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. INTRODUCTION: THE PLANT/ANIMAL INTERFACE IN A
SYSTEMS CONCEPT

Grazing systems are one of the main types of agroecological systems

for food production in the world. These systems comprise about half

of the world’s land area (Stuth and Stafford-Smith, 1993), and in-

,a ¢—creased interest exists in improving their management and ensuring
‘5[ sustainability. There is concern to prevent degradation of the resource
base and its consequent environmental, social, and economic effects.

A common approach in studying grazing systems has been by

way of mathematical modeling (Stuth and Stafford-Smith, 1993). Un-
fortunately, many scientists have looked at specific and detailed phe-

H nomena within a part of the system without taking into account in-
teractions and effects at the whole-system level (Demment et al.,

1995). The plant/animal interface is one of many subsystems of a
grazing system. It is a key element but is subject to a number of
forward and backward interactions with the other subsystems. Con-
sequently, it cannot be fully understood in isolation nor can it be
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modeled without reference to all relevant components. Only recently
have more integrated approaches, linking concepts from different dis-
ciplines across a variety of levels of knowledge, been implemented.
The integration of various levels exposes enormous complexity
within a grazing system. The degree of detail in these levels depends
on the purpose for which the model is meant to be used, the users,
the level of accuracy required, and the planning horizon (i.e., oper-
ational, strategic, or tactical).

This chapter reviews these approaches to obtain an adequate
definition of the plant/animal interface in a systems context.

il. MODELING THE FORAGE RESOURCE
A. Modeling Primary Production

A wide range of approaches to modeling the forage resource are
found in the literature. These vary widely in degree of complexity,
number of species represented, variable and parameter definitions,
and simulated output.

Some of the simplest representations are based on the functional
form of plant growth curves [see Thornley and Johnson (1990) for a
review]. For example, Brougham (1956), Morley (1968), Noy-Meir
(1975, 1976, 1978), Christian et al. (1978), and Woodward et al. (1993,
1995) used logistic growth curves to represent pasture growth in their
models:

\

Eistv = mW ( -V_\"/-:/:._ (§))
where m = the maximum relative growth rate, W = initial plant bio-
mass, W,... = the asymptote plant biomass, and t = time. This de-
scription assumes that growth is proportional to plant biomass, rate
of growth is proportional to amount of substrate, and substrate is
finite (Thornley and Johnson, 1990).

Equation (1) is easy to parameterize when smooth experimental
data of the dynamics of plant growth are available. The appropriate-
ness of the parameters will depend on the quality of the experimental
data and will reflect only the particular conditions in which the plants
were growing for that particular data set. Nevertheless, the shape of
the curve can be explained physiologically. Exponential growth oc-
curs due to increased irradiance captured by increases in leaf area
index (LAI) during early stages of development, while growth pro-
gressively decreases to a plateau as respiration losses due to senes-
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cence equal photosynthesis. It has the advantage that it is a simple
curve with biologically meaningful parameters that can represent
changes in the growing environment by modification of m and Wy.,..
However, it is limited in that it does not represent the physiological
mechanisms (e.g.. photosynthesis, LAI development, nitrogen up-
take) underlying sward growth and is therefore not flexible enough
to represent effects of management interventions. Such models also
fail to describe biomass in different botanical fractions (leaves, stems,
dead material) or species compositions (grass—legume mixtures or
rangelands) and their vertical distribution within the sward, which
are important elements in predicting diet selection and/or species
succession caused by disturbances (e.g., grazing or fire) in grasslands.
The fact that only one sward component is represented [i.e., total
herbage dry matter (DM)] implies that diet selection can be studied
only by superimposing selectivity coefficients on total DM {Christian
et al,, 1978).

These limitations have led to the construction of several more
detailed grassland models for single pasture species (Johnson and
Thornley, 1983, 1985; Thornley and Veberne, 1989; Smith et al.,, 1985;
Lopez-Tirado and Jones, 1991a, 1991b; Doyle et al., 1989; Sheehy
et al., 1996; Guerrero et al., 1984; Charles-Edwards et al., 1987; Rod-
riguez et al,, 1990; Murtagh, 1988; Veberne, 1992; van Keulen et al,
1981; Seligman et al., 1992; Herrero, 1995) or multiple species (Gilbert,
1975, Innis, 1978; Parsons et al., 1991; Hanson et al., 1988, 1994;
Coughenour, 1984; Coughenour et al.,, 1984; Hunt et al., 1991; Hacker
et al., 1991; Blackburn and Kothmann, 1989; Detling et al., 1979;
Lauenroth et al., 1993; Richardson et al., 1991; Moore et al., 1997). The
former come mostly from the agricultural sciences, while some of the
latter also have a strong ecological background (e.g., Innis, 1978;
Coughenour, 1984; Hanson et al,, 1988, 1994).

The majority of these models represent plant growth as a func-
tion of one or more environmental, soil, and/or management varia-
bles. The simplest analyses use only one environmental driving var-
iable (e.g. rainfall or irradiance) to determine sward growth rates.
Charles-Edwards et al. (1987) used Monteith’s (1972) factorial ap-
proach to determine growth rate of a sward, with ample supply of
nutrients and water, based on daily irradiance intercepted by the pas-
ture, the efficiency of light utilization by the plant to produce new
material, and a partitioning coefficient for above-ground material.
Shiyomi et al. (1986) used a similar approach to study energy flows
in grasslands in Japan. Guerrero et al. (1984) and Hacker et al. (1991)
determined plant growth as a function of rainfall. Due to the large
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effects on growth caused by severe water stress in the regions of their
studies, they were able to use simple soil water balance budgets as
primary predictors of herbage production. In even more complex
models (e.g., Hanson et al., 1988, 1994), the basic components of water
balance submodels include rainfall, evapotranspiration, transpiration,
runoff, and infiltration, and these are modeled using well-recognized
principles (van Keulen and Wolf, 1986; Thornley and Johnson, 1990).
Moisture indices are derived from these variables to scale the growth
rates of forage.

On the other hand, several models estimate biomass production
as functions of a number of environmental variables. This usually
results in models representing carbon (C) and nitrogen (N) fluxes in
grassland ecosystems. The level of detail and empirical representa-
tions varies widely between models, although this is usually due to
the original objectives of the model or their implicit site-specificity.

Inputs to the carbon cycle are usually represented by photosyn-
thesis, and one of the most common methods is to integrate single-
leaf photosynthesis over the canopy LAl using Beer’s law (Monsi and
Saeki, 1953) as the light attenuation factor through the depth of the
canopy (Johnson and Thornley, 1983, 1985; Thornley and Veberne,
1989; Hanson et al., 1988, 1994; Sheehy et al., 1996). Single-leaf pho-
tosynthesis is commonly represented by rectangular (Innis, 1978;
Johnson and Thornley, 1983; Doyle et al, 1989) or nonrectangular
hyperbolas (Johnson and Thornley, 1985; Thornley and Veberne, 1989;
Herrero, 1995). Other authors (Coughenour, 1984; Hunt et al., 1991)
also include CO. concentrations and stomatal, internal, and leaf
boundary layer resistances to account for water use and CO, effects
on photosynthesis. Temperature and leaf N content (Thornley and
Veberne, 1989; Hanson et al., 1994; Herrero, 1995) are used to scale
the photosynthetic capacity of the sward. Outputs from the carbon
pool are represented by fractions used for new growth, senescence,
respiration, and grazing. Recycling of nutrients from senescent tissues
also contributes to the carbon cycle.

