorithms available (Becker and Li 1995), three are suitable for
extensive coverages. Price (1984) derived one of the first indices to estimate land surface
temperature, T (in Kelvin), from the A VHRR channel 4, Ch4 (K), and the A VHRR channel 5,
Ch5(K) brightness temperatures that accounted for the emissivity of the land surface where;

..5T= Ch4 + A(Chs -Ch4)

and, A, is a constant determined by Price to be 3.33 for channels 4 and 5 of the NOAA -7
A VHRR. This equation has an accuracy that varies between about :i: 2 -3 K and:i: 4.5 K,
depending on habitat type and image resolution (Cooper and Asrar 1989, Sugita and Brutsaert
1993), and is being used in the creation of global AVHRR datasets for the European
community (Malingreau and Belward 1994).

A second index of land surface temperature, from Becker and Li (1990) has found preliminary
application to multitemporal land surface temperature estimation 0 f Asia (Gutman 1993). It
has also been used to provide the land surface temperature parameter globally for inputs into

primary production models (Prince and Goward 1995).

T = Ch4 + 5w + 8&

with

..6c5w= 2.63«Ch4 -Chs) + 1.274)

1-&

&
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and

6" = 1.013 + 0.681ln(NDVI)

where 8w is a correction for water vapour attenuation and 8& is a correction for emissivity, E.
In the calculation of this temperature index, emissivity was estimated from the NDVI using the
Van de Griend and Owe (1993) relationship described above, because it was derived for a
study area more representative of the African continent than that used by Becker and Li.

1

Finally, the Prata and Platt (1991) estimation of land surface temperature has been shown to
perform well in comparison with the above indices (Prata 1993), but has not been widely
applied to regional scale data. This formulation attempts to isolate atmospheric effects by
using atmospheric temperature and moisture profiles from TIROS Operational Vertical
Sounder (TOVS) so that the algorithm can be applied globally, provided the emissivity of the
terrain is known (Prata 1993).

11

T = 273.15+(3.45 x
..7

1

AtmosQheric moisture indices

The total precipitable water content of the atmospheric colUIInl, U, is calculated using an
equation given by Dalu (1986), The total precipitable water content of the atmospheric colUIInl
has been estimated according to a method proposed by Dalu (1986). Similar to the split-
window algorithm, this method exploits the difference in atmospheric attenuation due to
atmospheric water vapour between channels 4 and 5 of the A VHRR. The algorithm was
derived from atmospheric radiative transfer models over the ocean, where a surface relative
humidity of 80 % was assumed due to the natural equilibrium between evaporation and
diffusion and tested against measurements taken from ships. Based on a derived correction
factor, a, and taking into account the changing atmospheric path length as a function of scan
angIe, {}, the total precipitable water content of the atmospheric column, U (kgm-1, can be

estimated as follows;

1

.8

The retrieved estimates were stated to have an accuracy of:!: 5 kgm-2 over the ocean. The
accuracy of these estimates over the land surface will be influenced by varying emissivity, as
well as by deviation from the assumption of 80 % relative humidity at the surface. Justice et
at. (1991) however, have noted good agreement between values for atmospheric water content
estimated using the above equation and those measured by photometers at several sites in the

Sahel.

An alternative formulation was given by Eck and Holben (1994) where;

.9u= A+B(Ch4-C~)
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and, A and B are constants, 1.337 and 0.837 respectively. (These were determined by a linear
regression of (Ch4 -ChS) against estimated precipitable water content of the atmospheric
column using radiosonde data from the Gao meteorological station in Mali. The coefficient of
determination for the relationship was 0.96.)

The total precipitable water content of the atmospheric column (V) is often expressed as kgm2,
i. e. units of pressure (mass per unit area), and are converted to the amount of water that
would be precipitated from the atmospheric column in cm by dividing by 10, since the density
of water is I gcm-3.

The estimated precipitable water content, U (cm), may be converted to a near surface dew
point temperature, Td (OP) using the following relationship (Smith 1966);

10

where, 11., is a variable that is a function of the latitude and the time of the year. In this work a
mean value of 11. = 2.99 was calculated from the annual mean 11. presented by Smith (1966) for

locations between 0 and 40 degrees of latitude. It was decided not to use a seasonally and
latitudinally adjusted figure as the 11. values were derived specifically for data throughout the
northern hemisphere (Smith 1966).

The dew point temperatures in Kelvin are finally used with the Price (1984) estimate of land
surface temperature, Tp (K), to calculate the vapour pressure deficit, Vpd (KPa), using the
equation provided in Prince and Goward (1995) where;

..11

Final temQoral comQositing of the PathfInder and derived data lavers

The fifteen bands of satellite data used in the project, including the original A VHRR channel
information and derived indices, were maximum value compo sited using the data values within
a specific band and without reference to the NDVI. The mask values were again preserved
and outputs saved to floating point accuracy.
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Data Analysis

(readers uninterested in the mechanics of data analysis should skip this section and go
straight to OUTPUTS)

Data reduction throUQh temooral Fourier analysis

Data reduction of multi-temporal satellite imagery is usually achieved through principal

components analysis (Townshend and Justice 1985, Townshend et a11985, Eastman and FuJk
1993, Eklundh and Singh 1993). An entirely novel approach to tlie same problem was
suggested by the literature on time series analysis (e. g. Chatfield, 1980). The time series {xt}
may be described by a Fourier series representation where

Nfl-]

XI = °0 + L lop cos(21lpt / N) + bp sin(21lpt / N)] + °N/2 cas nt,
F]

(t = 1,2, N)
..12

with coefficients {apt bp} defined as follows:

°0 = X

aN/2 = L(-l)IXt / N
..13

a p = 2[L XI cos(27rpt / N)] / N

p = 1,

..N/2-1

bp = 2[LXt sin(21lpt/N)]/N

The component at a frequency cop = 27tp/N is called the pth harmonic, and for all p :;t: N/2 these
harmonics may be written in the equivalent form

apcosropt + bpsincopt = Rpcos( copt + <l>p) .14

where

Rp = the amplitude of the pth harmonic

= -.J(d p + b1p)

and (j)p= the phase of the pth hannonic

= tan-1(-b/ap)

(Chatfield 1980). The effect of Fourier analysis is to partition the variability of the time series
into (orthogonal i. e. uncorrelated) components at frequencies of2nlN, 4nIN, 6nIN , n, or
periods equal to I, 1/2, 1/3 ...2IN times the duration of the observations, N. If monthly

..,



Final Technical Report : Constraints on land-use in Africa imposed by trypanosomosis Page 24

observations are taken, Fourier analysis can partition the time series into frequencies equivalent
to periods ranging from as long as the whole time series, down to two months (higher
frequencies, i. e. shorter period cycles, cannot be distinguished by monthly data). Full Fourier
analysis exactly describes the original data set (since the Fourier series in equation 2 contains N
parameters to describe N observations), but not all harmonics may be contributing equally to
this description. The following relationship, known as Parseval's theorem, applies to the
Fourier representation of {xt}

15

This equation states that a quantity very similar to the variance of the original observations (the
left-hand side of the equation, but with the divisor N rather than (N-l» is the sum of the
contributions of each of the p = I to N/2 harmonics, where R2 y/2 is the contribution of the pth

harmonic.

The combination of the orthogonality of the harmonics in the Fourier series representation of
satellite data and the (perhaps illusory) biological transparency of the interpretation of these
harmonics makes this approach to data reduction especially attractive to biologists (Rogers and
Williams, 1994). In effect it may be possible to reduce a la-year or longer monthly or decadal
data stream to just 7 variables (the mean of the whole series and the amplitude and phases of
the first three Fourier components) without a great loss of information.

For the present study the monthly satellite data channels were subjected to temporal Fourier
processing and the means and amplitudes and phases of the annual, hi-annual and tri-annual
cycles were calculated and stored as new image layers for analysis, at the same spatial scales as
the original imagery. During the analysis the combined (i. e. annual + bi-annual + tri-annual
cycle) Fourier description of the original signal was also calculated and its minimum, maximum
and range (i. e. maximum -minimum) were recorded for use in the analysis. This summation
essentially smooths the original data set. In addition certain. combinations of the Fourier-
processed signals were calculated, such as the ratio of NDVI to thermal mean values, which
has been shown to be a more stable indicator of vegetation type than either variable alone

(Lambin and Strahler, 1994).

Statistical treatment using discriminant analvsis

The reduced-dimension data set produced by the methods outlined above form the set of
predictor variables for describing land-cover types, species' distributions and abundance and
disease prevalences. Here we take the simple problem of describing the distribution of a vector

to illustrate the techniques of discri-minant analysis.

In its simplest form, discriminant analysis assumes a multi-variate normal distribution of the
predictor variables and a common within-group co-variance of the variables for all points
defining vector presence and vector absence. The mean values of the predictor variables in
sites of vector presence and absence, and the within-group co-variance matrix, are estimated
from representative samples from reliable distribution maps, the 'training sets'. Means of multi-
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variate distributions are refeITed to as centroids and are defined by mathematical vectors [ in]
where n is the number of dimensions (= variables). The Mahalanobis distance, D2, is the
distance between two multi-variate distribution centroids, or between a sample point and a
centroid, and is a generalisation of the traditional squared Euclidean distance d2, where

d2]2 = (X] -X2 )'(X] -X2)

= d'd

1

and
.16

D212 = (i1-X2)'C:I(iI-X2)

= d' C-1d
w

where d212 and D212 are the Euclidean and Mahalanobis distances between groups 1 (e. g. for
vector absence) and 2 (e. g. for vector presence), d = (it- X2 ) with subscripts again referring

to the two groups (alternatively 1 and 2 might refer to a point and a centroid) and C-1w is the
inverse of the within-groups covariance (= dispersion) matrix (Green 1978) (in equation 6 the
subscript n for the number of variables has been dropped for clarity). Thus the Mahalanobis
distance is the distance between the sample centroids adjusted for their common co-variance.
In the case of the Euclidean distance, d2u, the co variances are zero, so that the covariance
matrix Cw = C1w = I, the identity matrix (with ones along the diagonal, and zeroes elsewhere).

