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Abstract
This article describes research that predicts the seasonality of malaria in Kenya using remotely sensed im-
ages from satellite sensors. The predictions were made using relationships established between long-term
data on paediatric severe malaria admissions and simultaneously collected data from the Advanced Very
High Resolution Radiometer (AVHRR) on the National Oceanic and Atmospheric Administrations
(NOAA) polar-orbiting meteorological satellites and the High Resolution Radiometer (HRR) on the Eu-
ropean Organization for the Exploitation of Meteorological Satellites' (EUMETSAT) geostationary
Meteosat satellites. The remotely sensed data were processed to provide surrogate information on land
surface temperature, reflectance in the middle infra-red, rainfall, and the normalized difference vegetation
index (NDVI). These variables were then subjected to temporal Fourier processing and the fitted Fourier
data were compared with the mean percentage of total annual malaria admissions recorded in each
month. The NDVI in the preceding month correlated most significantly and consistently with malaria
presentations across the 3 sites (mean adjusted ,.2=0.71, range 0.61-0.79). Regression analyses showed
that an NDVI threshold of 0.35-0.40 was required for more than 5% of the annual malaria cases to be
presented in a given month. These thresholds were then extrapolated spatially with the temporal Fourier-
processed NDVI data to define the number of months, in which malaria admissions could be expected
across Kenya in an average year, at an 8 x 8 kIn resolution. The resulting maps were compared with the
only existing map (Butler's) of malaria transmission periods for Kenya, compiled from expert opinion.
Conclusions are drawn on the appropriateness of remote sensing techniques for compiling national strat-
egies for malaria intervention.

Keywords: malaria, Plasmodiumfalciparum, seasonality, prediction, satellite data, remote sensing, Kenya

Introduction administration would best be determined by the periods
It has long been established that the dynamics of dis- of maximal disease incidence within a community. This

ease vector behaviour, abundance and distribution are has proved successful in streamlining resources in The
sensitive to changes in climate. For the mosquito vectors Gambia, where a change from annual to seasonal target-
of Plasmodium falciparom, these studies arise from ento- ed chemoprophylaxis was adopted after elucidating the
mological observations both across diverse ecological basic epidemiological features of disease in the country
settings and in controlled laboratory investigations (GREENWOOD & PICKERING, 1993). Furthermore, the
(MUIR, 1988). Whilst such investigations have defined clinical management of febrile events may also be guid-
climatic ranges which sustain vector life cycles sufficient ed by an understanding of the changing risks of fever
for parasite development and transmission to human due to malaria throughout the year (GREENWOOD et aI.,
hosts, far fewer studies have examined the ecological 1987).
variation within these ranges that support the diverse There has been recent interest in the use of remotely
spectrum of seasonal vector activity and disease distri- sensed imagery from satellite sensors at a variety of spec-
bution common to sub-saharan Africa. tral, spatial, and temporal resolutions for mapping the

Seasonal fluctuations in the basic reproduction rate meteorological and other ecological determinants of ar-
(BRR) of infection (DIETZ, 1988) occur in nearly every thropod disease vector distributions (reviewed by HAy
endemic malaria setting. The absence of empirical mod- et aI., 1997). Previous applications of remote sensing
els relating the BRR to disease outcome, however, techniques in malaria epidemiology have used both aer-
makes it unclear how these seasonal changes relate to ial and space-borne sensors to map mosquito larval hab-
patterns of malaria morbidity and mortality. Neverthe- itat (WAGNER et aI., 1979; LINTHICUM et al., 1987;
less, seasonality is a widely accepted feature of clinical WOOD et aI., 1992; POPE et aI., 1994) and to predict
malaria in Africa. The malaria burden can range from adult mosquito abundance (REJMANKOVA et al., 1995;
being concentrated into a few months of the year, as in ROBERTS et aI., 1996; THOMSON et al., 1996), as well as
large areas of West Africa (GAZIN et aI., 1988; BREWS- to estimate malaria risk in specific villages (BECK et al.,
TER & GREENWOOD, 1993; BINKA et aI., 1994; Bou- 1994, 1997). In this paper we extend these techniques
VIER et aI., 1997), through intermediary stages where to a comparative analysis of remotely sensed climatic
disease incidence varies annually, such as on the Ken- and vegetation variables with epidemiological patterns
yan coast (SNOW et aI., 1993), to areas of perennial of clinical malaria common to sub-saharan Africa. It is
transmission with little within-year variation, character- demonstrated how these descriptions can be used to
istic of the river valley and lake regions of East Africa provide a high temporal resolution map of the seasonal-
(SMITH et aI., 1993; SLUTSKER et aI., 1994). ity of clinical disease throughout a country, using Kenya