The approaches to representing the nitrogen cycle of the grazing
system are also diverse, but the basic factors are demonstrated in a
simple model by Scholefield et al. (1991) (Fig. 1).

Although Scholefield et al.’s (1991) model is empirical, the same
processes can receive a mechanistic treatment. However, the com-
plexity of the model and its subsequent validation are increased sev-
eralfold (e.g., Veberne, 1992).

Thornley and Veberne (1989) argue that data to validate soil-
plant mechanistic models are scarce or incomplete and that experi-
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FIGURE 1 Basic nitrogen cycle in pasture ecosystems. [From Scholefield
et al. (1991).]

ments are difficult to design, and therefore a subjective assessment
on the behavior of the model is sometimes made. While the C cycle
is relatively easy to validate due to the wide availability of field meth-
ods, there is still a considerable amount of progress to be made in
designing soil submodels that are easy to parameterize at field level.

B. Sward Structure and Composition

It is well recognized that apart from herbage availability, sward struc-
ture plays an important role in determining the intake of grazing
ruminants (Stobbs, 1973; Freer, 1981; Hodgson, 1985; Demment et al.,
1995) and that ruminants select preferentially for the leaf component
of the sward (Laredo and Minson, 1973; Hendricksen and Minson,
1980; Cowan et al.,, 1986; Penning et al,, 1994). In rangelands (i.e.,
Coughenour, 1984; Hanson et al., 1994), species composition plays a
major role in determining the diet selected by the animal (O'Reagain
and Schwartz, 1995), and, depending on animal numbers and envi-
ronmental conditions or disturbances, this selection modifies the sub-
sequent species composition of the sward (Humphreys, 1991; Hacker
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and Richmond, 1994). Therefore, a basic requirement of pasture mod-
els, apart from their ability to predict total biomass, is that they
should be capable of differentiating between plant parts and their
density across the sward’s vertical strata and/or species composition
in the case of multispecies systems. Table 1 shows some of the main
differences in the representation of sward morphology and compo-
sition between models. It can be observed from the table that several
models do not differentiate between plant parts.

The most common fractionation of morphological composition
is between leaf, stem, and dead material, and this is usually linked
to age characteristics of the sward. This fractionation occurs partly
because the models rely on photosynthesis and require an estimate

Table 1 Differences in the Representation of Sward Composition in
Some Models

Phenology

or age of
No.of  Total Plant plant Species
Model species® biomass parts” parts comp-
Noy-Meir (1975, 1976, 1978) 1 v —
Johnson and Thormnley (1983, 1 A4 /s/d v
1985)
Herrero (1995) v 1/s/d v
Parsons et al. (1991) 2 vV 1/s/d Vv v
Charles-Edwards et al. (1987) 1 Vv
Hunt et al. (1991) 1 vV
Hanson et al. (1988, 1994) 3+ v g/d/p vV v
Christian et al. (1978) v g/d \V
Coughenour et al. (1984) 3+ vV b/sh/s/f v v
Lauenroth et al. (1993) 3+ v 1/s/d v iV
Lopez-Tirado and Jones (1991a) 1 vV g/d —
Guerrero et al. (1984) 1 vV —_
Rodriguez et al. (1990) 1 v 1/s/d v
Woodward et al. (1993, 1995) 1 v
Doyle et al. (1989) 2 vV 1/s/d Vv
Smith et al. (1985) v g/d v
Hacker et al. (1991) 3+ v — v
Seligman et al. (1992) 1 AV 1/s/d —
1 = single species, 2 = grass/legume, 3+ = rangelands.
1 = leaves, s = stems, d = dead, p = propagules, g = green, sl heats, f  flowers.
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of LAI for pasture growth calculations. This is a convenient attribute,
since removal of LAI by grazing can link, in a physiological sense,
the effect of grazing on total resource capture, pasture growth, and
subsequent sward composition (Johnson and Parsons, 1985; Parsons
et al., 1994).

The models of Johnson and Thornley (1983, 1985) and Thornley
and Veberne (1989) did not represent the vertical distribution and
bulk density (bd) within the sward, but they do have a convenient
structure to model them. These models divide the leaf and stem struc-
tural mass into four distinct age categories, from new material down
to senescent. The move from one category to the next is determined
by the rates of appearance of these components, therefore making it
possible to distribute them, separately, across the height of the sward
according to the pasture species modeled. We developed a flexible
method to estimate sward structure from these models using the fol-
lowing simple statements (Fig. 2):

1. A sward with a determined total height  and total herbage
mass dm can be described as a series of i discrete horizons
(1) of herbage mass dm,, where dm; is composed of variable
proportions of leaf and/or stem (L/S) and dead material.
The concept of sward horizons or layers in grassland mod-
eling is well recognized and is useful for the representation
of grazing processes (Ungar and Noy-Meir, 1988; Ungar
et al., 1992; Demment et al., 1995).

2 As h decreases, the amount of dm, in k; increases (Fig. 2a),
as is commonly observed (Stobbs, 1975; Illius and Gordon,
1987; Mayne et al., 1987).

1 ,
h dm, (W] / 5
dm, / h,
dm, : / h,

dm 0 h
(a) (b)

FIGURE 2 Representation of the vertical distribution of (a) herbage mass and
(b) plant parts within a single-species pasture sward.
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3. As h increases, the leaf/stem ratio increases (Fig. 2b). The
proportion of dead material decreases, but for simplicity we
consider only leaf and stem.

Following the nomenclature in the Thornley papers described
above, we divided the dry matter (dm)) of a sward into three horizons
as follows:

dm, = WL, + iWs (2)
dm, = WL, + Wsh, + Wsh, + fWs 3)
dm, = WL, + WL, + Wsh, + Wsh, + frWs @

where WL, and Wsh; are the structural weights of leaves and stems
of different ages, respectively, where j = 1 is new material and j = 4
is senescent tissues. In this three-horizon example, note that the first
horizon (top of the sward) contains only leaf, which is commonly
observed in many pasture species (Hodgson, 1985 Humpbhreys,
1991). Ws is the storage compartment, and f; the fraction of Ws as-
sociated with the plant material in dm,. Bulk density can be estimated
as
dm;

bd; = T (5)

and

bd = dm (6)
h
where bd, = bulk density in the ith horizon and bd = total sward bulk
density.

The flexibility of the modeling structure presented in this chap-
ter permits representation of a large number of sward structures,
since the number of horizons and the type and quantity of plant parts
comprising them can be changed without altering the functionality
and robustness of the original plant models. At the same time, the
structure has useful attributes in modeling intake and diet selection
by different methods. The approach has been specifically developed
for tropical and temperate monospecific swards, but it can be ex-
tended to grass—legume swards.