This reduces the equation for D212 to that for d212 in 16. If the problem is to predict only to
which of the groups of 'presence' or 'absence' a new point belongs it is simply necessary to
calculate the two values of D2 between the point and each of the two centroids. The point is
then assigned to the group which gives the smaller D2 (i. e. to which it is closer in multi-variate
space). This assignment rule is obviously an over-simplification since the values of D2 may
differ by only a little, or by a very large amount. There is always a probability, however slight,
that the observation in fact belongs to the group to which it was not assigned.

The 'posterior probability' replaces the simple prediction of group membership by calculating
the probability with which any observation belongs to each group as follows

2

L P ge-D2,/2
g=l

and ..17

p(2Ix) = --p~=~:~~~

LPge-V2,n
g=1

where P(l I x) is the posterior probability that observation x belongs to group 1 and p(21 x)
the posterior probability that it belongs to group 2 (Green, 1978).. PI and P2 are the prior
probabilities of belonging to the same two groups respectively, defined as the probabilities with
which any observation might belong to either group, given prior knowledge or experience of
the situation (often, when applied, based on the training set data). In the absence of any prior

Jl
I-J
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experience it is usual to assume equal prior probability of belonging to any of the groups.
Where there are only two groups, for absence and presence, PI = P2 = 0.5. Equation 17
assumes that observation x must come from either group 1 or group 2: the possibility it
belongs to neither is discounted. Once again the assumption in equation 17 is of multi-variate
normality, the other terms of the multi-variate normal equation cancelling out (Tatsuoka,

1971).

The above formulae apply only to those situations in which a common co-variance matrix can
be assumed. In many cases of distribution data, however, this does not apply because animals
do not live within a random subset of environmental space, but within a rather unusual subset,
with particular environmental conditions which cannot be described by general environmental
conditions. The result is that the co-variances of the variables within a distributional range are
often different from those of the same variables outside the distributional limits. This requires
a modification of equations 16 and 17, to allow for different within-group co-variance
matrices. Equation 17 is then modified as follows

and ..18

p(2Ix) =
2

LPgICgl-1/2
g=1

-vlg/2

e

where I c11 and I c21 are the determinants of the co-variance matrices for groups g = 1 and 2
respectively (the Mahalanobis distances in 18, calculated from 16, are now evaluated using the
separate within-group co-variance matrices) (Tatsuoka 1971). With unequal co-variance
matrices the discriminant axis (strictly speaking a plane) that separates the two groups in multi-
variate space is no longer linear.

In the analyses reported here a variable proportion of the map data were used as the training
sets. When data were scarce, all observations were included in the data set; when data were
more abundant, a limit was placed on sample sizes, related to the overall area covered by the
analysis. Predictor satellite variables were selected in a forward, step-wise manner, the
criterion for inclusion being that the addition of the selected variable caused the greatest
increase in the Mahalanobis distance (equation 16) compared with all other variables during
that 'round' (since unequal co-variance matrices were assumed in the analysis, the Mahalanobis
distance calculated for each comparison was the sum of the distance between the presence and
absence category and between the absence and presence category). Thus variables were
selected in order of their ability to separate the different groups either of presence/absence or
of density classes. A limit of 10 predictor variables was set in all analyses, as experience
showed this was sufficient to give good predictions. Generally these were then used to
generate maps of posterior probabilities (equation 18) which represent the probabilities with
which each grid square faIls into the category of the predicted variable under study.



Final Technical Report: Constraints on land-use in Africa imposed by trypanosomosis Page 27

No transformation of the raw variables was undertaken before analysis, to make biological
interpretation of the results easier. The method of variable selection, using Mahalanobis
distances, overcomes the potential effect of unequal co-variances arbitrarily determining the
importance of the predictor variables.

It is relatively straightforward to extend equations 16 to 18 to situations in which more than
two groups (of land-cover types, or of species' absence/presence) are encountered. For
example, vector abundance data may be 'binned' into more than two groups, each bin defining
a range of vector densities. When distributional data are from wide geographical areas there
may be regional variations that need to be represented by different co-variance matrices in
different areas. There may also be different, sub-specific or strain variation responses of the
vectors to environmental conditions in the different regions, again requiring different
covariance matrices defining fly presence in the different areas. The statistical significance of
any differences found may be tested using Bartlett's chi-square approximation (B) for testing
co-variance matrix equality (Green 1978) and defined as follows:

G

B = (m- G)lnICwl-}::(mg -l)lnICgl
g=l

,.19

where m is the total number of observations of all groups (m = m} + m2 + ...!Do) and G is the

total number of groups (2 in the simple case of presence/absence). B is approximately
distributed as X2 with Y2(G-l)(n)(n+l)] degrees of freedom, where n is the number of variables
contributing to the covariance matrices. ICwi and ICgl respectively refer to the determinants of
the within-groups co-variance matrix of all groups combined or of each group, g, separately.
A priori the best approach to analysing multiple data sets from large areas is to keep them
separate initially and then to combine co-variance matrices appropriately only when they can be
shown not to differ significantly. In practice, however, this may result in rather small sample
sizes giving unreliable co-variance matrices (Lark, 1994). In the present project both
approaches were tested. Predictions of the distribution of most of the tsetse species in West
Africa were improved by keeping different surveys separate, but others (specifically for G.
palpalis) were made worse. The whole Africa predictions of tsetse distributions were always
improved when predictor variable data sets for sites of presence and absence were first divided
into clusters before analysis. One particular problem with the algorithm used (SPSS' s k means
clustering) is that it divides data on the basis of the original data scales (i. e. the data are not
standardised before clustering). Since elevation covers a much wider range of large numbers
than does NDVI, the cluster assignments tended to be dominated by site elevation. This,
possibly artificial, division at the early stage often resulted in elevation appearing high on the
list of key predictor variables within the discriminant analyses, even though the choice of
variables at this stage (based on the Mahalanobis Distances) is not affected by the ordinal

scales used (since Mahalanobis distances are covariance adjusted).



.

Final Technical Report: Constraints on land-use in Africa imposed by trypanosomosis
Page 28

Measures of Predictive Accuracy

The ability of the technique to describe the observed distribution and abundance or prevalence
data was measured in several ways. The overall percentage correct predictions (of
presence/absence, or of abundance/prevalence class) were calculated together with the
percentages of false positive and false negative predictions (i. e. false predictions of presence
or absence respectively). Finally the sensitivity (ability to predict presence correctly) and
specificity (ability to predict absence correctly) were also calculated. In the case of the
abundance/prevalence dat~ the percentage corre6t assignment to each density class was
recorded.

One of the attractions of the use of posterior probabilities (quantities that are easily calculated
during maximum likelihood assignments, but rarely made available to the user) is that both the
probabilities of correct assignments and those of all incorrect assignments are calculated, so
that the 'certainty' with which the method makes any particular assignment can be examined.
This was especially useful when examining misclassifications in the land-cover data set for
Nigeria. Discriminant analysis was on average more definite about its correct assignments (i.
e. these were made with a higher average probability) than with its incorrect assignments.
Posterior probabilities also allowed us to check whether fuzzy logic rules could be used to
identify mixed pixels -or 'mixels' -correctly. It has been claimed in the literature that when
training sets are based on pure end members (e. g. 1 00% grassland or 1 00% forest) the
posterior probabilities assigned to mixels represent the actual proportions of the different land
cover types they contain (Foody 1992). For example in a 2-class end member case, e. g. of
pure grassland and pure forest, it is claimed that a posterior probability of 0.3 for grassland and
0.7 for forest means that the mixel contained 30% grassland and 70% forest. Whilst such
fuzzy logic appears to be useful in the examples given in the literature, we suspect that these
are based on rather impoverished natural environments with few distinct end member types. In
Africa, not only are there many different vegetation types, but these are often mixed together in
all possible proportions. The likelihood that such fuzzy logic rules will give reliable
assignments at the individual mixellevel therefore seems small (this was confirmed in the
Nigerian data set; whilst many correlations between the predicted posterior probabilities and
the proportion of each grid square covered by different vegetation types were significant,
because of large sample sizes, the residual variances were still very large).
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OUTPUTS

The relationshiQ between satellite data and meteorological data

Temperature

In all cases, the slopes of the twelve monthly regressions of satellite data values on appropriate
meteorological variables for each of the years 1988, 1989 and 199b were too variable for the
data to be pooled. Instead, the mean and the standard error of the coefficient of determination
(r) values for each monthly comparison over the 1988 -1990 period were calculated to
facilitate comparison between the data. There are positive correlations in every month (p «
0.0001, mean n = 120 with range of 105 to 141 observations). As an example, the data for

1990 are shown in Table 2. Non-linear alternatives to a linear regression fit did not increase
coefficients of determination for the monthly comparisons.

The mean value of ~ for the correlations between surface temperature and A VHRR
channels 3, 4 and 5 over the three years were relatively low at 0.31, 0.38 and 0.32. The split-
window corrections explained more of the variance in the air temperature data however, with
mean ~ values of 0.54 for Price (1984), 0.43 for Becker and Li (1990) and 0.38 for Prata
(1991) formulations. This trend in the performance of the split-window equations was
followed without exception in the monthly comparisons. Furthermore, the standard error (an
indication of the variation in accuracy over the three years) was least for the Price (1984)
equation. Examples of the best and worse fit to the ground temperature data are shown in Fig.
3.

The deviations from the regression between the Price (1984) equation and the NOAA -
NCDC land surface temperature for December 1990 were plotted on a map of Africa (Fig. 4).
Distinct geographical patterns were revealed in these residual values and were found to be
related to altitude. Positive deviations from the regression line occurred largely in those
stations above 500 m and negative deviations occurred in those below. When elevation data
from the DEM were included as an additional predictor variable to the Price (1984) data in
monthly multiple regression equations, the fl increased from a mean of 0.54 to 0.70 for the
three years. This effect can be seen for each of the monthly comparisons in Fig. 5 which also
reveals that there were no seasonal trends in the goodness of fit. The scatter of points in the
monthly comparisons was not similarly reduced by including the NDVI in the regression

equation.
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TABLE 2.