There are academic and pragmatic needs for descrip- as an example.
tions of the clinical and epidemiological patterns of P.
falciparum, to guide and rationalize disease control Materials and Methods ..
(SNOW et aI., 1996). For example, the timing and fre- Study communities and clinical surveillance of paedIatrIC
quency of insecticide treatment of bed nets or mass drug malaria

The recent description of severe malaria morbidity in
5 communities in Africa by SNow et at. (1997) allowed
the detailed examination of short-term temporal fluctu-
ations in malaria morbidity. In brief, these communities
were selected on the basis of their close proximity to in-
patient hospital facilities with continuing clinical re-
search programmes on severe, life-threatening malaria.
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Table 1. Spatial, temporal and spectral resolution of the sensors carried by the NOAA-II and Meteosat-S
satellites

Resolution
Spatial (kIn)

l-ld

Spectral (Jlm)3

1 0.58-0.68
2 0,72-1'10
3 3.55-3.93
4 10.30-11'30
5 10'50-11.50

1 0.40-1.10
2 10.50-12.50
3 5'70-7'10

Temporal (h)

12

Satellite/Sensor

National Oceanic and Atmospheric
Administration (NOAA)/Advanced
Very High Resolution Radiometer
(A VHRR)

Meteosat/High Resolution Radiometer
(HRR)

2.5
5d
5

0-5

(ERDAS) Imagine 8.2TM on a Silicon Graphics Indy
RSOOOTM workstation. The ancillary infonnation pro-
vided with the PAL data was then used to exclude unre-
liable picture elements (pixels) from the images. Firstly,
cloudy pixels, as detennined by the 'Clouds from
AVHRR' (CLAVR) algorithm (STOWE et al., 1991),
were masked. Secondly, pixels viewed by the A VHRR
sensor at an angle greater than 420 were eliminated to
reduce view angle distortion. Thirdly, those pixels re-
corded at solar zenith angles greater than 800 were ex-
cluded, because at these angles the twilight of dawn or
dusk affeCts measurements. Further infonnation on the
factors affecting the quality of remotely sensed data and
the techniques often used to ameliorate such problems
have been discussed by HAY et al. (1996).

These quality-controlled raw waveband data were
then processed to provide ecologically meaningful infor-
mation. The nonnalized difference vegetation index
(NDVI) was first calculated. It is defined for the
A VHRR as follows:

NDVI = (channeI2-channel1) (1)

(channel 2+channel1)
with possible values ranging from -1 to + 1, but in prac-
tice lying well within these limits (TuCKER, 1979). The
NDVI, which has no units since it is a ratio, exploits the
fact that chlorophyll and carotenoid pigments in plant
tissues absorb light in the visible red wavelengths (which
corresponds to A VHRR channell) whilst mesophyll tis-
sue reflects light in the near infra-red (which corre-
sponds to A VHRR channel 2) (SElLERS, .1985;
TuCKER & SEU.ERS, .1986). Actively photosynthesizing
vegetation therefore appears darker in the visible and
brighter in the infra-red region than senescent vegeta-
tion or the soil background. The NDVI is theoretically
a specific measure of chlorophyll abundance and energy
absorption (MYNENI et al., 1995), but its use has been
extended through multitemporal observations to meas-ure 

vegetation biomass (TuCKER et al., 1985b) and toclassify 
vegetation type (TuCKER et ai., 1985a) and phe-nology 
aUS11CE et ai., 1985) in a range of ecosystems

throughout Africa.
Land surface temperature (LST) estimates were cal-culated 

from simultaneously collected brightness tem-peratures 
(K) from A VHRR channels 4 and 5 using an

equation derived by PRICE (1984):

T= channel 4 + 3'33 (channeI5-channeI4). (2)