Separation between green and dead material in other models is
mainly for the purpose of determining the sward’'s nutritive value.
For example, to be able to represent diet quality, some models (Chris-
tian et al., 1978; Guerrero et al., 1984; Smith et al. 1985) subdivide the
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biomass empirically into three or four compartments representing
new, mature, senescent, and/or dead material without describing
them morphologically and assign quality characteristics (i.e., digest-
ibility, cell wall) within these categories. However, the definition of
physiological states without a morphological description presents
three problems. First, they are difficult to handle in diet selection
studies, where the different components of the diet selected by ru-
minants are usually identified by botanical fractions (Hendricksen
and Minson, 1980; Humphreys, 1991), therefore reflecting morpho-
logical differences in the sward (Arnold, 1981; Hodgson, 1985). Phys-
iological state of the sward does not represent its morphological
structure. Second, it is difficult to accommodate different diet selec-
tion patterns of different animal species. For example, sheep are able
to select more leaf than cattle (Arnold, 1981; Forbes and Hodgson,
1985; Penning et al., 1994), and these differences cannot be predicted
if the sward is only divided into physiological state compartments.
Third, even at a similar chemical composition, botanical fractions
have different physical structures (Wilson, 1994), which affect the
rates of breakdown from large to smaller particles of forage in the
rumen (Kennedy and Murphy, 1988; Wilson and Kennedy, 1996) and
therefore affect passage rates and pasture intake. This concept is dif-
ficult to model when sward physiological states are used because the
botanical composition of each compartment (e.g., new material) is
not known. From the diet selection viewpoint, in rangeland models
the discrimination between species becomes more important (Baker
et al, 1992) than within species, and most rangeland models only
discriminate between, rather than within, species to represent sward
biomass.

l. GRAZING PROCESSES AND DIET SELECTION
A. Intake and Grazing Processes

Intake prediction is one of the most important elements in grazing
systems models because the prediction of animal responses to nutri-
ents (Blaxter, 1989) [see Forbes and France (1993) for reviews] are
largely dependent on it. In addition, pasture intake influences the
regrowth of the sward (Brougham, 1956; Vickery, 1981; Parsons et al.,
1988), the efficiency of fertilizer use (Humphreys, 1991; Herrero,
1995), supplementation strategies (Allden, 1981; Orskov, 1994; Rook
et al,, 1994), nutrient cycling (Simpson and Stobbs, 1981; Scholefield
et al., 1991), land use practices via the area required to maintain stock
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(Olney and Kirk, 1989; Herrero et al., 1996a, 1996b), and the spatial
distribution of pasture species in rangeland landscapes (Senft et al,,
1987; Demment et al., 1995; O'Reagain and Schwartz, 1995).

A number of methods of simulating intake and grazing pro-
cesses have been reported, but three distinct approaches can be ob-
served:

1. Prediction of intake from systems of energy requirements
2. Establishment of relations between herbage mass and intake
3. Prediction of intake from grazing behavior measurements

The flexibility of studying different nutritional and management
strategies and their effects on the whole system will largely depend
on the method chosen to represent intake.

1. Intake as a Function of Energy Requirements

One method used to represent intake assumes that estimates of pas-
ture intake can be derived from the energy requirements of the animal
and the energy content of the pasture consumed. This last parameter
has been usually derived from in vivo or in vitro digestibility esti-
mates. The energy value of the forage as well as the animal’s require-
ments have been expressed most commonly as digestible energy
(DE), metabolizable energy (ME), or net energy (NE) (McDonald
et al., 1995).

Two approaches are commonly used. The first is to estimate in-
take from the "“inverse” of the nutrient requirements, and the second
is to use regression equations, which are often included in require-
ments systems. These methods of intake estimation have been widely
used in livestock models (Sanders and Cartwright, 1979; Konandreas
and Anderson; 1982: Guerrero et al., 1984; Gartner and Hallan, 1984;
Olney and Kirk, 1989). However, although it is accepted that nutrient
requirements represent one of the most important driving forces of
eating, these systems per se [apart from SCA (1990) and NRC (1996)]
fail to take into account constraints on intake imposed by herbage
availability and sward structure (Hodgson, 1985). This has already
been discussed by Whelan et al. (1984). However, the following points
should also be considered.

1. Classic work by Conrad et al. (1964) demonstrated that in-
take was proportional to energy requirements when the di-
gestibility of the diet was higher than 67%. Below this
threshold, intake was constrained by physical limitations of
the reticulorumen. Therefore, for low digestibilities, when
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the “reverse” calculation of intake from requirements is ap-
plied, intake is usually overestimated because animals are
not physically able to eat sufficient quantities of forage.
More recently, Forbes (1993) suggested that, for cows, this
digestibility threshold may be higher depending on the level
of production. In view of these problems, several models
have incorporated static physical fill limitation constraints
on intake (Forbes, 1977; Kahn and Spedding, 1984; Mertens,
1987; Finlayson et al., 1995).

2. Maintenance energy requirements scale with metabolic
weight (Brody, 1945), but rumen size scales with body
weight (Demment and van Soest, 1985; lllius and Gordon,
1991), thus partly explaining why digestibility, which is a
crucial parameter in requirements systems, is not a good
predictor of intake for low quality forages (Laredo and Min-
son, 1973; Poppi et al.,, 1981; Kibon and @rskov, 1993). In the
trial of Laredo and Minson (1973), sheep consumed more
leaf than stem with both plant fractions having the same
digestibility, suggesting that other factors, such as the phys-
ical structure of plant parts, which influence particle break-
down and passage rates (Poppi et al, 1981, Kennedy and
Murphy, 1988; McLeod et al, 1990) play an important role
in the control of feed intake and also that dynamic models
of digestion that consider these factors may yield better es-
timates of potential intake.

2. Empirical Relations Between Herbage Mass and Intake

A variety of models have simulated the effect of herbage availability
on intake using empirical relations (Freer et al., 1970; Noy-Meir, 1975,
1976; Arnold et al., 1977; Vera et al., 1977; Edelsten and Newton, 1975,
1977; Christian et al., 1978; Sibbald et al., 1979; White et al., 1983;
McCall, 1984; Johnson and Parsons, 1985; Thornley and Veberne,
1989; Rodriguez et al., 1990; Blackburn and Kothmann, 1991; Rich-
ardson et al,, 1991; Seman et al.,, 1991; Finlayson et al., 1995). These
models use three basic steps for the calculation of intake at grazing.

Step 1 Estimate potential intake of the animal. Potential intake
is usually defined as the intake of herbage without the constraints
imposed by herbage availability, as a function of animal and plant
characteristics. It is usually an input (Johnson and Parsons, 1985;
Thornley and Veberne, 1989) or calculated in another submodel from
the knowledge of body weight, the energy requirements of the ani-
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i ibili jzabili f the diet (Arnold
mal, and the digestibility or metabolizability o .
et al., 1977; Christian et al., 1978; Richardson et al., 1991) and Physncal
£ill limitations (Kahn and Spedding, 1984; Doyle et al., 1989; Finlayson
et al., 1995).

Step 2 Calculate the constraints on iqtakclel imgosed by hc,e,rba.ge
availability. This is usually done by estimating “'scaling fac.tors. with
empirical functions and leads to a term often called relative intake.
Table 2 summarizes the functions used in different mogels. to scale
intake on the basis of different measures of herbage availability.