Examples of the coefficients of detennination obtained when the monthly maximum thennal
channel and split-window corrected brightness temperatures are linearly regressed with the

monthly mean NOAA -NCDC air temperatures for J 990 (from Hay J 996).

Channel 3 Channe/4 Channel 5 Price

(1984)

Becker
and Li
(1990)

Prato and
Platt
(1991)

Price84
and

elevation

Jan O.O8t 0.17 0.12 0.36 0.23 0.17 0.47

Feb O.O7t 0.19 0.13 0.47 0.29 0.22 0.56

Mar 0.20 0.35 0.32 0.49 0.41 0.38 0.59

Apr 0.28 0.46 0.41 0.59 0.57 0.54 0.65

May 0.31 0.40 0.35 0.58 0.51 0.46 0.69

Jun 0.52 0.51 0.43 0.68 0.59 0.56 0.77

Jul 0.54 0.33 0.22 0.62 0.50 0.47 0.81

0.27 0.27 0.21 0.47 0.37 0.33 0.64Aug

0.20 0.38 0.30 0.29 0.68Sep 0.26 0.23

0.28 0.19 0.16 0.69Oct 0.10 0.19 0.17

0.44 0.37 0.710.36 0.51 0.46 0.61Nov

0.830.58 0.540.66 0.61 0.74Dec 0.48

0.670.41 0.370.520.28 0.36 0.31Mean

0.030.040.03 0.040.05 0.04 0.04SE

t Not significant at the 0.01 level.
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Mondtly mean ground air temperature (K).

Figure 3 The comparison of mean monthly NOAA -NCDC air temperature with the
maximum monthly Price (1984) split-window corrected brightness temperature.
Examples are given of the best fit to the ground data (December 1990, n = 124, P < <
0.0001,'; = 0.74, top graph) andthe~rstfit (September 1989, n = 117, P« 0.0001,

,; = 0.19, lower graph) (from Hay 1996).



Final Technical Report : Constraints on land-use in Africa imposed by trypanosomosis Page 32

I~.

.
.4

:."0

v~~
~

';'\7 \7
\7

'i7 ..
.V'

rj
6 t:J.

"-'\.e'--'

~

~\e

~

Figure 4 The distribution of the residual values in the regression of Price (1984)
corrected split-window corrected brightness temperature and the mean NOAA -NCDC
air temperature for December 1990. Stations for which data were missing are also

indicated (from Hay 1996).
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Figure 5 The adjusted? of the monthly comparison of NOAA -NCDC air temperature
and Price (1984) split-WIndow corrected brightness temperatures for the period 1988 -
1990. The graph ShOM the improvement of fit of the Price (1984) equation over the
A VHRR channel 4 data and the further improvement when elevation is used as a term in
the regression equation. The mean? (i. e. the proportion of the total variance
explained) for the Price (1984) and elevation combination over the 36 months is also
sho\1m by the dotted horizontal line (from Hay 1996).



Final Technical Report : Constraints on land-use in Africa imposed by trypanosomosis Page 34

Atmospheric moisture

Examples of the comparison of mean monthly NOAA -NCDC saturation deficit with the
maximum monthly vapour pressure deficit (VPD) derived from the satellite data are presented
for the year 1990 in Table 3. The VPDs were calculated using the Dalu (1986) (VPD1) and
the Eck and Holben (1994) (VPD2) procedures outlined previously. A highly significant
positive linear relationship was observed in each month (P « 0.0001, mean n = 121 with
range of 106 to 140 observations), except where t indicates significance below the 0.01 level.
Examples of the best and worse fit to the saturation deficit data are shown in Fig. 6.

The mean r for the three year period using VPD1 and VPDz were 0.63 and 0.62 respectively,
with the VPD1 procedure showing a larger standard error of the mean. In contrast to the split-
window data, the inclusion of elevation or the NDVI as additional predictor variables in the
multiple regression equations only marginally improved the fit to the ground data (to a mean of
0.66 in both cases). There was also a small improvement to the fit (to 0.67) if an exponential
relationship was used to describe the data. The time series of these monthly comparisons,
shown in Fig. 7, revealed no temporal trends in the data, but demonstrates the massive increase
in accuracy over a direct comparison of saturation deficit with the magnitude of the (channel 4
-channel 5) brightness temperature difference on which the technique is based.
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TABLE 3

The table shows the coefficients of determination obtained when the monthly mean NOAA -
NCDC saturation deficits are linearly regressed with the monthly maximum vapour pressure

deficits for 1990 (from Hay 1996).

Ch4 -Ch5 VPD1 VPDz VPDzand
elevation

VPDzand
NDVI

Jon O.OOt 0.40 0.41 0.54 0.52

Feb O.O3t 0.67 0.64 0.73 0.70

Mar O.O7t 0.64 0.62 0.69 0.66

Apr 0.10 0.69 0.64 0.65 0.69

May O.O5t 0.71 0.72 0.72 0.72

Jun O.O2t 0.67 0.63 0.63 0.64

Jul O.Olt 0.66 0.63 0.62 0.62

Aug 0.14 0.63 0.66 0.66 0.66

Sep 0.27 0.70 0.65 0.65 0.68

Oct 0.14 0.59 0.56 0.59 0.61

0.64 0.70 0.65Nov O.Olt 0.63

0.68 0.640.60Dec O.O8t 0.56

0.650.62 0.660.08 0.63Mean

0.020.02 0.010.02SE 0.02

t Not significant at the O.OI/eve/.



.

Final Technical Report: Constraints on land-use in Africa imposed by trypanosomosis Page 36

Monthly mean saturation deficit (mbar).

Figure 6 The comparison of mean monthly NOAA -NCDC saturation deficit with
maximum monthly vapour pressure deficit]. Examples are given of the best monthly fit
(Apr 1989, n = 107, P « 0.0001, ,; = 0.81, top graph) and of the ~rstfit (Nov 1989,
n = 140, P« 0.0001, ,; = 0.40, lower graph) (from Hay 1996).
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Month (1988 -1990)

Figure 7 The adjusted'; of the comparison of mean monthly NOAA -NCDC saturation
deficit and vapour pressure deficit] for the period 1988 -1990. The graph ShOM the
improvement of fit of the VPD] fonnulation over the brightness temperature difference
(channel 4 -channel 5). The mean level of variance e.xplained by the VPD] variable is
shown by the horizontal dotted line (from Hay 1966).

Rainfall

The comparison of total monthly precipitation and total monthly CCD for 1988, 1989 and
1990 and is shown in Table 4. A highly significant positive linear relationship occurs in every
month (p« 0.0001, n = 143, range 104 to 152). The mean r for the three year period was
0.65. Examples of the best and worse fit to the precipitation data are shown in Fig. 8.

Restricting the analysis to those meteorological stations situated between 270 N and the
equator (which corresponds to the TAMS AT calibration area) decreased the mean i to 0.53
(P « 0.0001, n = 84 with a range 73 to 106 observations). The inclusion of elevation and

NDVI in the regression equations did not increase the goodness of fit. The time-series of these
data, plotted in Fig. 9, again revealed no seasonal relationships, but illustrated the large
variability about the mean of the i values.
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TABLE 4.

The table shows the coefficients of determination obtained when relating total monthly NOAA
-NCDC precipitation to total monthly CCD for 1988 -1990 (from Hay 1996).

1988 1989 1990

Cubic CubicLinear Linear Cubic LinearTamsat Tamsat Tamsat

0.84 0.90Jon 0.81 0.87 0.75 0.00

Feb 0.75 0.78 0.50 0.72 0.74 0.56

0.80 0.41 0.48 0.360.76 0.77Mar

0.65 0.490.50Apr

0.780.71 0.730.73 0.690.72May

0.65 0.590.49 0.630.690.67Jun

0.460.660.600.61 0.160.57Jul

0.570.690.680.79 0.590.76
Aug

0.650.680.630.76 0.650.740.430.670.58Sep

0.780.690.670.840.660.650.660.660.64Oct

0.470.370.340.440.720.710.570.670.66Nov

0.320.580.570.400.570.730.450.640.64Dec

0.500.650.630.570.730.700.530.660.63Mean

0.060.040.040.050.020.020.050.010.02SE

missing CCD data.
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Monthly total precipitation (rom).

Monthly total precipitalion (nun).

Figure 8. The comparison of total monthly precipitation with total monthly CCD.
Examples are given in the top graph (Jan 1990, n = 104, P « 0.0001, ,; = 0.84) for the best
monthly fit and in the lower graph (Nov 1990, n = 125, P « 0.0001, ,; = 0.34) for the »vrst

fit to the ground data.



.

Final Technical Report: Constraints on land-use in Africa imposed by trypanosomosis
Page 40

1

0.9

0.8

0.7

0.6

0.5-

0.4

0.3

0.2-

0.1

o.
0 4 8 12 16 20 24 28 32 36

Month (1988 -1990)

Figure 9 The adjusted ,; of the monthly comparison of total monthly precipitation and
total monthly CCD for 1988 -1990. The mean level of variance explained is also
shown as the horizontal dotted line.

Land-cover

Nigeria

Early analysis of the Nigerian vegetation data concentrated on predictmg the percentage of
each grid square covered with a particular vegetation type (e. g. forest or woodland etc.). This
exercise showed that whilst the levels of predictive accuracy were high for grid squares with a
high percentage coverage, those for grid squares with low percentage coverages were
generally lower. On mspection of a series of bi-variate plots relatmg key predictor variables, it
became clear that the bi-variate scatter of pomts around the mean was very much less for grid
squares dominated by a particular vegetation type than it was for grid squares m which the
same vegetation type was scarcer. As a result, we decided to concentrate on the dominant
vegetation type within each grid square, and to carry out further analyses usmg all dominant

vegetation types simultaneously.

The Nigerian vegetation analysis was carried out when only the 1990 satellite data had been
processed, and before Fourier analysis of the Pathfinder products (subsequent analysis using
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the 3-year Fourier processed data set confirms most of the conclusions that follow). The RVI,
NDVI, SAVI and GEM!, and the Price (1984) and Gutman (1993) ground surface temperature
estimates were calculated from the Pathfinder data, as described previously. Yearly maximum,
minimum and mean values were calculated from the maximum value decadals for each variable,
along with standard deviations to obtain an indication of the annual signal variability.