The 3.33 tenn is a value determined empirically for
the NOAA-7 satellite. This relationship holds because
signal attenuation is much greater in channel 5 than in
channel 4, so the difference between the channels can beused 

to estimate, and hence correct for, the amount ofatmospheric 
water vapour attenuation. This equationhas 

been demonstrated to provide LST estimates accu-

.O.4Ilm is at the visible end, and 12J.1ffi at the thermal end, of the electromagnetic spectrum.
bDiameter of the viewing area of the sensor at nadir (i.e., directly below the satellite).
"Time taken for the satellite to repeat a measurement over the same Earth location.
dBy the time the PAL and FAO-CCD data have been processed and distributed they are at 8 x 8 and 7,6 x 7.6 km resolution
respectively. '

The Kenyan sites (Kilifi North, Kilifi South and Siaya)
were chosen for this investigation (Fig. 4, A).

The communities ofKi1ifi North and Kilifi South are
situated on Kenya's coastline and experience a pro-
nounced bimodal pattern of annual rainfall with a long
rainy period between April and July and a shorter one
between September and October. The average annual
precipitation during the period of disease surveillance
was 1071 mm and 1155 mm for Kilifi North and South
respectively. A creek separates the communities and the
area to the south differs from the north as it is traversed
by perennial and seasonal rivers. The rural community
of Siaya is 20 km from the shore of Lake Victoria at an
altitude of 1130 m. Rainfall occurs in every month of the
year, with peaks between ~arch and ~ay and between
August and November. The average annual rainfall for
the period of study was 1337 mm, similar to that at the
Kilifi sites.

Admissions to the paediatric wards of the local hospi-
tals from each community were monitored for between
3 and 5 years. Every admitted patient between one
month and 10 years of age was examined by a study
physician or clinical officer and details of the clinical his-
tories, observations and the results of laboratory proce-
dures were recorded on a standard proforma. A primary
diagnosis for admission was recorded on discharge, fol-
lowing a review of all laboratory and additional clinical
investigations. ~alaria as the primary cause of admis-
sion was defined following the detection of P. falciparum
infection in the peripheral blood and a review of all sup-
porting haematological, clinical, radiological and micro-
biological information to exclude other potential causes
for the clinical presentation.

NOAA-AVHRR data
The Pathfinder Advanced Very High Resolution Ra-

diometer (A VHRR) Land (PAL) data were obtained for
a period of 5 years (1990-1994) coincident with the
paediatric malaria admission records. They were de-
rived from the visible and infra-red radiance imagery
collected by the A VHRR on board the National Oceanic
and Atmospheric Administration's NOAA-II satellite.
A detailed guide to the NOAA meteorological satelites
and their A VHRR payload has been given by KIDWELL
(1995) and CRACKNELL (1997); the relevant details are
summarized in Table 1. A review of the processing tech-
niques used to calibrate, navigate and quality-control
images from this A VHRR archive, and a definitive de-
scription of the resulting PAL data products, has been
given by JAMES & KALLURI (1994).

The PAL data were provided as digital files of daily
global coverage containing the 5 channels of A VHRR
data and 7 bands of ancillary information. The 5 chan-
nels of raw waveband data were extracted for Africa and
scaled with information provided by AGBU & JAJ\oiES
(1994) using Earth Resources Data Analysis System
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The middle infra-red (MIR) radiance data from
A VHRR channel 3 were also processed. Despite being
less well documented than other wavebands, MIR
wavelengths appear to suffer less atmospheric attentUa-
tion than the visible and near infra-red wavelengths
(KERBER & SCHUTT, 1986), making these data poten-
tially very suitable for monitoring vegetation in the trop-
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Fig. 1. Monthly percentages of the total annual malaria cases
measured over the duration of surveillance. These data are
therefore the average annual pattern of admissions shown for
(A) Kilifi North, (B) Ki1ifi South and (C) Siaya.