Common features of these scaling factors are their genera}I shape,
often expressed as Michaelis—Menten equations (Noy-Meir, 1975,
1976; Johnson and Parsons, 1985; Blackburn and Kothmann, 1991)
and exponential or quadratic functions (see Table 2). However, le.lrge
discrepancies occur between authors in the slopes of these ftllnf:thns
(Fig. 3), which are caused by the animal and sward characteristics for
which the equations were derived. Nevertheless, marked dc.ecreas?s
in intake appear to occur if less than 10001500 kg/ha DM is avail-
ble Herbage availability is described in different ways by different
authors. The most common relationship between intake and h'erbage
availability is derived from herbage mass per unit of area, whllei')th-
ers derive functions on the basis of herbage available per animal
(Zemmelink, 1980; Loewer et al., 1987) and yet o'thers use both mea-
sures (McCall, 1984). An exception is the funcflon. of }ohnsgn; and
Parsons (1985), which uses LAI to estimate relative .mtakg. Tfus is an
interesting concept, since LAI provides an appropriate physiological
interface between pasture removal (grazing) and regrowfh (rgsource
capture by photosynthesis). However, under most 'prachcal circum-
stances LAl is not measured, and some types of animals (e.g., cattle)
remove not only LAI, which is associatea' with the leaf components
of the sward only, but also the stem fraction. We have adapted this
function and expressed it on the basis of leaf or total h.erbag.e mass
while at the same time keeping the physiological relat.lonshlp with
LAL This can be done witli the knowledge of three easily measured
parameters: the specific leaf area (SLA) of leaves, the leaf mass (LM),
and the leaf-to-stem ratio of the sward being grazed (pL). The ad-
aptation can be done in two simple steps. First,

LAI = LM*SLA @
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Table 2 Functions to Estimate the Effect of Herbage Availability
on Dry Matter Intake of Grazing Ruminants

Function to estimate relative intake
Source (RIy

Freer et al. (1970); Arnold et al.
(1977)

Noy-Meir (1975, 1976); Blackburn RI = [imax*(DM/(DM + X))]/imax
and Kothmann (1991); Woodward
et al. (1993, 1995)

Vera et al. (1977) RI = 1 — exp(—0.002503*DM)

Edelsten and Newton (1975, 1977) RI = 1 — exp(—2.4*10 *DM?)

Christian et al. (1978) RI = 1 — exp(—0.000008*DM?)

Sibbald et al. (1979) RI = DM/(DM + 250)

White et al. (1983); Bowman et al. RI = 1 — exp(—0.000002*DM?)
(1989)

Zemmelink (1980); Konandreas and  RI = {imax*(1 — exp(—DMH/
Anderson (1982); Doyle et al. imax)' )" *]/imax
(1989)

Johnson and Parsons (1985); RI = [imax*(LAI/K)°/(1 + (LAl/
Thornley and Veberne (1989); K)9)}/imax, where RI = imax/2
Parsons et al. (1991); Richardson for LAI=K;K=1and Q = 3 for
et al. (1991) sheep grazing ryegrass

Loewer et al. (1987); Rodriguez RI = 2*FA/B — FA*/B’, where B =
et al. (1990) 750

Seman et al. (1991) Rl=1-(1-01)/HI -

LOWY)*(HI - SHY’, where Hi =
20 and LOW =5

McCall (1984); Finlayson et al. RI = 0* exp[—1.016* exp(—1.038*A)],

(1995) where A = (DM/imax)*(area/
animals); 8 =1 — 1.42*
exp(—0.00198*DM)

RI = 1 — exp(—0.001*DM)

imax = potential intake [kg/(animal-day)], DM = pasture dry matter (kg/ha); X =
Michaelis constant for consumption (g/m?); LAl = leaf area index (m’ leaf/m’ soil);
K = half-maximal response of LAL Q = constant; DMH = available dry matter/animal
{[kg/ (animal-day)}; FA = forage available/ kg bodyweight (g DM/kg BW); B = thresh-
old level of forage availability (g DM/kg BW); HI = height above which additional
increases in sward height do not affect intake (cm); LOW = height below which forage
is unavailable for grazing (cm); SH = total sward height (cm) area = grazing area (ha);
animals = number of animals. :
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FIGURE 3 The relationship between herbage availability and intake at graz-
ing in different models.
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where LM = leaf mass in the sward (g/m’) and SLA = specific leaf
area (m’/kg leaf). The total dry matter of the sward is then

DM = —T ®)

where pl. = proportion of leaf in the sward.

The analysis provided here is more flexible than that offered by
other authors (e.g., Johnson and Parsons, 1985). It can be linked to
previously validated pasture growth models, and it can be extended
for different horizons within the sward by obtaining the above-
mentioned parameters on a horizon basis. The functional responses
can be estimated on the basis of LA, leaf mass, or total herbage mass,
and the model is sensitive to changes in leaf-to-stem ratio, therefore
representing the effect of morphological changes in the grazed sward
(Fig. 4).

The functional response to pasture availability should also be
modified by animal size, because animals of different sizes have dif-
ferent abilities to harvest forage under different sward conditions
(Stephens and Krebs, 1986¢; Belovsky, 1987; Illius and Gordon, 1987;
Ungar and Noy-Meir, 1988). For example, smaller ruminants can

pL=0.3
-—- pL=0.5
---pL=0.7

relative intake

0 ] ] 1 1 ] ]
1] 500 1000 1500 2000 2500 3000 3500
DM (kg’ha)

FIGURE 4  Effect of changes in the proportion of leaf on the functional re-
sponse between herbage availability and intake at grazing.(——) pL = 0.3;
(--=)pL = 05; () pL = 0.7.
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graze shorter swards more efficiently, and therefore swards can reach
lower herbage masses before intake is reduced (Hlius and Gordon,
1987). Although all models modify potential intake largely on the
basis of body weight or a function of it, few models (Zemmelink,
1980; McCall, 1984) modify explicitly the functional response accord-
ing to body size. Johnson and Parsons (1985) claim a value of K=1
for ewes (i.e., 80 kg body weight) grazing ryegrass while a value of
K = 2 provides a suitable relation for mature dairy cattle (i.e., 600 kg
body weight) (Parsons, personal communication). However, they do
not provide a specific relation of this parameter with body weight.
We scaled parameter K to body weight using an allometric relation-
ship derived from Illius and Gordon (1987), who claim that differ-
ences in the ability of animals of different sizes to graze are caused
by differences in incisor breadth, hence mouth size. The relationship
between parameter K and body weight then becomes

K = 0229 BW™™ 9
Figure 5 shows this relation for three body sizes.

Step 3 The third and final step in calculating intake in these
models is to multiply potential intake by the relative intake factor
and by the number of grazing animals. This approach is probably the
most commonly used to represent the effect of herbage availability
on intake because of its simplicity and the ease of obtaining appro-
priate data for validation. However, these systems fail to represent
the mechanics of grazing and therefore fail to provide full under-
standing about the sward variables affecting intake. Therefore, for
some purposes, more detailed models, usually based on grazing be-
havior measurements, are used to represent these relations.

3. Prediction of Intake from Grazing Behavior Measurements

The prediction of intake from grazing behavior measurements {for
recent reviews see Hodgson et al. (1994), Demment et al. (1995), and
Laca and Demment (1996)] has been largely based on the early work
of Allden (1962), Arnold and Dudzinski (1967a, 1967b), Allden and
Whittaker (1970), Stobbs (1970, 1973, 1974), and Chacon and Stobbs
(1976). Allden and Whittaker (1970) postulated that intake at grazing
could be predicted as

Intake = IB RB GT (10)

where IB = bite size, RB = biting rate, and GT = grazing time.
Intake per bite is the variable most sensitive to sward charac-
teristics, while biting rate and grazing time are partly dependent on
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FIGURE 5 Effect of different body weights on the shape of the functional
response between herbage mass and intake. ( ) 50 kg BW; (——-) 300 kg
BW; (---) 550 kg BW.

bite size and act as compensatory mechanisms when bite size is too
small to obtain the desired intake level (Hodgson, 1981). Chambers
et al. (1981) and Newman et al. (1994a) suggested that biting rate
declines at high bite sizes because of an increase in the ratio of ma-
nipulative to biting jaw movements and therefore it is also partly
dependent on sward characteristics. This subject has been clearly de-
picted by Laca et al. (1994), who found that time per bite (ITB) was
linearly associated with the total number of jaw movements per bite
(M) (Fig. 6a):

TB = 043 + 0.682JM,  r* =096 (11)

The proportion of total manipulative jaw movements that per-
formed manipulation and mastication (MJM) increased asymptoti-
cally with bite size (Fig. 6b) according to the relation

1.028 IB — 0.246

MM = ———
M 0234+ B

r* = 0.69 (12)
As bite size decreases, biting rate and/or grazing time increase to
compensate for this reduction. However, this compensation is some-
times partial (Allden and Whittaker, 1970; Stobbs, 1973; Jamieson and
Hodgson, 1979; Hendricksen and Minson, 1980; Hodgson, 1981); thus
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FIGURE 6 (a) Relationship between time per bite and total number of jaw
movements per bite. (b) Relationship between bite size (IB) and the propor-
tion of manipulative jaw movements relative to total jaw movements. [From
Laca et al. (1994).]

potential intake cannot be attained. Hodgson (1986) claims that this
is the reason variations in daily herbage intake frequently reflect
closely the observed variations in bite size.