Three land-cover datasets were generated from the Nigerian data containing grid-squares
where a given land-cover class exceeded threshold coverages of 50, 60 and 70 %. They were
analysed independently in a discriminant analysis exercise where the nearest 2 x 2 satellite pixel
array was averaged for each sample grid-square. Different covariance matrices were calculated
for each vegetation type and the observed sample prior probabilities were assumed in assigning
grid cells to land-cover classes (since these more fairly represented the actual proportions of
the different land-cover types). The ten variables giving the greatest separation between
vegetation classes in multivariate space (measured by the summed Mahalanobis distances) were
chosen from the 44 satellite variables and DEM data and were then used to classify the training
set data, pixels being assigned to that vegetation type giving them the highest posterior
probability of class membership.

The ability of the discriminant analysis to separate vegetation classes was measured by the
"producer accuracy" or the percentage of grid-squares within the training set known to have
been classified correctly and "consumer accuracy" or the percentage of grid-squares correctly
assigned to a class, for each vegetation class in turn. The Kappa and Tau statistics (Ma and
Redmond 1995) were also calculated from the marginal totals of the rows and columns of the
classification matrix.

Table 5 shows the ten predictor variables which gave the best description of land-cover for the
50, 60 and 70% threshold datasets. Although elevation ranks as the most important variable in
each case, raw waveband information, surface temperature estimates and the alternative
vegetation indices were all featured. Accuracy increased with threshold coverage as the grid-
squares became increasingly dominated by signals from the vegetation class to which they were

assigned.

Fig. 10 shows maps of the observed and predicted land-cover at the 60 % threshold and Table
6 presents the classification matrix for these data. A statistically perfect description of the
ground data is indicated when all the numbers are on the diagonal of this matrix. Fig. 11
shows the same 60 % threshold dataset with the remaining grid-squares assigned to their

dominant land-cover class as predicted by the analysis.

Table 7 shows the producer and consumer accuracies derived from Table 6. These results are
encouraging in terms of the Anderson criteria for evaluating land-cover classification accuracy
(Anderson et al. 1976) especially since these were formulated for use with maps generated
from high spatial resolution satellite imagery. Although interpretation accuracy falls below 85
% in all but two classes, the overall level of prediction is high. Accuracies are approximately
equal across classes and differences seem to be related to the sample size (e. g. compare open
woodland and cultivation with forest and scrubland). In addition, misclassifications are
understandable: open woodland is misclassified as dense woodland; dense woodland as forest.
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The levels of accuracy with which class estimates were obtained using low-spatial resolution
satellite imagery suggests that spatial extrapolation to the whole of West Africa for ecological
and environmental studies is feasible. Such a prediction is shown in Fig. 12.

TABLE 5

The top predictor variables for Nigeria land-cover at the 50, 60 and 70 % thresholds, and
accuracy measures for the predictions.

Variable (60 %) Variable (70 %)Rank Variable (50 %)

Elevation
ChI SD
Ch3 max
Ch I min
RVI mean
NDVI mean
Ch2 SD
Ch] mean
RVI min
GEMI max

Elevation
ChI SD
Ch I min
RVI max
NDVI max
SA VI max
Price mean
GEM! max
Price min
Ch2 mean

Elevation
Ch2 max
Gubnan max
GEMI mean
GEM! mjn
Ch I mjn

Price mjn
RVI mjn
Ch3 mjn
Price mean

2
3
4
5
6
7
8
9
10

0.541
0.525

0.640
0.635

Kappa
Tau

0.468
0.467

TABLE 6

Classification matrix of land-cover classes for the 60 % threshold coverage showing the number
of Nigerian sample grid-squares in each category.

Total7 85 62 3 4Observed

Predicted

8
25
53
162
250
88
12
248

0
0
5
6
40
86
0
10

0
0
0
0
0
0
12
0

5
3
41
21

9

0
0
0
0
0
0
0
0

0
19
0
7

0
1

5
3
0
0
120

2
2
89
29
0
0
42

1
4
34
168

I. BaLe groWld
2. Grassland
3. Scrubland
4. Open woodland
5. Dense woodland
6. Forest
7. Mangrove
8. All cultivation

0
0
3

0
47

0
26

846130147 122561651060 30Total



Predictions of All uegetdtion types in Higerid

Using variables (S+pp)
ELEU
That
THp2HD.ax
Tha3
HDp3
THp3
HDaO
CCDp3
HDp2

Obser~d

Predicted

1
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Scale
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I All cultivation

.Mangrove
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.Bare ground

Predictions of All vegetation types in Nigeria.

Using Udriables (S+pp)
ELEU
Tha1
THpZ
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THp3
ttDa9
CCDp3
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:I All cultiuation
.Mdngroue
.Forest
.Dense woodldnd
.Open woodland

Scrub
.Grass
.Bdre ground

Fig. 10 (upper). Observed land-cover types in Nigeria (only those grid squares with >60%
coverage of a single land-cover type are shown) and the cover predicted from the set of

satellite variables listed (details in Table 6).
Fig. 11 (lower). As for Fig. 10, but with the predicted dominant vegetation cover for all grid
squares, using the same set of satellite predictor variables.

1



Fig. 12. Predicted dominant land-cover types for West Africa, using the ERGO training set
data for Nigeria (Figs 10 and II) and parts of Mali and Tchad and satellite data for the
whole region.

Variables CS+pp)
ELEU
That
THp2
ttDMftX
Tha3

ttDp3
THp3
ttDa9

CCDp3
ttDpZ
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TABLE 7

Class Producer accuracy (%) Consumer accuracy (%)

0.0
76.0
77.4
54.9
67.2
97.7
100.0
48.4

N.A.
63.3
38.7
53.9
65.6
58.5
100.0
92.3

I. Bare ground
2. Grassland
3. Scrubland
4. Open woodland
5. Dense woodland
6. Forest
7. Mangrove
8. All cultivation

Africa

Image processing was conducted using ERDAS IMAGINE 8.2 software. Images consisting of
various combinations of Fourier components were subjected to an unsupervised classification

process (ISODATA) and pixels were assigned to 9 or 15 clusters, one of which always
represented water. This resulted in a number of statistically defined (and therefore spectrally-
separate) classes, each one potentially representing a different land-cover class. Given ground-
data or expert knowledge, cluster signatures can be assigned to different land-cover classes and
so can be later used in supervised classification of the original images.

The results of the ISODATA classification (a minimum distance classification procedure) were

compared to determine:

i) how the number of classes requested in ISODATA affected the final classification (NDVI
classifications only).

ii) whether GEM! and SA VI perform as well as or better than NDVI and
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ill) whether the inclusion of vapour pressure deficit (VPD) layer affects the classification.

A combination of temporal Fourier (ampO, ampl, amp2, amp3, phsl, phs2, phs3 only)
processed normalised-difference vegetation index (NDVI), Price split-window thermal (Ts) and
Channel-3 (Ch-3) data produced unsupervised classification results which matched much of the
detail of the phytochoria map of vegetation in Africa (White, 1983). Comparison of Figs. 13
and 14 with Fig. 15 (a vegetation map of 17 classes derived by amalgamating White's
vegetation groups -see map legend) indicates that there is much detail in the unsupervised
output that is not represented in the vegetation map. This is also the case with the 9-class (8
land-cover classes) classifications. In making these comparisons it should be considered that
White's map represents the areal extent of different vegetation types and is not strictly a land-
cover map (i. e. it does not take account of anthropogenic influences). Comparison of Fig. 14
with Figs 17 and 18 indicate that NDVI provides a more acceptable classification of land-cover
than does either GEMI or SA VI. Indeed, the use of GEMI and SA VI produced results which
appear spurious when compared with White's map. Comparison of Figs. 14 and 16 also
suggests that inclusion of VPD data does not improve the classification. These results are
broadly in line with those of the more detailed analysis of Nigerian land-cover using supervised
classification methods applied to similar satellite data sets.

Further progress is dependent on the availability of representative, land-cover data for large
areas. Digital elevation information will also be included in future classifications.

Land cover Change Detection

The lO-year data set for both NDVI and the Price (1984) split window thermal index from the
Joint Research Centre, Ispra, were accurately co-registered within the JRC (Malingreau and
Belward 1994) so that the time series of changes at the level of the pixel can be taken as a
measure of real changes in the recorded variables, rather than noise due to misaligned pixels.
This data set has been used by Eric Lambin in several papers on change detection analysis,
using a technique first suggested by Singh (1989) (Lambin and Strahler 1994 a, b). Briefly
change vector analysis places each pixel for each year within a l2-dimensional Euclidean space
(1 dimension per month) and compares years over time. The difference between a pixel's
position from one point in time (i. e. one year) to the next (i. e. a different year) has both
magnitude and direction. The magnitude contains information about the extent of change,
whilst the direction indicates the type of change. Given the inter-year variability ofNDVI and
other signals it is usual for these comparisons to be made in relation to the long-term average
values for each pixel. A consistent change over time with reference to this standard image is
taken to indicate a real effect in need of an explanation, whilst random changes are taken to
indicate noise. It is also usual to examine the direction of any changes seen within principal

component space as determined by the long-term average image.

An obvious and perhaps clearer means of detecting change is to examine changes in the
Fourier components. Most of the obvious changes that take place in vegetation type over time
will result in fairly obvious and predictable changes in the Fourier components. For example,
the change from a forest to a more open woodland causes a reduction in the mean vegetation
index but an increase in the amplitude of the seasonal vegetation cycle. Differences between
the phase timings of the annual signals from CCD (i. e. rainfall) and NDVI (vegetation growth)



Fig. 13. ISODATA classification of Fourier-processed satellite data -NDVI 9 classes



Fig. 14. ISODATA classification of Fourier-processed satellite data -NDVI 15 classes



Fig. 15. White's vegetation map of Africa -17 classes



.I

Fig. 16. ISODATA classification of Fourier-processed satellite data -VPD 15 classes



.
Fig. 17. ISODATA classification of Fourier-processed satellite data -GEMI 15 classes
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were found to be associated with the level of agricultural activity in Nigeria. Natural vegetation
is adapted to take immediate advantage of seasonal rains (in some cases even flushing before
the onset of the rains) and there is little delay between the peak CCD and peak NDVI values.
On the other hand, cultivated areas show a delay between these two peaks which increases
with the level of cultivation (up to a limit of c. 2/3 months in West Africa), a feature probably
attributable to the standard agricultural practice of delaying sowing until the first rains appear.
Hence examination of the changes in key Fourier components over time should provide a
useful index of environmental change. This was tested by comparing Fourier analysed NDVI
and split window channels for the two, two-year period~ 1982/3 and 1990/91. Examples are
shown in Fig. 19 and 20 for the whole of Africa and for Nigeria alone. In these figures,
increases over time in the value of the relevant Fourier component are shown in green and
decreases in red.