Maximum value compositing
The daily acquisition of NOAA-A VHRR data ena-

bles sensor data of improved quality to be obtained by
combining images over time. The aim of this composit-
ing procedure is to select the most cloud-free and least
atmospherically contaminated value for a pixel within
the chosen period. Most compositing relies on the fact
that the NDVI is reduced by cloud and other atmos-
pheric contamination so that the highest NDVI during
a decadal (i.e. 10 d) or monthly period occurs when at-
mospheric attenuation, and thus data noise, are least
(HOLBEN, 1986). This method of image production is
called maximum value compositing (MVC). The daily
NDVI, LST and MIR data were all subject to MVC
over monthly periods. The LST and MIR data were
composited using their respective maxima, however, be-
cause these values are the least cloud-contaminated in
the series, since clouds are generally colder than the land
and vegetation at tropical latitudes (LAMBIN & EHR-
UCH, 1995).

Meteosat-HRR data
The Meteosat-High Resolution Radiometer (HRR)

data were supplied by the African Real Time Environ-
mental Monitoring Information System (ARTEMIS) pro-
gramme of the United Nations (UN) Food and
Agriculture Organization (FAa) as processed monthly
cold cloud duration (CCD) images from 1990-1994. A
guide to the Meteosat satellite series and their HRRpay-
load has been published (ANONYMOUS, 1994) and de-
tails of their spatial, spectral and temporal resolution are
given in Table 1. The relationship between cloud-top
temperature (recorded by channelZ of the Meteosat sat-
ellite) and the probability of rainfall has been established
by SNijDERS (1991). The particular threshold tempera-
ture associated with rain-bearing clouds, and the quan-
tity of rain they deposit, vary temporally and spatially
however, so must be established empirically. This has
been done for large patts of Africa by the Tropical Ap-
plications in Meteorology of Satellite and Other Data
(TAMSAT) programme (DUGDALE et at., 1995). Kenya
lies outside this region, where simple seasonally adjust-
ed thresholds are applied. Africa-wide analyses, howev-
er, have shown that CCD-rainfall correlations in these
zones are equally robust (HAY, 1996). These results
were used by the FAa-ARTEMIS project to generate
monthly CCD images, where each pixel represents the
number of hours during which there was cloud cover
colder than the threshold value for the compositing pe-
riod.

1emporal Fourier analysis
The 5 years series of monthly NDVI, LST, MIR and

CCD images were then subjected to temporal Fourier
analysis, since this technique has been demonstrated to
achieve significant data reduction of remotely sensed
time series without a commensurate loss of biological
information (ROGERS & WILLIAMS, 1994). The analysis
decomposes seasonal changes in the satellite-sensor var-

iables into the sum of their sinusoidal components with
frequencies of one up to 6 cycles per year, so that the
first term in the Fourier expansion gives the annual cy-
cle, the second the biannual cycle, and so on (RoGERS
et al., 1996). The sum of the different components then
describes the observed annual variation at the site in
question. The first 3 Fourier terms capture most of the
variation in the signal, and only these were used in the
present study. The analysis also gives information on
both the phase (timing in the year of maximum value)
and amplitude (maximum range around the mean an-
nual value) of each component and these were used to
construct the fitted signal, from which may be extracted
the number of months above or below any threshold val-
ue.

Data analysis and malaria seasonality prediction
The latitude and longitude of each hospital were used

to extract values from the Fourier-processed satellite
sensor data. A mean value was taken from a 3 x 3 pixel
array around the centre pixel (corresponding to an area
of approximately 24 x 24 km), since this area encom-
passed the whole of the community in each of the study
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Table 2. Adjusted coefficients of determination (adjusted rZ) relating the mean monthly temporal
Fourier-processed satellite sensor variables and mean monthly percentage of annual malaria admissions
for the three study sites

Adjusted ,.2"
Sensor variableb LagC (months) Kilifi North Kilifi South Siaya

MIR 0
-1

-2

0
-1

-2

0
-1

-2

0
-1

-2

-0.38*
-0.67**
-0.27

-0.46*
-0.64**
-0.20

0.06
0.79**
0.55**

-0.53**
-0.51**
-0.02

-

-0.48*
-0.38*
-0.03
-0.41*
-0.29
-0.03
0.55**
0.74**
0.00

-0.61**
-0.14
-0.02

-0
-0
-0
-0
-0
0
0
0
0

-0
0
0

LST

NDVI

CCD

.Single and double asterisks indicate significance at the P <0.05 and P <0.01 levels respectively, assuming no temporal autocorrela-
tion between the variables. They therefore show the relative, not absolute, importance of the different satellite sensor variables. In
each comparison n=12 and degrees of freedom= 10.
bMIR=middle infra-red radiance data, LST=land surface temperatUre, NDVI=normalized difference vegetation index, CCD=cold
cloud duration.
"The time difference between the correlated satellite sensor and malaria admission data: -1 indicates malaria data correlated with
satellite data one month previously, etc.