In most modeling studies, maximum values of biting rate and
grazing time obtained from experimental studies are often used as
behavioral limits of the grazing process, while most efforts are con-
centrated on modeling bite dimensions. Maximum biting rate is close
to 36,000-40,000 bites/day (Stobbs, 1973; Chacon and Stobbs, 1976;
Jamieson and Hodgson, 1979), while maximum grazing time is about
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12—13 h/day (Fig. 7) (Arnold, 1981). These values are similar for cat-
tle and sheep (Hodgson, 1982, 1985; Forbes, 1988; Demment et al,,
1995).

Bite size is positively related to herbage mass or sward height
(Black and Kenney, 1984; Hodgson, 1985; Forbes, 1988; Burlison et al,,
1991). Burlison et al. (1991), working in swards ranging from 5 to 55
cm in height, explained 78% of the variation in IB of sheep with the
relation

IB = 33 + 5.2H (13)

where H = sward height.

The slope of this relationship was similar to those reported by
Hodgson (1981) and Forbes (1982) when expressed on the basis of
bite size per kilogram body weight. Burlison et al. (1991) also argued
that due to the bias caused by changes in bulk density across grazed
horizons, the responses often found were asymptotic, thus confirming
the results of other authors (Penning, 1986; Ungar and Noy-Meir,
1988; Baker et al., 1992).

A better understanding of how changes in sward characteristics
affect bite size can be achieved by describing this variable at a lower,
more detailed, level of aggregation. Burlison et al. (1991) describe the
components of bite size in Fig. 8.

Bite depth is generally proportional to sward height (Milne
et al, 1982; Wade et al,, 1989; Laca et al., 1992; Ungar et al., 1992;
Demment et al., 1995), but it may decrease depending on the relative
height of stem material in the grazed horizons (Barthram and Grant,
1984; Forbes, 1988; Flores et al., 1993). Burlison et al. (1991) found that
the following relation for sheep explained 93% of the variation in bite
depth:

Bite depth = —1.0 + 0.37H (14)

Since sward height is a good predictor of LAI (Parsons et al,
1994), which in turn reflects leaf mass [see Eq. (7)), these results are
in close agreement with the relation between leafiness and bite size
found in several pastures (Stobbs, 1975; Chacon and Stobbs, 1976;
Hendricksen, and Minson, 1980; Hodgson, 1986).

Bite area increases with sward height (Burlison et al,, 1991; Laca
et al., 1992). However, it also increases with decreasing bulk density
(Burlison, 1987), especially on higher swards (Laca et al., 1992), which
might be explained by the limitations posed by the shearing strength
required to harvest a bite (Hodgson, 1985). Nevertheless, bite area is
less sensitive to sward characteristics than bite depth (Hodgson, 1986)
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FIGURE 8 The components of bite size. [From Burlison et al. (1991.)]

and has been considered constant for a given body weight in some
models (Parsons et al., 1994).

Bite volume is also positively related to sward height (Ungar
and Noy-Meir, 1988). Burlison et al. (1991) obtained the following

relationship for sheep, thus explaining 83% of the variation in bite
volume:

Bite volume = —-32 + 8.0H (15)

There are some factors unrelated to sward structure that affect
grazing behavior, mainly grazing time. For example, Brumby (1959)
and Journet and Demarquilly (1979) showed that cows increased their
grazing time by 5 min/kg milk between yields of 5 and 25 kg of milk,
and by 12 min/kg milk between 20 and 35 kg of milk. Similarly,
Arnold and Duzinski (1967a) and Arnold (1975) found increases of
7-12% in grazing time during early lactation of sheep. Dougherty
et al. (1988) found no difference in biting rate, bite size, and grazing
time when cattle were supplemented with ground corn at levels up
to 4.5 kg/animal. However, other authors (Holder, 1962; Marsh et al.,
1971; Leaver, 1986; Mayne and Wright, 1988; Rook et al., 1994) suggest
that grazing time is reduced with supplementation, with the level of
reduction being dependent on the type and level of supplementation.
For example, Marsh et al. (1971) found reductions in grazing time of
22 min/kg concentrate fed, while Mayne and Wright (1988) found
reductions of 43 min/kg when silage was fed. The type of supple-
ment and its interactive effects with the basal diet might be the reason
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why Dougherty et al. (1988) could not find differences .in grazing time
at various levels of supplementation. In tempera.te regions, the larsest
proportion (70-90%) of grazing time occurs during c!ayllg.ht (Penning
et al., 1991; Rook et al., 1994); however, in the tropics night grazmg
is frequently observed due to high ambient te.zmperature.s du.rmg.the
day (Humpbhreys, 1991). The largest proportion of rqmlpatlon time
also occurs during daylight (Rook et al., 1994). Mas.hcatlon and ru-
mination increase with increased neutral detergent fiber (NDF) con-
centration in forages (Demment and Greenwood, 1?88) or reduced
digestibility (Arnold, 1981), in order to reduce .partlc.le sizes of the
forage consumed for passage through the g?str91nte§t1nal tract. Fast-
ing increases grazing time and reduces rumination time (Greenwood
and Demment, 1988). . .
Comparison of predicted intakes from grazing behavior mea-
surements with limited experimental data has ShO\.Nl’\ close. agreement
(Gordon, 1995). However, these models still require .con'51derable ef-
fort to be widely validated; thus their range of application has been
limited mostly to research purposes. Nevertheles;, thex have pro-
vided a significant contribution to the understanding o.f intake from
grazed grasslands in the past two decades and have given v.aluable
insight to assist design of appropriate management strategies in some
azing systems.
grﬂl?lr/;\brse);ognized criticism of this approach is that a la.rge part of
grazing behavior is caused by the animals’ need fo.r nutrient supply
(Ungar and Noy-Meir, 1988). Most models do not integrate the two
processes, and those that do have not integrated mechanistic models
of digestion and metabolism at the same level of aggregation as they
treat grazing behavior. Considerable research needs to be done to

address these issues.

B. Diet Selection

Diet selection is one of the crucial elements in grazing systems models
for appropriate prediction of animal performance (see_ab_ove). The
two basic distinctions that are made are (1) §elechon w_1thm pasture
species and (2) selection between plant species. Following Thorn_ley
et al. (1994), it is possible to describe the approaches _for modeling
diet selection as (1) empirical (descriptive), (2) goal_-orl_ented (teleo-
nomic), and (3) mechanistic (reductionist). The application of a _pari
ticular approach is dependent on the type of pasture and anima
s used. _
mOdt’}i\:re is general agreement that ruminants pfefer to eat leaf in-
stead of stem or dead material and that the material eaten is usually
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of a higher nutritive value than the material on offer. Ruminants also
tend to avoid plants with antinutritional compounds (e.g., tannins,
alkaloids). In rangelands, abundance, nutritive value, and spatial dis-
tribution are interrelated. For example, plants of a higher nutritive
value are less abundant than low quality ones (Belovsky, 1987). Man-
agement practices and the spatial distribution of plant species create
grazing routes that animals follow and thus have an influence on the
diet selected. Animals also tend to graze closer to the water source
in arid and semiarid environments {Arnold, 1981). Even when some
basic empirical rules, such as those previously mentioned, appear to
exist, the mechanisms used by animals to select their diet have not
been fully elucidated.