At the continental level there is a strong spatial patterning that suggests that the technique is
picking up some regionally varying signal rather than simply noise (which would give the
images a more speckled appearance). The NDVI images (Fig. 19 a) -c)) show an increase in
mean values in.the moister parts of the continent between the two dates (perhaps a general
reflection of recovery from the drought of the early 1980's?) and a general increase in the
amplitude of the annual cycle of vegetation grwoth, though with some areas showing a marked
decrease (e. g. parts of Cote d'Ivoire, Centr~-AmCm Republic and northern Uganda/southern
Sudan). The timing of the peak of this annual cycle occurs earlier in a broad belt from
northern Zaire through Uganda to parts of Kenya and SW Ethiopia, and in southern Namibia
into S. Africa (and patchily along the northern limits of the savannah region, which may be

artefactual- see later).

Changes in the thermal channel suggest that the average temperature has increased over the
same period, and this is associated with a decreased amplitude of seasonal fluctuation in most
of the vegetated parts of West Africa through to northern East Africa (and a slightly earlier
timing of this peak), but an increase in amplitude in the more southerly parts of East Africa,

Zambia and Zimbabwe (in places with a slightly delayed timing).

The Nigerian maps show some regional detail of these changes. The mean NDVI increased
over the period in question in most of the southerly regions, but appeared to decrease slightly
in the regions along and to the North of the northern border. This decrease occurs over a
period that is generally acknowledged to have become wetter, and is perhaps an example of
Goward and Prince's observation (Goward and Prince 1995) that whilst long-term rainfall
patterns can be related to long-term vegetation patterns, shorter-term variations in each of
these variables are less easily related to each other, because of presently unappreciated time-

delays in the response of vegetation to rainfall. It has been suggested (Willy Wint, pers.
comm.) that the vegetation North of Nigeria's border is dependent upon ground-water
reserves. Such reserves are likely to show a delayed response to drought, and to increased
rainfall following drought, and this may help to explain the patterns seen in the difference

1Inages.
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one of considerable change (in many cases decreases) in agricultural activity in the last 15 -20
years, a phenomenon attributed to the impact of oil wealth. Indeed, there are strong
similarities in the pattern of change in this region and the annual percentage change in
cultivation activity recorded by SLAR and aerial surveys between the years 1976 and 1990
(Fig. 26), such that areas where cultivation is recorded as having decreased are associated with
an earlier peak of vegetation activity in 1990/1 compared with 1982/3, i. e. in the direction
expected from the discussion earlier in this section. There is also a broad similarity between
the agricultural change map in the North of the country and changes in the annual amplitude of
the NDVI signal. Increasing levels of agricultural activity are associated with increasing annual
amplitudes, i. e. again in the direction which might be predicted.

The thermal change maps for Nigeria show a relatively uniform increase in mean temperature,
with a widespread decrease in amplitude, and a seasonal peak that occurs increasingly early
from South to North (the green areas North of this may be an artefact due to the way the phase
information is stored in the images: once timing is earlier than the start of the year, it occurs in
December of the previous year and so the difference in timing flips from being negative to

positive).

Tsetse distribution

COte d'lvoire and Burkina Faso

Results for G. morsitans, G. tachinoides, G. palpalis and G. longipalpis are shown in Fig. 21, using
the selected satellite variables listed in Table 8 (for further details, and more examples, see Rogers,
Hay and Packer 1996). Data from all three surveys in these countries were used in the analysis
(Laveissiere and Challier 1977,1981; Anon 1982). No clustering was carried out of the
presence/absence sites before analysis. It was found, however, that if the country surveys were
kept separate in the analysis (i. e. if Cote d'Ivoire's results were kept separate from Burkina
Faso's) the predictive accuracies increased for all but one species (the exception being G.

palpalis).

East Africa

Subspecies of those that occur in West Africa, or related sister species, also occur in East Africa,
along with species which only occur in this region. Using essentially the same predictor variable
data set (in this case re-sampled to 0.05 degree grid squares, a sub-sampling which involves some
repetition of the 8x8km pixels) discriminant analysis was used to describe the distributions of G.
morsitans (all three subspecies), G. fuscipes fuscipes and G. pallidipes in East Africa, with the
results shown in Fig. 22 and Table 9. For each of the maps in Fig. 22, the presence and absence
data were each divided into two clusters before analysis. The training set of data for this analysis
was chosen at random from the mapped distributions, 1000 points for absence and 200 for presence

(excluding Arabia and Madagascar).
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Fig. 19. Land-cover change detection for Africa. The difference between NDVI Fourier
variables for the early and late 1980s a), mean; b) amplitude of the annual cycle.
Increases in each variable over this period are indicated in green, decreases in red.



c

Fig. 19. Land-cover change detection for Africa. The difference between NDVI Fourier
variables for the early and late 1980s c) phase (= timing) of the annual cycle. Increases
over this period are indicated in green, decreases in red.
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Fig. 19. Land-cover change detection for Africa. The difference between the Price
(=thermal) Fourier variables for the early and late 1980s t) phase (= timing) of the annual
cycle. Increases over this period are indicated in green, decreases in red.
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Fig. 20. Land-cover change detection for Nigeria. The difference between NDVI
Fourier variables for the early and late 1980s a), mean; b) amplitude of the annual cycle.
Increases in each variable over this period are indicated in green, decreases in red.
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Fig. 20. Land-cover change detection for Nigeria. The difference between NDVI
Fourier variables for the early and late 1980s c) phase (= timing) of the annual cycle.
Increases over this period are indicated in green, decreases in red.
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Fig. 20 Land-cover change detection for Nigeria. The difference between the Price
(=thermal) Fourier variables for the early and late 1980s d), mean; e) amplitude of the
annual cycle Increases in each variable over this period are indicated in green, decreases

in red



f

Fig 20 Land-cover change detection for Nigeria The difference between the Price
(=thermal) Fourier variables for the early and late ]980s f) phase (= timing) of the annual
cycle Increases over this period are indicated in green, decreases in red.



Predictions of areas in Cote d'Iuoire, Burkina faso, Ghana and Togo with
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a
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= G.5G -G.519
= 6.15 -G.199
;:: 6.35 G.119
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0 = Actual

.;:: No prediction

Training set results: % Correct = 67 % False +ve = 29 % False -ue = 1
Sensitivit~ = .916 Specificity = .185

Predictions of areas in Cote d' Iuoire, Burkina raso, Ghana and Togo with
G. tachirKIides
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.=: No prediction

Trdining set results: % Correct = 71 % Fdlse +ve = 21 % False -ue
Sensitiuit~ = .916 Specificity = .629

2

21) Observed (black circles) and predicted distributions of a) G. mor.~itaJli and b) (;.
tachinoides in Cote d'lvoire and Burkina Faso. The predicted distributions are based on the
satellite data listed in Table 8, and are on a colour scale from red (low probability) to green

(high probability)



Predictions of areas in Cote d']uoire, Burkina raso, Ghana and Togo with
G.
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c
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0 = Actual

." No prediction

Training set results: % Correct = B7 % False ~e = 1 % False -ue = 8
Sensitiuity = .961 Specificity = .714

Predictions of areas in Cote d'luoire, Burkina raso, Ghana and Togo with
G. longipalpis dUsing variables

CCDp2
NDMax
Thal
NDpl
NDd2
CCDa3
CCDal
NDp3
TMO
Tha3

Probdbility scdle
.= 9.65 -1.0

= 9.55 -0.649
= 9.59 -0.549
= 9.45 -0.499
= 9.35 -0.149

.= 9.9 -0.319
0 "Actudl

." No prediction

1Training set results: % Correct = 71 % False +ve = 28 % False -ue =

Sensitivity = .976 Specificity = .649

21) Observed (black circles) and predicted distributions of c) (;. f)(llfJa/is and d) (J.
longipalpis in Cote d'Ivoire and Burkina Faso. The predicted distributions are based on the
satellite data listed in Table 8, and are on a colour scale from red (low probability) to green

(high probability).



Species: G. Rorsitdns
Probdbi1ity of occurrence
.= 9.65 -1.9
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Species: G. fuscipes
Probability of occurrence
.= 9.65 -1.8

= 9.55 -8.649
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b
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..Training data results
% Correct = 94
% False +ve = 6 % False -ve =
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22) Observed (black lines) and predicted distributions of a) G. mor.\'itan\' and b) (;..fiJscipe.\
(u.\'cipes. and in East Africa The predicted distributions are on a colour scale from red (low

probability) to green (high probability).

~



Species: G. pallidipes
Probability of occurrence
.'" 0.65 -1.0

'" 0.55 -0.619

'" 0.50 -0.519

'" 0.15 -0.199

'" 0.35 -0.119

.'" 0.0 -0.319
~ = Actual

c
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Training data results
% Correct = 86
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Sensitiuity = .715 Specificity =

..
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22) Observed (black lines) and predicted distributions of c) G. pallidipes in East Africa
The predicted distributions are on a colour scale from red (low probability) to green (high

probability )
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Africa

Finally, the continent-wide distributions of G. morsitans, G. palpalis, G. tachinoides and G.
pallidipes were analysed, using three clusters each for fly presence and absence, with the results
shown in Fig. 23 and Table 10. Again, the training set was 1000 points for absence and 200 for
presence, selected at random ftom the continental distribution and excluding Arabia and

Madagascar.