areas. If any of the selected pixels was masked as sea or
inland water they were excluded from the calculations.
This resulted in a single pixel overlap in the arrays used
to calculate the information for Kilifi North and Kilifi
South. These values were then transferred to a database
and statistical associations explored using the Statistical
Package for the Social Sciences (SPSS) version 7.5.1.

unear regressions were performed to compare the
mean monthly percentage of total annual malaria ad-
missions with corresponding monthly Fourier-proc-
essed NDVI, LST, MIR and CCD values for each site.
Threshold values were then derived from these linear re-
gressions and used to determine the number of months
with conditions above these thresholds and therefore
likely to be associated with the presentation of clinical
malaria in each pixel of the Fourier-processed images of
Kenya. The number of months in which clinical malaria
could be supported (range 0-12 for each pixel) was then
aggregated into zones for comparison with the only oth-
er malaria transmission map for Kenya, developed dur-
ing the colonial era and based on expert opinion of the
length of malaria transmission seasons (BuTLER, 1959;
see Fig. 4, D). The 1959 map divided the country into
zones of malaria transmission periods of less than 3
months, 3-6 months, and over 6 months per year, with
large areas classified as 'malarious near water' or 'malar-
ia free'.

Results
Time series data and regression analyses

The different seasonal patterns of malaria admissions
recorded are shown in Fig. 1. In Kilifi North (Fig. 1, A)
there was a bimodal pattern in annual malaria cases with
peaks in admissions around January and July following
the short and long rainy seasons respectively. In Kilifi
South there was a similar pattern, but it was less pro-
nounced (Fig. 1, B). In contrast, cases of malaria in
Siaya (Fig. 1, C) were recorded relatively evenly
throughout the year.

The annual time series of the remotely sensed varia-
bles (MIR, LST, NDVI and CCD) were derived for
each site and compared with the monthly malaria ad-
mission data. The general pattern observed at each site
was for the peak in vegetation activity to occur approxi-
mately one month after the rains, and for it to take a fur-
ther month for the peak in malaria admissions to
become evident. The coefficient of determination (ad-
justed ,.2) resulting from the linear regression of the
mean monthly MIR, LST, NDVI and CCD variables

against the mean monthly percentage of annual malaria
admissions (including lagging the malaria admissions
data against the satellite sensor data by one (-1) and two
(-2) months) are shown in Table 2. Despite temporal
autocorrelation existing between monthly recordings,
the coefficient of determination was used to test the rel-
ative goodness of fit between malaria admissions and the
4 satellite sensor variables. The strongest correlations
were found between malaria admissions and NDVI-1
(mean ,.2=0.71) and these regressions are shown graph-
ically in Fig. 2. The MIR-1 (mean r2=-O'38) and
LST -1 (mean,.2 = -0' 33) variables had inverse relation-
ships with malaria admissions and less significant corre-
lations than with NDVI-1 (Table 2). The negative
pattern occurred because the environment tends to be
cooler after the rains, due to greater evapo-transpiration
from the increasing vegetation cover. There was no evi-
dence that LST limited the potential for clinical malaria
at any of the sites monitored. No consistent relationship
was found between malaria presentations and CCD. In
Siaya the correlation between malaria admissions and
CCD-2 was highly significant, but in Kilifi North and
South it was very poor (Table 2). Further investigation
of the regression plot for Kilifi South (Fig. 3, B) showed
a strong linear relationship between malaria presenta-
tions and rainfall from February (month 2) until June
(month 6), which corresponded with the onset of the
long rainy season, but a poor relationship for the rest of
the year. This could be explained by the fact that the
shon rainy season (September-october) maintained
suitable conditions for malaria transmission after a his-
tory of heavy rainfall. Furthermore, the hydrology in
Kilifi South would serve to exacerbate this trend. There
was no clear relationship for Kilifi North (Fig. 3, A).
Due to the bimodal pattern of annual rainfall on the
Kenyan coast complicating the observed relationships
with rainfall, and the fact that the MIR and LST varia-
bles were never limiting at the sites monitored, the
NDVI was selected as the most robust predictor of
changes in malaria admission rates because of its highly
significant and consistent linear relationship across the
3 stUdy communities.