Empirical representations of diet selection are the most common
in grazing models, and in general they use the basic principles de-
scribed above. Examples of these can be found in Christian et al.
(1978), Hlius (1986), Blackburn and Kothmann (1991), Baker et al.
(1992), and Freer et al. (1997). These models assign "selectivity coef-
ficients” on the basis of digestibility or palatability of different mor-
phological units (Illius, 1986; Blackburn and Kothmann, 1991) or
physiological states (e.g., Freer et al., 1997). A problem that arises with
assigning these types of coefficients on a plant species basis is that
they are modified according to the species composition of the patch
and therefore may modify diet selection. For example, in terms of
acceptability for an animal, the selectivity coefficient of the species
depends on the other species present. Arnold (1981) argues that little
progress is going to be made in understanding diet selection as long
as nutritive value is expressed with traditional analyses (e.g., digest-
ibility, cell wall constituents, nitrogen), because these cannot be de-
scribed at a molecular level and therefore the substances determining
"*palatability”” cannot be fully determined.

Goal-seeking diet selection models are based on foraging theory
(Stephens and Krebs, 1986). The general principle behind them is op-
timization of the diet selected using the predator—prey concept. The
ruminant (predator) will try to maximize its benefits (e.g., energy re-
tention in most cases) relative to the costs of obtaining them (e.g.,
energy expenditure due to searching, handling, and walking) by op-
timally selecting between plant species and/or plant parts (prey).
These models are used mostly for ecological research (Belovsky, 1987;
Thornley et al., 1994; Newman et al,, 1994b).

FFew mechanistic models of diet selection are available (Parsons
et al., 1994), and it is recognized that a mechanistic representation is
still far from complete due to the lack of knowledge to describe mech-
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anistically some of the factors affecting di.et selection. Certainl.y, tlusf
is an area that requires more research to improve uflderstandmg. o
the mechanisms involved and to make better predictions of the diets

selected by grazing ruminants.

IV. MODELING ANIMAL PERFORMANCE

From the viewpoint of whole grazing systems, it is now Flear that the
plant/animal interface is not completely represented if tl’fe conse-
quences of grazing and other nutritional management practices (e.g;:i
production) on the animal are not modeled. A series of papers an

books relate to the subject (e.g., Forbes and France, 1993; van Soest,
1994; Journet et al., 1995), but there appears to be no consenm:l?1 on
the best approaches to modeling these processes. Neverthele;s, ose;
discussed in the following subsections represent, broadly, the mos

common approaches.

A. Empirical Relations Between stocking Rate and
Animal Production

.« widely recognized that stocking rate (SR) is one of the major
geirmli?\agts of fnimal production from pastures and the sustau;‘a-
bility of the grazing system. There }?ave been a number qf mlat e-
matical descriptions of the relationship between SR and am;n;t\; p;r;
formance (e.g., Mott, 1961; Petersen et al‘., 1965; Edye et al., 1 c)l,l ud
the one most commonly used was derlYed by Jones an_d San afn
(1974), who suggested that (1) the relation betv‘{een amma! perfor-
mance per head (kg/hd) and SR could Pe described 'by a lmlfar re-
eression and (2) the relation between animal production per hectare
( ' uadratic.

(kg/h::a‘;rr:dﬁsoivg{s, ?)ther authors have used different §tati.sfical re-
Jations between animal performance an.d herbage availability [Ssge
Humphreys (1991)), level of N fertilization (Ka'rnezos et al, 11999;:
rainfall (Bransby, 1984), pasture species (McCaskill and Mclvhqr, ﬂi
Mclvor and Monypenny, 1995), and otl"lers. These relationships w

not be considered further, since we believe fhey are not a'pl:.)rolpna;te
for use in grazing systems models becduse they are statls(tjlca frre a-
tionships of specific datasets and as Sl.lch represent only t‘l'!e. ata1 ;))m
which they are derived (slopes and intercepts vary mgmhcan; yt e-
tween studiesj; they do not providean—understandmgji th?e ia‘;‘ﬂ(?rs
influencing animal performance, and they dc_; not h?vc'e the flexibility
to represent changes in management practices within the system.
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Therefore they are not suitable to test alternative strategies on the
behavior of the system and its parts. However, for a full explanation
of these types of relationships see Humphreys (1991).

B. Systems of Nutritional Requirements

The energy requirements of ruminants have been estimated with rea-
sonable accuracy, and differences between the systems used in dif-
ferent countries (i.e., Jarrige, 1989; NRC, 1989, 1996; SCA, 1990; AFRC,
1993) seem to be small (McDonald et al., 1995). Traditional "require-
ments systems’’ were not designed to predict intake but to assess the
nutritional and productive consequences of different feedstuffs for the
animal once their intake was known. Therefore, a criticism that often
arises is that the effective calculation of nutrient supply to the animal,
and hence the quality of the predictions of animal performance, are
largely dependent on the accuracy of the intake estimate used for the
calculations. Hence the importance of the representation of intake
prediction in grazing systems models.

Several models of grazing systems, whether designed for sheep
or beef or dairy cattle, rely on one form or another of an energy
requirements system to represent animal performance (Vera et al,
1977; Christian et al., 1978; Sibbald et al., 1979; Konandreas and An-
derson, 1982; White et al., 1983; Doyle et al., 1989; Walker et al., 1989;
Richardson et al, 1991; Seman et al., 1991; Hanson et al., 1994;
Thornley et al., 1994; Freer et al., 1997). However, from the nutritional
management viewpoint, these systems per se present some inade-
quacies that need to be addressed by other mechanisms to improve
their flexibility.

1. These systems are static, and digestibility estimates are cen-
tral to the calculation of energy in feedstuffs in the appropriate units
(e.g.. DE, ME, NE). In requirements systems, these estimates are an
input and are fixed for a particular feedstuff. However, effective di-
gestibility is a consequence of degradation and passage through the
gut, and therefore it is dependent on plant and animal characteristics
(Demment and Greenwood, 1988; Ilius and Gordon, 1991). Due to
the inherent selection by grazing animals on the basis of chemical
and physical characteristics of different plants and/or plant parts (see
Section III), it is necessary to model degradation and passage before
describing digestibility and consequent nutrient supply. This requires
dynamic models.

2. Even the most recent requirements systems do not take into
account explicit protein-energy interactions (Oldham, 1984; Preston
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and Leng, 1987). Lack of rumen-degradable protein reduces microbial
growth and depresses the rate of structural carbohydrate digestion
(Drskov, 1992). Therefore, the effect of some supplementation strate-
gies on animal performance cannot be predicted adequately (Preston
and Leng, 1987).

3. Most requirements systems do not take into account inter-
actions between different feeds [except limited interactions modeled
by Sniffen et al. (1992) and NRC (1996)]. For example, the reduction
in cell wall digestibility is a well-known consequence of reduced ru-
men pH caused by feeding large quantities of concentrates (Istasse
et al., 1986; Argyle and Baldwin, 1988), and this, and the subsequent
forage / concentrate substitution rates, cannot be predicted adequately
by some requirements systems.