A comparison of the results from the three regions, either for 'species' (i. e. their subspecies or
close relatives) that occur throughout the continent or for 'species' that occur in two of the three
regions only, is shown in Table II. The accuracies of the whole-Africa predictions are at least as
good as those of the regional studies, either because of the splitting of the data set into clusters or
(more likely) because the wider range of conditions in the larger area includes more which are
unsuitable for the species. This should automatically increase the accuracy of predicting areas of
absence, and may also allow the technique to define presence/absence sites more distinctly.

Table 12 brings together the results in Tables 8 -10 to show the importance of the different satellite
data channels in predicting fly distributions. Clearly the relative importance of vegetation, thermal
and rainfall channels varies regionally. West Africa is in general hotter than East Africa, and the
thermal variables in West Africa are relatively more important than is the case elsewhere. NDVI
tends to dominate in East Africa and for the whole-Africa predictions. Finally rainfall is relatively
un-important on the West/East Africa regional basis, but is much more important at the continental
scale. Elevation is also a key variable at the continental scale for all four species chosen (although,
as reported earlier, this may be an artefact of the clustering techniques employed to divide the data
before analysis).

TABLE 8

The key predictor variables for the distribution of four species of tsetse in West Africa (from

Rogers, Hay and Packer 1996).

~ ~~T~orsitans ~~~n1!}palpis ~.palpalisG. tachinoides
I CH4range CCDp2 Ndmax CH4range
2 CCDmin NDmax CH4a2 NDm/CH4m
3 NDp-CCDp CH4al CH4al CH4p2

! 4 NDal NDpl CH4mean NDmean
5 NDal/CH4al NDa2 CH4min CH4mean
6 CCDa2 CCDmean NDm/CH4m CH4a2
7 NDa3 CCDal CH4a3 NDa2
8 NDmean NDp3 CCDp2 Elev
9 CH4a2 CH4mean CCDa3 CH4al

I 10 NDm/~H4m CH4~ CH4p2 -3CDmin
ResuItln
%correct
%false +
%false -

Sensi~

10
67
29
4
0.92

10
71
28
1
0.98

10
87
4
8
0.90

10
74
24
2
0.95
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I Rank G. morsitans G. DallidipesG. fuscilJ~fusciDes
1
2
3
4
5
6
7
8
9
10

OEM
NOm/CH4m
Nda2
CH4min
CH4a3
Ndmax

ATN(NDm/CH4m)
CCDmean
Ndmean
CH4mean

Ndmax
OEM
NDm/CH4m
CCDaO
NDpl-CH4pl
Ndrnean
CH4max

ATN(NDm/CH4m)
CH4min
CH4mean

NDm/CH3m
DEM
Ndmax
CCDaO
Ndrnean
CH4mean
CH4al
A TN(NDm/CH4m)
CCDa2
_CCDrange

Result/n
%correct
%false +
%false -

Sensitivity
Specificity

10
82
18

1
0.96
0.79

10
94
6
0
o.
o.

10
86

9
5
o.
o.

TABLE 10

The key predictor variables for the distribution of four species of tsetse throughout Africa.

'Rank G. valDalDisG. morsitans G. tachinoides G. ~allidipes
1
2
3
4
5
6
7
8
9
10

DEM
Ndmax
NDm/CH4m
CCDmean
Ndmean
NDpl-CH4pl
CH4min
CCDa2
Nda3
Ndal

DEM
NDm/CH4m
Ndmax
CCDmax
Nda2
Ndal/CH4al
CH4min
NDpl-CH4pl
CCDal
CCDa3

DEM
NDm/CH4m
CCDmean
Ndmean
CH4min
CCDmin
Ndal/CH4al
CCDa2
CCDal
Ndranee

DEM
Ndrange
CH4al
NDpl-CCDpl
Ndal/CH4al
Ndal
Nda2
CCDa3
Ndmean
NDm/CCDm

10
89
9
2
0.87
0.89

10

94
5
0
0.98
0.935

10
96

4
0
O.
o.

Resultln
%correct
%false +
%false -

Sensitivity
Specificity

10
88
12
1
O.
O.

98

93
72
89

96
96

97

86



aSpecies: G. norsitdns
Probability of occurrence
.'" 9.65 -1.0

= 9.55 -O. 649 ~"'.
= 9.50 -0.549
= 9.45 -0.499
= 9.35 -0.449

.'" 9.9 -9 .349
~ = Actual -
Uars (S.pp.3/3)

DEn
NDx
N"/C,,,
CCDaO
NDae

Np-Chip
Chin
CDaZ
NDa3
NDal

1

Training data results:
% Correct = 88
% False +ue = 12 % False -ue =
Sensitivity = .970 Specificity = .860

bSpecies: G. palpalis
Probability of occurrence
.::: 9.65 -1.8

::: 9.55 -0.619
= 9.58 -0.519
= 9.15 -8.199
= 9.35 -8.119

.= 9.9 -9.319
~ = Actual

~-

Vdrs (S.pp.3/3)
DEM
N,,/CIII
NDx
CDx
NDdZ
Na/Chid
Chin
Np-Cp
CDdl
CDd3

Training data results:
% Correct = 94
% False +ve = 5 % False -ve =
Sensitivity = .9B0 Specificity =

(:I

.935

23) Observed (black lines) and predicted distributions of a) (;. mor.'iitall.'i and b) (j.palpali.,'
~'i.l.) in Africa The predicted distributions are on a colour scale from red (low probability) to

green (high probability)



Species: G. tachinoides
Probability of occurrence
.= 9.65 -t.e

= 9.55 -e.619
= 9.5e -e.519
= 9.15 -e.199
= 9.35 -e.119

.= 9.9 -9.319
~ = Actual

c

~

.-
!Jars (S.pp.3/3)

DEn
Nn/CIII

CCDaO
NDa9
Ch4n
CDn
Na/Ch4a
CDaZ
CDal
NDr

Training data results:
% Correct = 96
% False .ue = 4 % False -ue =
Sensitiuity = .985 Specificity =

0

.957

dSpecies: G. pallidipes
ProbabiJity of occurrence
.=: 9.65 -1.8

= 9.55 -8.619 :~
= 9.58 -8.519
= 9.15 -8.499
= 9.35 -8.419

.= 9.9 -9.349
~ = Actual .-
\Jars (S.pp.3/3)
DE"
!'IDr
Chia1
!'Ip-Cp
!'Ia/Chia
!'IDa!
!'IDaZ
CDa3
!'IDae
!'In/CIII

z

Training data results:
% Correct = 89
% False +ue = 9 % False -ue =
Sensitiuity = .865 Specificity = .890

23) Observed (black lines) and predicted distributions of c) G. tachinoides and d) G.
pal/idipe.5 in Africa. The predicted distributions are on a colour scale from red (low

probability) to green (high probability)
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TABLE 11

Summary of the predictive accuracies of the discriminant analytical techniques applied to four
tsetse species in West and East Africa and throughout the continent.

Glossina morsitans

Glossina palpalis

986WEST(I,I) 1 1 5 : 0.94 1 0.58

G. p. palpalis: ::: ,

-Q: J!; -g-~~_i.e.~~i~ J- J- :. :- EAST(2,2) ; 94 ; 6 ; 0 ; 0.98 ; 0.93

' ' ' J ALL(3,3) : 94 : 6 : 0 : 0.98 : 0.94

Glossina pallidipes

Glossina tachinoides

EAST(2,2) : NP : NP : NP : NP : NP
1 1 ' ' ' ALL(3,3) ; 96 ; 4_-L 0 ; 0.99 ~~~ --



Predictions of G Rorsitans density in Cote d'Iuoire

aUsing uariables (3+=p)
HDp-CDp
HD/CD I
That
CCDpZ
nfpZ
CHirangc
HDdZ
CCo.ax
CCDaZ ,.

HDpZ )

Ob~

~ ;,C"

""

.

~
.r-

Scale ,.,.,..-,/

.= 9.51 -12.18

.= 9.98 -9.58
= 9.92 -9.97
= 9.91 -9.91
= 9.99 -9.99

Predictions of G. tachinoides density in Cote d'Iuoire.
b

.=

.=

.=
'K* =

24) Observed and predicted abundances of a) G. morsitans and b) G. tachinoides in northern
Cote d'Ivoire. The scale is Apparent Density, flies per trap per 'day'. The satellite predictor

variables are listed in each figure.

8.31 

-
9.19 -
9.93 -
9.81 -
9.80 -

B.53
9.39
9.9'3
9.92
9.99



Predictions of G palpalis density in Cote d'Iuoire

Using Udridbles (S+=p)

THp3
Th42
HDlaax
CCDa3
CH4III i n
CH4I1ax

CCDpl
CCDal
THp2
HDa3

Obser\.N::d

-

'\~
.~

.

c,

~

,.., '" ;--"
...Scale

.= 2.57 -7.45

.= 1.53 -2.53

.= 8.8& -1.49
= 8.34J -8.BS
= 8.88 -8.38

Predictions of G. longipdlpis density in Cote d'Iuoire.

Using Udriables (3+=p)
CCDa2
CCDdl
HDp-CDp
Thd2
CCD,z
HDdl/aKdl
CHillI i n
CCDa3
Tha9
CCDp3

Obser~

~
f

-
I

--.:Lr-".J r--~
"'"Scale

.= 9.Z5 -Z.&Z

.= 9.99 -9.Z9

.= 9.93 -8.98
9 = 9.81 -9.9Z

= 8.80 -8.99

24) Observed and predicted abundances of c) G. palpalis and d) G. /ongipaipis in northern
Cote d'Ivoire. The scale is Apparent Density, flies per trap per 'day'. The satellite predictor

variables are listed in each figure.
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TABLE 12

Tsetse abundance

TABLE 13,

The 10 most important predictor variables used to describe the abundance of tsetse (/lies per
trap per day) in northern Cote d' Ivoire, and the accuracy of the predictions of the abundance
classes (five for all species) (from Rogers, Hay and Packer 1996).