NDVI thresholds to support clinical malaria
Fig. 2 suggests that a minimum NDVI threshold of

between 0.3 and 0.4 is necessary to suppon any signifi-
cant seasonal rise in malaria admissions (i.e., by more
than 5% of the annual admissions in a given month) at
each of the 3 sites. Thresholds of 0'30, 0.35 and 0,40

-14
-09
-04

-15
,05
-07

.28

-61**
-07

-08

-10
-67**
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data were recombined according to me definitions used
by BUTLER (1959) in preparing me map of malaria
transmission in Kenya (Fig. 4, D) using mreshold crite-
ria of 0'35 (Fig. 4, E) and 0.40 (Fig. 4, F). Areas above
2400 m were masked in mese figures using a digital ele-
vation model (DEM)* because previous investigations
in Kenya have found a temperature-dependent absence
of transmission above mat altitude (GARNHAM, 1948).
There is considerable visual correspondence between
me predicted maps of malaria transmission periods
(Fig. 4, E, F) and expert opinion (Fig. 4, D). The main
malaria areas surrounding me central highlands are well
defined in kind and extent, as well as variations along
me Kenyan coast and me Ethiopian border in me ex-
treme north-east. The malaria seasonalitY map based on
me 0-4 NDVI threshold is me most accurate approxi-
mation to BUTLER'S (1959) map.

~

Discussion
Most clinical staff working in malaria endemic areas

of Africa recognize 'malaria seasons' and expert opinion
on duration of annual transmission has historically been
used to develop malaria maps. There are, however, few
examples of empirically developed maps of malaria sea-
sonality related to the clinical outcomes of infection.
Programme managers have few resources and thus need
to rationalize the control options at their disposal. An-
nual or biannual treannent of bed nets with insecticides
can make a large financial difference to bed net pro-
gramme budgets. Furthermore, with the rapid emer-
gence of parasite resistance to pyrimethamine!
sulfadoxine, the last affordable front-line antimalarial
treannent in many countries, restricted use for fever
treannent to periods of known disease risk should pro-
long this drug's useful life span. Targeted chemoproph-
ylaxis has been shown to have a dramatic effect upon
child survival (GREENWOOD et ai., 1988) and, whilst
this intervention is demanding upon resources, logistics,
costs and compliance, it is more likely to be acceptable
to programme managers and communities when it need
be applied for only a few months each year. Moreover,
there is renewed interest in the epidemiological features
of clinical malaria with the diverse patterns of P. falci-
parum transmission seen in Africa (SNow et ai., 1997;
THOMSON et ai., 1997). It could be argued that signifi-
cant proportions of infants born immediately after the
acutely seasonal periods of P. faiciparum challenge will
not be actively immunized whilst protected by maternal
antibody and other putative innate protective mecha-
nisms, and will thus be at increased risk after their first
birthday when first infected in the following season.
Furthermore, despite the continued burden malaria
places upon child survival in Africa, and many argu-
ments for the utility of disease risk maps, many national
malaria control programmes lack this most basic of epi-
demiological tools.

The application of remote sensing techniques to ma-
laria control has so far been focused on the identification
of mosquito habitats and the prediction of mosquito
numbers, rather than on the clinical consequences of
vector, parasite and human contact. We have studied
the characteristically seasonal fluctUations in clinical
malaria, in relation to a variety of surrogate meteorolog-
ical and vegetation variables recorded by sensors on
board polar-orbiting and geostationary satellites. The
investigation suggests that, whilst changes in LST, MIR
and CCD are associated with seasonal changes in the in-
cidence of clinical malaria, they lack sufficient precision
and stability across the sites to be of predictive value.
Conversely, there was a high and consistent correlation

betWeen the temporal changes in the NDVI and the
temporal changes in malaria cases across the Kenyan
communities studied. There is obviously no direct caus-
al link betWeen NDVI and malaria cases; both factors
respond similarly, in direction and magnitude, to chang-
es in meteorological conditions. The NDVI has also
been shown to be imponant in predicting the incidence
and prevalence of human trypanosomiasis in Africa
(ROGERS, 1991; ROGERS & WILLlAMS, 1993).