4. Requirements systems require knowledge of the current
level of production to calculate requirements and are therefore not
predictors of animal performance. Since they were designed mainly
from observations of stall-fed animals, they were implemented to cal-
culate the quantities and types of feeds to give to an animal at a
known level of production. In other words, animal performance was
not predicted, it was usually an input to the calculation (even when
using the intake prediction equations in these systems). The rationale
behind prediction of animal performance in grazing systems should
be exactly the opposite: What level of production can be attained,
relative to the potential production of an animal of a given size and
in a given physiological state, by following a particular grazing and
overall nutritional strategy? Potential production is a function of the
animal’s genetic characteristics (Oldham and Emmans, 1988), while
actual production is dependent on the resources available to the an-
imal, the way it can utilize them, and the overall management of the
grazing system.

We believe that the place of these systems in grazing systems
models lies in the estimation of only the potential requirements,
which are dependent mainly on body weight, physiological state, and
level of production. However, the estimation of the supply of nutri-
ents to meet those requirements needs a different approach, namely,
dynamic models of digestion.

C. Dynamic Models of Digestion

A wide range of dynamic models of digestion can be found in the
literature (e.g., Waldo et al., 1972; Mertens and Ely, 1979; Forbes, 1980;
Black et al., 1980; Bywater, 1984; Fisher et al., 1987; Hyer et al,, 1991;
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Illius and Gordon, 1991, 1992; Sniffen et al., 1992; Fisher and Bau-
mont, 1994). These types of models have been recently reviewed by
Illius and Allen (1994), and Baldwin (1995) reviewed research models
representing metabolism and the formation of end products of fer-
mentation in ruminants* (e.g., Baldwin et al.,, 1970, 1977, 1987; Gill et
al., 1984; Murphy et al., 1986; Danfaer, 1990; Dijkstra et al., 1992, 1993;
Poppi et al., 1994). A range of approaches to model digestive pro-
cesses can also be found in Forbes and France (1993).

The basic objectives of dynamic models of digestion are to pre-
dict potential intake, digestibility, and animal performance as a func-
tion of the nutritional quality of plants on offer and a range of animal
characteristics. There is evidence that such models are better at pre-
dicting nutrient supply and animal performance than requirements
systems (Fox et al, 1992, 1995; Ainslie et al., 1993). However, there
are certain basic aspects that need to be considered that define the
accuracy and flexibility of the model. A discussion of these follows.

Description of Feed Fractions The basic fractionation of feed-
stuffs is represented in Fig. 9. The separation of dry matter into its
basic chemical entities is important because different feed fractions
of different forages have different degradation and passage rates (1l-
lius and Gordon, 1991; Russell et al., 1992) and therefore have differ-
ent digestibilities. Consequently, they supply different amounts of nu-
trients to the animal (Murphy et al., 1982; Gill et al., 1990). These
fractionations are also important into predicting effects of supple-
mentation on the rate of cell wall digestion (Argyle and Baldwin,
1988), modeling protein—energy interactions, and using recent stan-
dards of protein requirements (e.g., Fox et al,, 1992; O’Connor et al,,
1993; AFRC, 1993). Nevertheless, other authors consider that the nu-
tritional description of the potentially degradable fractions of feed-
stuffs requires yet further fractionations (Mertens and Ely, 1979; Snif-
fen et al, 1992), although it is questionable that they provide better
predictions than simpler approaches (Illius and Allen, 1994). The frac-
tionation presented here is robust, simple, and suitable for use in
whole grazing system models.

Degradation Kinetics The concentration and potential degra-
dation kinetics of the cell wall of forages are among the important
determinants of intake and digestibility (Mertens, 1987; Illius and

*Readers are referred to Baldwin (1995) for further information, since metabolic mod-
els are not covered in this chapter.
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Gordon, 1991). The degradation kinetics of the crude protein fraction
reflect nitroge)n supplygtro rumen microbes (Czerkawski, 1986; Orskov,
1992; AFRC, 1993) and therefore have an effect on cell wall degra-
dation rates. Potential degradation characteristics are a function of
plant characteristics (Russell et al., 1992; Orskov, 1994). _

Parameters reflecting the potentially degradable fraction can be
obtained from dacron bag studies (McDonald, 1981; Dhanoa, 1988) or
in vitro gas production measurements (Herrero and Jessop, 1996,
1997; Herrero et al., 1996b; Jessop and Herrero, 1996; Jessop et al,
1996) by fitting the first-order model described by Wal_do et al. (1_972)
and McDonald (1981), where the rate of degradation is proportional
to the amount of substrate:

D=A+B(1-exp " ™) (16)
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where D = degradation, A = soluble fraction (usually determined as
the washing loss in degradation studies), B = insoluble but potentially
degradable fraction, degraded at a fractional rate ¢ (h™"), lag = lag
phase before degradation begins (h), and ¢ = time. See Jessop and
Herrero (1996) and Herrero and Jessop (1996) for a description of the
method when gas production measurements are used. Second-order
models are also used to describe degradation kinetics, but the com-
plexity of the analysis increases, since several microbial pools need
to be represented to ensure proper biological behavior of the model
(Ilius and Allen, 1994). For alternative descriptions of degradation
kinetics see Mertens (1993).

Passage Rates While there have been great efforts to describe
degradation characteristics of forages, substantially less infonmation
is available on passage rates. This is surprising, since digestibility and
intake are functions of the competition between these two processes,
and therefore passage rates are equally important. Passage rates are
closely related to the mechanics of breakdown, largely caused by ru-
mination, from large to small particles in the rumen (Kennedy and
Murphy, 1988; Wilson and Kennedy, 1996), and this is why several
models (Mertens and Ely, 1979; Fisher et al,, 1987; Illius and Gordon,
1991) use different compartments reflecting pools of large to small
particles to describe the different carbohydrate fractions. However,
the required number of compartments to describe adequately particle
dynamics and whether fractionation is really necessary to improve
intake predictions are not known (Illius and Allen, 1994). Obviously,
with this approach the understanding of the processes controlling the
flow of material through the gut is greater, and this (depending on
modeling objectives) should be seen as an advantage. It is convenient
to represent rates of breakdown and passage as a function of animal
characteristics (Illius and Gordon, 1991) since this improves the ac-
curacy of predictions of intake (Illius and Allen, 1994). Illius and Gor-
don (1991) found the following relations for breakdown of large to
small particles (BR):

BR = 0.144 ICW “"™ BW °¥, ;> =062 (17)

where ICW = indigestible cell wall (g/kg) and BW = body weight
(kg)-

They also found the following relationships for passage through
the whole gut (PWG, the inverse of mean retention time) and passage
of small particles (SPR) from the rumen, respectively:

PWG = 0.071 BW"?,  r*=076 (18)
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SPR = 0.75 PWG, cv. 155% (19)

We analyzed the data of Shem et al. (1995) on 17 forages and
applied a scaling rule similar to that of Hlius and Gordon (1991). We
found that particle passage rate (PR) from the rumen could be de-

scribed by
PR = (0.0256 — 0.00007B
+ 0.00127cB)(3.96 BW "),  r*=0.82 20

For nomenclature see Egs. (16) and (17). These passage rates apply
to the B fraction and the indigestible fraction of cell wall of forages
and represent mostly small particles. Passage rates also depend on
the feeding level of the animal (AFRC, 1993). To account for effects
of feeding level (FL, in multiples of ma'mt_em:mce), these should be
multiplied by 0.25 FL, and a scaling rule s_lmllar to that clanrped by
Sniffen et al. (1992) is obtained. Other relations can be fou_nd in S_au-
vant et al. (1995) but for total DM. Certainly more work is required
on this subject to understand the factors affechr_\g passage rates (e.g.,
buoyancy and its relation to particle fermentation and density). For
concentrated feeds, Sniffen et al. (1992) describe the passage rate