I~nk
-
G. morsitans

--
G. po/po/is

G. 

tachinoides.,

CH4p3
CH4a2
NDmax
CCDa3
CH4min
CH4max
CCDpl
CCDal
CH4p2
NDa3

;

,
I

)

NDm/CH4m
DEM
CH4a2
NDp2
CCDmin
NDm/CCDm
CCDrange
Ndrange
NDa3
CH4range

10.0-0.0 '

0.01-0.02
0.03-0.09
0.10-0.30
10.31-8.53-

CH4p3
CH4a2
NDmax
CCDaJ
CH4min
CH4max
CCDpI
CCDal
CH4p2
NDa3

NDm/CH4m
OEM
CH4a2
NDp2
CCDmin
NDm/CCDm
CCDrangeNdrangeNOa3

CH4ran.ee

:78
:50
:30
:59
:58

:65:78

:78
:62
:65

:58
:100
:72
:51
:63

1 0.0-0.0 0.01-0.02

0.03-0.08

0.09-0.20
10.25-2.62

:81
:80
:76
:94
:83

Abundance

I%Accuracy
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Disease distribution

Few data sets are available on the spatial distribution of trypanosomosis, either in cattle or humans.
Our project benefitted from collaborative links with Project GCprrOG/OI3/BEL and Dr. Guy
Hendrickx who has sampled the prevalence of trypanosomosis on a gridded basis throughout
Togo. These data, when subjected to discriminant analysis using satellite and other field data
may be described with considerable accuracy, as shown in Fig. 25a. Using the same satellite
variables, the predicted 'high risk' areas for Togo and adjacent countries (Ghana and Benin)
are shown in Fig. 25b

The impact of tsetse on cattle can be found by comparing the cattle densities in areas where
flies are present with those where flies are absent. Using the ERGO data set for the central
band of Nigeria, it can be shown that cattle numbers in erstwhile G. morsitans areas are much
lower than in tsetse-free areas (Rogers 1993). A number of reasons may be given for this.
Either the flies have a direct impact on cattle, or the associated agricultural activities are very
much less in areas known to be infested with tsetse, such activities generally being associated
with increased cattle numbers. Whilst the first explanation seems reasonable (though difficult
to prove within the ERGO data set) the second may be examined by comparing survey results
at different points in time. The 1976 SLAR survey of vegetation cover in Nigeria has been
compared with the RIM 1990 aerial survey in several reports (e. g. ERGO 1994). Fig. 26 a)
shows the annual percentage change in agricultural activity between these two dates (the
problems of relating SLAR to aerial survey data are detailed in the ERGO report). There
appears to be at least a visual correlation between areas of agricultural increase and areas
previously inhabited by G. morsitans in the middle and North of the country, although there
are also fly-free areas which experienced an increase (e. g. in the North-East) and fly-infested
areas showing a decrease (e. g. in the South-West). Clearly, therefore, factors in addition to
tsetse have influenced the changes shown in Fig. 26a, amongst which are the increased
sedenterisation in the North of Nigeria of the once nomadic Fulani pastoralists and the general
abandonment of agriculture in parts of the South, associated with increased wealth derived
from oil. One methodological problem with the interpretation of Fig. 26 a) is that only those
areas that had a low level of agricultural activity in the 1970's could have shown a high rate of
increase up to 1990, since areas already heavily cultivated in 1976 could not increase their
coverage beyond 100%. Fig. 26 b) was produced in an attempt to overcome this problem, and
shows the intrinsic rate of increase of agricultural activity between the two sample dates. This
figure assumes that agricultural activity in an area starts from a base of zero and increases
logistically up to some maximum, arbitrarily set to 80% (other maxima do not greatly affect the
spatial patterning of the results). The intrinsic rate of increase should be insensitive to the
actual level of cultivation seen in 1976, because it represents the maximum possible growth
rate of agriculture by region, not the realised growth rate (the difference is explained in many
standard ecological texts). Again, as in Fig. 26 a), there appears to be an association between
high intrinsic growth rates and G. morsitans habitats (with the regional exceptions noted
previously). Taken together, these two maps suggest that G. morsitans has had a significant
impact on agricultural activity in Nigeria (Fig. 26 a)), and that it has done so by limiting
agricultural development in potentially productive areas (Fig. 26 b)).
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Predictions of areas in Togo with PPRUA T. congolense > 10

a
Using variables
NDph2
NDamp3
Tmn
Tmll
NDampl
Tmx
NDph3
NDVlx
NDVln
NDamp2

Probability scale
.8.90 -0.99
.0.80 -0.89
.8.70 -0.79
.0.50 -0.69

8: 0.58 -0.59
~ 8.40 -0.49

8.30 -0.39
0.20 -0.29
0.10 -0.19
8.00 -0.09

0 Observed

% Correct = 81.83
~ False +ve = 14.47
~ False -ve = 4.58
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Specificity = .833

Predictions of areas in Ghana with PPRUA T.

Using variables J.
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25) a) Observed (red circles) and predicted (green shading) of the prevalence of TryJXl1lOSoma
congolense in cattle in Togo (data courtesy of Dr. Guy Hendrickx). b) Predicted high risk
areas for 1: congolense in Ghana, Togo and Benin using the same satellite predictor variables.





Final Technical Report: Constraints on land-use in Africa imposed by trypanosomosis Page 53

Brown, S. A., Folk, M., Goucher G. & Rew, R. (1993). Software for portable scientific data
management. Computers in Physics 7,304-308.

Brown, J.F., Loveland, T.R., Merchant, J.W., Reed, B.C. & Ohlen, D.O. (1993) Using multi-
source data in global land-cover characterization: concepts, requirements, and methods.

Photogrammetric Engineering and Remote Sensing 59, 977-987.
Congalton, R.G. (1991) A review of assessing the accuracy of classifications of remotely

sensed data. Remote Sensing of the Environment 37, 35-46.
Cooper, D. I. & Asrar, G. M. (1989). Evaluating atmospheric correction models for

retrieving surface temperatures from the A VHRR over a tallgrass prairie. Remote Sensing
of Environment 27, 93-102.

Corves, C. & Place, C.J. (1994) Mapping the reliability of satellite-derived landcover maps -an
example from the Central Brazilian Amazon Basin. International Journal of Remote
Sensing 15, 1283-1294.

Cushnie, J.L. (1987) The interactive effect of spatial resolution and degree of internal
variability within land-cover types on classification accuracies. International Journal of
Remote Sensing 8, 15-29.

Dalu, G. (1986). Satellite remote sensing of atmospheric water vapor. InternationalJournal
of Remote Sensing, 7: 1089-1097.

DeFries, R.S. & Townshend, J.R.G. (1994) NDVI-derived land cover classifications at a global
scale. International Journal of Remote Sensing 15, 3567-3586.

Eastman, J. R. & Fulk, M. (1993). Long sequence time series evaluation using standard
principal components. Photogrammetric Engineering and Remote Sensing 59, 991-996.

Ehrlich, D. & Lambin, E.F. (1996) Broad scale land-cover classification and interannual
climatic variablility. International Journal of Remote Sensing, 17, 845-862.

Environmental Research Group Oxford. (1994). Land use change in Nigeria -1976-1990. A
report prepared by ERGO for the United Nations Environmental Programme (UNEP) and
the Federal Environmental Protection Agency (pEP A): Abuja, Nigeria.

Estes, J.E. & Mooneyhan, D.W. (1994) Of maps and myths. Photogrammetric Engineering
and Remote Sensing 60, 517-524.

FAO/UNESCO (1977). Soil Map of the World 1:5,000,000. Volum VI, Africa. UNESCO,
Paris.

Fitzgerald, R. W. & Lees, B.G. (1994) Assessing the classification accuracy of multi-source
remote sensing data. Remote Sensing of the Environment 47, 362-368.

Flasse, S. & Verstraete, M. M. (1994). Monitoring the environment with vegetation indices,
comparison of NDVI and GEM! using AVHRR data over Africa. In Vegetation,
Modelling and Climate Change Effects, editors Veroustraete, F. and Ceulemans, R., pp.
107 -135. SPB Academic Publishing: The Hague, The Netherlands.

Foody, G.M. (1992). Classification accuracy assessment: some alternatives to the Kappa
coefficient for nominal and ordinal level classifications. Pp 529-538 in Remote Sensing:
from Research to Operation. Proceedings of the 18th Annual Conference of !be Remote
Sensing Society. (ed. A.P. Cracknell and R.A. Vaughan).

Foody, G.M., McCulloch, M.B. & Yates, W.B. (1995) Classifcat~o~ of remotely sens~ ~ta
by an artificial neural network: issues related to trammg data charactenstlcs.
Photogrammetric Engineering and Remote Sensing 61,391-401.

Foody, G. M., Boyd, D. S. & Curran, P. J. (1996). Relations between t~opical forest
biophysical properties and data acquired in A VHRR channels I -5. 1nternational Journal
of Remote Sensing 17, 1341-1355.



Final Technical Repon : Constraints on land-use in Africa imposed by trypanosomosis
Page 54

Ford, J. & Katondo, K. M. (1977). The distribution of tsetse flies (Glossina) in Africa in
1973. Organization of African Unity -Scientific and Technical Research Commission.
Cook, Hammond and Kell: London, UK.

Goward, S. N. & Prince, S. D. (1995). Transient effects of climate on vegetation dynamics-
satellite observations. Journal of Biogeography 22, 549-564.

Green, P. E. (1978). Analyzing Multivariate Data. The Dryden Press: Hinsdale, Illinois,
USA.

Gutman, G. G. (1993). Multi-annual time series of AVHRR-derived land surface

temperature. Advances in Space Research 14, 27-30.
Hay, S.I. (1996). An investigation of the utility of remotely sensed meteorological satellite

data for predicting the distribution and abundance of the tsetse fly (Diptera: Glossinidae).
D. Phil thesis, Oxford University (submitted).

Hay, S.I., Tucker, C.J., Rogers, D.J. & Packer, M.J. (1996) Remotely sensed surrogates of
meteorological data for the study of the distribution and abundance of arthropod vectors
of disease. Annals of Tropical Medicine and Parasitology 90, 1-19.

Huete, A. R. (1988). A soil adjusted vegetation index (SA VI). Remote Sensing of
Environment 25,295-309.

Jackson, R. D. & Huete, A. R. (1991). Interpreting vegetation indices. Preventive Veterinary
Medicine, 11: 185-200.