The NDVI is potentially, therefore, a very useful pre-
diCtive tool as it is measured routinely across Africa on
a daily basis and is available in the public domain. It
would be especially useful if similar relationships be-
tWeen NDVI and malaria admissions were to be identi-
fied in other pans of Africa. Recent analyses in The
Gambia, however, indicate that different thresholds
may apply in the savannah areas of West Mrica (THOM-
SON et aI., 1997), so that area-specific modelling may be
required. Funher complications arise due to the low
spatial resolution of the NDVI data. An 8 x 8 km pixel
is a spatial average dlat is likely to be composed of re-
gions above and below dle 0'3-0'4 NDVI threshold, so
that in dle cunent analysis small areas suitable for ma-
laria transmission would not be detected. Increasing the
utility of such observations to location-specific informa-
tion on dle spatial and temporal patterns of disease will
obviously require commensurate increases in the tem-
poral and spatial resolutions of the satellite sensor data.

The maps of seasonal clinical disease developed for
Kenya in this investigation were based upon the empir-
ical observation dlat clinical malaria could be supponed
only whilst NDVI exceeded a threshold value of be-
tWeen 0'3 and 0,4. The maps shown in Fig. 4, E and F
agree widl expen opinion of the length of the transmis-
sion seasons reponed during the late 1950s in excluding
the potential transmission of malaria in dle arid regions
of Kenya (nonh-eastern provinces and the area inland
from the coastal strip). The most sensitive indicator is
an NDVI index of 0,4 (Fig. 4, F), which provides a close
approximation to the differentials in transmission sea-
sons in western Kenya and along the coast, as suggested
by the 1959 transmission map (Bun.ER, 1959). It is
stressed dlat dle current maps merely demonstrate a
method and do not constitute a definitive picture of ma-
laria seasonality in Kenya. To develop this work dlere is
a need to conduct funher validation or 'ground-truth-
ing' of the relationships betWeen malaria admissions and
environmental data for much wider geographical areas,
as well as to explore predictive models of seasonality.

It is perhaps not by coincidence that previous maps of
the annual periods of transmission have often been used
as empirical maps of intensity of transmission, on dle as-
sumption that the longer dle period of transmission the
greater is the potential for higher host infection rates.
Confusion over appropriate definitions of endemicity
has hampered dle use of epidemiological maps for ma-
laria control (SNOW et aI., 1996). Nevenheless, it is no-
table that those areas where NDVI thresholds for
clinical disease are exceeded for 11 to 12 months ofdle
year do suppon the highest rates of P. faIciparnm infec-
tion among the host population in Kenya (OMUMBO et
ai., in press), indicating the potential of these remotely
sensed images for predicting the intensity of transmis-
sion, as well as length of malaria seasons.

To conclude, it has been demonstrated that a signifi-
cant correlation exists betWeen dle timing of changes of
meteorological and vegetation variables recorded by sat-
ellite sensors and the relative changes in prevalence of
clinical malaria, and these correlations have been used
to produce clinical disease seasonality maps for Kenya.
Moreover, satellite systems scheduled for orbit in the
near future will carry sensors widl spectral, spatial and
temporal resolutions far exceeding the specification of
those on existing satellite series (see HAy, 1997). For
example, the geostationary Meteostat Second Genera-
tion (MSG) satellite to be launched in the year 2000 will

*Anonymous (1996). GTOPO30 Documentation. Universal
Resource Locator <http://edcwww.cr.usgs.gov/landdaclgtopo
30/README.html>. Sioux Falls, South Dakota, USA: EROS
Data Center, Global Land Information System.
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be able to acquire NDVI images for the whole of Africa,
at 1 x 1 kIn resolution, every 15 min during daylight
hours (SCHMETZ et at., 1995). These existing and fu-
ture information sources, which will be provided freely
to African countries, when combined with models of
disease transmission intensity and other available demo-
graphic, socioeconomic and health service information,
could be used to create maps to guide in the selection
and timing of interventions. This would provide a more
cost-effective and objective basis for malaria control.
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