(PRC) as
PRC = —0.424 + (1.45 PR) (21)

Rumen Size For intake predictions, most dynamic m.odels re-
quire that a threshold value be set for the maximum capacity of the
rumen or total gut. Accurate allometric relations for these parameters
are found in the literature [see Peters (1983), Demment and van So.est
(1985), Mertens (1987), Demment and Greenwood (l9§8), ang Illius
and Gordon (1991)), Illius and Gordon (1991) deter-mmec.i this allo-
metric relation for 18 species and found that the relatlonshlP between
the weight of dry matter in the rumen (DMR) and body weight could

be described by
DMR = 0.021 BW,  r* =098 (22)

Mertens (1987) found a very similar relation when expressing rumen
content on the basis of neutral detergent fiber

Dynamic models of digestion and their descriptions of feef:l and
animals are useful for the integration of other processes within the
grazing system. Since models of this nature monitor the f}ow of. feed
components through the gastrointestinal tract, they. predlc.t their ex-
cretion patterns and the composition of excreta, which are integral to
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linking the animal with the soil fertility subsystems and their con-
sequent effects on pasture growth in grazing models.

V. OTHER RELATIONS BETWEEN PLANTS AND ANIMALS

There are other relations that need to be taken into consideration
when modeling the plant/animal interface that are particularly dif-
ficult to model. For example, treading, poaching, and fouling can re-
duce herbage availability and the subsequent regrowth of the sward
(Brockington, 1972; Christian, 1981; Wilkins and Garwood, 1986).

Forage is damaged due to trampling and poaching, especially
in wet soils (Wilkins and Garwood, 1986) and/or in very high swards
(Herrero, unpublished), but, as Christian (1981) states, it would be
difficult to account for these effects in a grazing model.

Dung pats and urine affect herbage availability and modify diet
selection patterns of ruminants (Brockington, 1972), thus leading to
the spatial effect of patchy swards in some cases. The effects of excreta
are greater than those of urine and are mediated by the number of
dung pats, the area they cover, and the stocking rate. The most com-
mon way to model these effects is by empirical relations that are
usually dependent on stocking rate (Brockington, 1972; Hanson et al.,,
1994) to scale the amount of herbage available to the animal. Dung
pats can also affect herbage growth by excluding light from the
patches for several months (Wilkins and Garwood, 1986), but this
effect can be reduced by management practices, at least in intensive
systems. In rangelands it is difficult to control but stocking rates are
also lower and therefore the effect of dung on animal consumption
is, perhaps, less important,

Nevertheless, quantification of these aspects is important, be-
cause significant amounts of dung can be deposited in pastures. Its
contribution to nutrient cycles cannot be neglected due to its key role
in the sustainability of the grazing system and the overall dynamics
of the biology of grazing cycles. However, better approaches are re-
quired to quantify the fate of minerals from ruminant excretions to
the soil, water, and atmosphere (Scholefield et al., 1991; Humphreys,
1994).

VI. FUTURE RESEARCH AND DEVELOPMENT NEEDS

Future research needs can be divided into two groups: research on
aspects dealing with the knowledge acquisition and representation of
the main biological processes and definition of an integrated ap-
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proach for the selection of management interventions leading to sus-
tainable grazing systems.

A. Biological Processes

In terms of biological processes, there are aspects in both the plant
and animal sciences that need to be addressed. For example, although
mechanistic models of single pasture species are available and have
proven robust in their predictions, there is a need for better under-
standing of the processes controlling growth in grass—legume asso-
ciations and rangelands. Understanding competition for resources
(light and nutrients) by different species and finding suitable math-
ematical definitions that reflect the biological processes is not a trivial
task. This is closely linked with the representation of grazing pro-
cesses and diet selection, even in single-species pastures. Most rep-
resentations of diet selection have been empirical, and until the mech-
anisms that control diet selection have been elucidated, little progress
is going to be made in modeling diet selection. A key issue in solving
this problem is the need to link the behavioral aspects of grazing to
digestion and metabolism models, since the release and balance of
nutrients and pattern of supply play an important part in controlling
rates of intake and what the animal chooses to eat (Gill and Romney,
1994). In terms of intake prediction, it appears that the weakest in-
formation is related to the flow of material through the gut. More
efforts should be directed toward research into the factors controlling
the passage of feed particles through the gastrointestinal tract.

B. Decision Support Systems: An Integrated Approach

Models can be built solely to increase our understanding about sys-
tems under study and the nature of the functional relations between
parts of the system. For example, many authors have investigated the
effect of certain variables on the stability and steady states of grazing
systems {(Noy-Meir, 1975, 1976, 1978; Johnson and Parsons, 1985;
Thornley and Veberne, 1989), and other scientists have looked at more
fundamental relationships between the animal and plant communi-
ties in terms of body weight effects (allometry) (Belovsky, 1987; Dem-
ment and van Soest, 1985; Illius and Gordon, 1987; Taylor et al., 1987),
grazing behavior (Ungar and Noy-Meir, 1988, Ungar et al.,, 1991; Laca
et al., 1992; Parsons et al., 1994), diet selection (Belovsky, 1987; Par-
sons et al., 1994; Newman et al.,, 1994b), or digestive processes (Illius
and Allen, 1994; Baldwin, 1995). Increased understanding of these
processes has led to improved methods for modeling grazing systems
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FIGURE 10 A decision support system for grazing systems. [From Herrero
et al. (1996a).]

at various levels of detail. However, it is important to emphasize the
trade-off between the objective of the model and its accuracy and
level of detail if cost-effective models are to be built.

For some purposes, the use of grazing systems models is not
complete if mechanisms to select between alternative grazing strate-
gies are not available (Herrero et al., 1996a, 1997). This is specially
valid if the models are to be used in farm management or in a re-
gional planning context.

The classical approach to selection of management strategies has
been to use linear programming (LP) models with the objective of
optimizing economic performance (Dent et al, 1986; Conway and
Killen, 1987; Kleyn and Gous, 1988; Olney and Kirk, 1989), but these
have not used whole system simulation models to provide the inputs
for the LP models. Two important things need to be considered. First,
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it is well recognized that economic optimization is only one and not
necessarily the main objective of farmers (Gasson and Errington,
1993; Perkin and Rehman, 1994; Dent et al., 1994; Dent, 1996). There-
fore, the selection mechanism needs to consider several simultaneous
objectives and trade-offs between them. Herrero et al. (1996a, 1997)
consider that the use of multiple-criteria decision-making models
(MCDM), which are extensions of linear programming models, can
be linked to a simulation system to create a DSS and provide options
for the management of the grazing system (Fig. 10).

A similar approach was used by Veloso et al. (1992) with crop
models. Since a range of multiple objectives can be represented, they
have the flexibility of dealing with different types of farmers and thfzir
managing capacities. The simulation system provides the dynamics
of the system under a variety of management scenarios, and the
MCDM selects the best alternatives according to the farmer’s objec-
tives. Improved selection of strategies can be gained if the objectives
of the farmers are better represented, and this requires a further
substantial input from the social and behavioral sciences (Dent,

1996).
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