Jeyaseelan, A. T. & Thiruvengadachari, S. (1993). Suspected Mt. Pinatubo aerosol impact on
the NOAA A VHRR NDVI over India. International Journal of Remote Sensing 14, 603-
608.

Kidwell, K. B. (1995). NOAA polar orbiter data users guide (T/ROS-N, NOAA-6, NOAA-7,
NOAA-8, NOAA-9, NOAA-IO, NOAA-II, NOAA-I2, NOAA-I3 and NOAA-I4). National
Oceanic and Atmospheric Administration: Washington DC., USA.

Lambin, E.F. & Ehrlich, D. (1995) Combining vegetation indices and surface temperature for
land-cover mapping at broad spatial scales. International Journal of Remote Sensing, 16,
573-579.

James, M. E. & Kalluri, S. N. V. (1994). The pathfinder AVHRR land data set -an improved
coarse resolution data set for terrestrial monitoring. International Journal of Remote

Sensing 15,3347-3363.
Lambin, E.F. & Strahler, A.H. (1994a). Change-vector analysis: a tool to detect and

categorize land-cover change processes using high temporal resolution satellite data.
Remote Sensing of the Environment 48,231-244

Lambin, E. F. & Strahler, A.H. (1994b). Indicators of land-cover change for change-vector
analysis in multi-temporal space at coarse spatial scales. International Journal of Remote
Sensing 15, 2099-2119. ...

Laveissiere, C. & Challier, A. (1977). Notice Explicative No 69. La repartItIon des Glossmes
en Haute-Volta, cartes a 1/2 000 000. Office de 1a Recherche Scientific et Technique
Outre-Mer (ORSTOM): Paris, France. ...

Laveissiere, C. & Challier, A. (1981). Notice Explicative No 89. La repartItIon des Glossmes
en Cote d'lvoire, cartes a 1/2 000 000. Office de la Recherche Scientific et Technique
Outre-Mer (ORSTOM): Paris, France. ...

Lark, R.M. (1995) Components of accuracy of maps with special refer~nce to discnmmant
analysis on remote sensor data. International Journal of Remote SensIng 1~, 1461-14.8?

Lillesand, T .M. & Kiefer, R. W. (1994) Remote Sensing and Image Interpretation, 3rd editIon.
John Wiley & Sons, New York, 750 pp.



Final Technical RepoIt : Constraints on land-use in Africa imposed by trypanosomosis
Page 55

Los, S. O. (1993). Calibration adjustment of the NOAA AVHRR normalized difference

vegetation index without recourse to component channell and 2 data. International

Journal of Remote Sensing 14, 1907-1917.

Ma, Z. & Redmond, R.L. (1995) Tau coefficients for accuracy assessment of classification of

remote sensing data. Photogrammetric Engineering and Remote Sensing 61, 435-439.

Malingreau, J. P. & Belward A. S. (1994). Recent activities in the European Community for

the creation and analysis of global A VHRR data sets. International Journal of Remote

Sensing 15, 3397-3416.

Marsh, S.E., Walsh, -J.L., Lee, C.T., Beck, L.R. & Hutchinson, C.F. (1992) Comparison of

multi-temporal NOAA-A VHRR and SPOT -XS satellite data for mapping land-cover
dynamics in the west African Sahel. International Journal of Remote Sensing 13, 2997-

3016.

Millington, A.C., Critchley, R. W., Douglas, T.D. & Ryan, P. (1994) Estimating ooody
biomass in sub-Saharan Africa (Washington DC: The World Bank).

Moody, A. & Woodcock, C.E. (1994) Scale-dependent errors in the estimation of land-cover

proportions: implications for globa11and-cover datasets. Photogrammetric Engineering and

Remote Sensing 60, 585-594.

National Oceanic and Atmospheric Administration. (1972). Substation observations.

National Weather Service (NWS) observing handbook. No.2. Government Printing

Office: Washington DC., USA.

National Center for Supercomputing Applications. (1990). Hierarchical Data Format (HDF)

Users Guide. NCSA, University of Illinois: Urbana-Champaign, USA.

National Oceanic and Atmospheric Administration. (1990). Monthly climate data for the

oord. Prepared in co-operation with the World Meteorological Organisation. Volume

41, 42 and 43; numbers 1-12. National Climate Data Centre (NCDC), NOAA: North

Carolina, USA.

Pinty, B. & Verstraete, M. M. (1992). GEM!, a non-linear index to monitor global vegetation

from satellites. Vegetatio 101, 15-20. .

Prata, A. J. (1993). Land surface temperatures derived from the advanced very high

resolution radiometer and the along-track scanning radiometer 1. Theory. Journal of

Geophysical Research 98, 16,689-16,702.

Prata, A.J. & Platt, C.M.R. (1991). Land surface temperature measurements from .the

A VHRR. pp 433-438 in Proceedings of the 5th A VHRR Data Users Meeting,

EUMETSAT, Darmstadt. ..

Price, J. C. (1983). Estimating surface temperatures from sate~te the~ infrared data -a

simple formulation for the atmospheric effect. Remote SensIng of EnvIronment 13, 353-

361.
li .

d hann 1 fPrice, J. C. (1984). Land surface temperature measurement for the sp tWIll °:v c e s 0

the NOAA 7 advanced very high resolution radiometer. Journal of GeophysIcal Research

8,: 7231-7237. ..,
Prince, S. D. & Goward S. N. (1995). Global primary productIon -a remote-sensmg

approach. Journal of Biogeography 22, 815-835.
Resource Inventory and Management. (1992). Nigerian livestock resources. Four Volumes.

Report prepared by RIM Ltd. for the Federal Department of Livestock and Pest Control

Services, Abuja, Nigeria. Rogers, D. J. (1991). Satellite imagery, tsetse and trypanoSOmIaSIS m Africa. Preventive

Veterinary Medicine 11, 201-220.



Page 56

Rogers D.J. (1993). Consultant Report to FAO. Unpublished.
Rogers, D.J., Hay, S.l. & Packer, M.J. (1996) Predicting the distribution of tsetse flies in West

Africa using temporal Fourier processed meteorological satellite data. Annals of Tropical

Medicine and Parasitology 90, 225-241.
Rogers, D. J. & Randolph, S. E. (1991). Mortality rates and population density of tsetse flies

correlated with satellite imagery. Nature 351, 739-741.
Rogers, D. J. & Williams, B. G. (1994). Tsetse distribution in Africa, seeing the wood and

the trees. In Large Scale Ecology and Conservation. Edited by P. J. Edwards., R. M.

Mayand N. R. Webb, pp. 249-273. Blackwell Scientific Publications: Oxford, UK.
Samso~ S.A. (1993) Two indices to characterize temporal paterns in the spectral response of
vegetatIon. Photogrammetric Engineering and Remote Sensing 59, 511-517.
Singh, A. (1989). Digital change detection techniques using remotely sensed data.

International Journal of Remote Sensing 10, 989-1003.
Smith, W. L. (1966). Note on the relationship between total precipitable water and the

surface dew point. Journal of Applied Meteorology 5, 726-727.
Snijders, F. L. (1991). Rainfall monitoring based on Meteosat data -a comparison of

techniques applied to the Western Sahel. International Journal of Remote Sensing 12,
1331-1347.

Steinwand, D. R., Hutchinson, J. A., & Snyder, J. P. (1992). Map projections from global
and continental data sets, and an analysis of distortion caused by reprojection. United
States Geological Survey EROS Data Centre (USGS/EDC) contract report, EROS Data
Center, Sioux Falls, USA.

Steinwand, D. R. (1994). Mapping raster imagery to the Interrupted Goode Homolosine
Projection. International Journal of Remote Sensing 15, 3463-3471.

Stone, T.A., Schlesinger, P., Houghton, R.A. & Woodwell, G.M. (1994) A map of the
vegetation of South America based on satellite imagery. Photogrammetric Engineering

andRemoteSensing 60,541-551.
Stowe, L. L., Carey, R. M. & Pellegrino, P. P. (1992). Monitoring the Mt-Pinatubo aerosol

layer with NOAA-II A VHRR data. Geophysical Research Letters 19, 159-162.
Tatsuoka, M. M. (1971). Multivariate Analysis: techniques for educational and

psychological research. John Wiley & Sons: New York, USA.
Townshend, J.RG. (1992) Land cover. International Journal of Remote Sensing 13, 1319-

1328. .
Sugita, M. & Brutsaert W. (1993). Comparison of land surface temperatures derIved from

satellite observations with ground truth during FIFE. International Journal of Remote
Sensing 14, 1659-1676. ..

Townshend, J.R.G & Justice, C.O. (1986) Analysis of the dynamics of African vegetat~on
using the normalised difference vegetation index. International Journal of Remote SensIng
7, 1435-1445.

ifi . fTownshend, J. R. G., Justice, C. O. & Kalb, V. (1?87). Charact~tion and class catIon 0
South American land cover types using satellite data. International Journal of Remote
Sensing 8, 1189-1207. ..

T k C J Townshend J. R. G. & Goff T. E. (1985). African land-cover classificatIonuc er, .., , ,
using satellite data. Science 227,369-375. ...

Unwin, D. M. (1980). Microclimate measurement for ecologists. BIological techniques
series 3. Academic Press: London, UK.



.

Final Technical Report: Constraints on land-use in Africa imposed by trypanosomosis
Page 57

Van de Griend, A. A. & Owe, M. (1993). On the relationship between thermal emissivity and
the normalized difference vegetation index for natural surfaces. International Journal of
Remote Sensing 14, 1119-1131.

Van Deusen, P.C. (1995) Modified highest confidence first classification. Photogrammetric
Engineering and Remote Sensing 61,419-425.
White, F. (1983). The vegetation of Africa -a descriptive memoir to accompany the

UNESCO/AETFAT/UNSO vegetation map of Africa. United Nations Educational,
Scientific and Cultural Organisation: Paris, France.


	FTR R5794
	EXECUllVE SUMMARY
	BACKGROUND
	PROJECT PURPOSE
	RESEARCH ACTIVITES
	OUTPUTS
	Aknowledgements
	References

