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Abstract

A method is described for optimizing models by linking simulation procedures
with a non-linear regression programme. It is then possible to work towards a
parsimonious model which contains those, and only those, variables required for
an optimum fit. Using the observed values, and the predicted values from each
simulation, the' optimizing routine calculates the value of an appropriate loss
function. It then makes small changes in the parameters governing the simulation,
recalculates the predicted values and the first and second derivative of the loss
function with respect to each parameter. The algorithm uses this information to
minimize the loss function for a given formulation of the model. The model is
improved by adding variables which can be shown statistically to improve the fit,
and by removing those which do not. The use of the technique is illustrated with
reference to a series of weekly estimates of the total numbers, births and survival
probabilities of a population of male and female tsetse flies Glossina morsitans
morsitans Westwood. Simulation involved following the lives of cohorts of flies, and
of all their progeny, from the time they were deposited as larvae. Development and
reproduction were regarded as fixed functions of temperature, but mortality rates
of pupae and of adult flies depended on meteorological and biological variables,
plus the level of trapping imposed on the population. Potential factors were added
singly and the model thereby improved in an objective, stepwise manner. The best
fit was achieved when effects on adult survival due to maximum temperature,
various modes of trapping, and an annual cycle were included in the model. The
optimized simulation technique has been used here in improving a model which
describes a biological population but it could equally be used to improve models
in any situation where data are fitted using simulation procedures.

a set of analytical equations. Workers sometimes then opt for
the simpler approach of simulation which requires less
mathematical sophistication, but can still give insights into
the dynamics of the problem. As examples, Haile & Mount
(1987) and Mount et al. (1991) modelled tick populations and
Rogers (1990) and Brightwell et al. (1997) modelled tsetse
(Glossina spp.) populations using simulation. The studies

Introduction

Many real-life modelling problems are sufficiently
complex that they cannot satisfactorily be approximated by
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data is used to calculate a value for an appropriate loss
function. Each parameter in turn is then perturbed slightly
(positively then negatively, with all other parameters kept at
their initial values) and the predicted data and loss functions
recalculated via simulation. This allows the programme to
identify the change in the loss function, and its first and
second derivatives, with respect to each parameter. The
information is used to select a new set of parameter values
which, when used again to recalculate the predicted data,
results in a reduction in the loss function. This procedure is
iterated automatically until no perturbation can be found
which results in a decrease in the loss function.

SEARCH follows the prescriptions of Powell (1978) on
recursive quadratic programming. It differs in the appli-
cation of a sweep operator for solving quadratic program-
ming problems Gennrich & Sampson, 1978) and in the use of
the matrix of second derivatives of the function to be
minimized.

varied in their scope and detail, and the fit to the data was
better in some cases than others. What the studies had in
common were that: (i) no detail was given of the process by
which it was decided that the 'best fit' had been achieved
with the model chosen; (ii) variances and covariances were
not estimated for the model parameters; and (iii) it was
therefore impossible to judge whether an optimal fit had
been achieved with the variables chosen, or whether all of
these variables were necessary in the model.

The above is not meant as a criticism of the studies cited;
they seem typical of many simulation studies in biology,
probably because simple methodical techniques for produc-
ing optimal, parsimonious models are either not readily
available, or are at least unknown to many workers in the
field (D. Haile and R. Brightwell, personal communication).
Whereas sensitivity analysis may be carried out to judge how
the simulation is affected by changes in the model's
parameters, this is often not carried out in such a way that
parameter variances and covariances can be estimated; nor
is it used to obtain an optimal fit to the data.

These problems are addressed here by linking a
simulation procedure to a non-linear optimization routine.
For a given model, this enables the iterative estimation of a
set of parameter values associated with an optimum fit to the
data. The model is improved by adding or removing
variables following statistical comparisons between the best
fits achieved when these variables are included or excluded
from the model. The variances and covariances for each
parameter are estimated as part of the process. There is
nothing new in the use either of simulation or of non-linear
minimization techniques. What is unusual is the linking of
the two to allow iterative optimization of the simulation
procedure.

Methods

Application to a particular problem

The data to be modelled consist of a set of Jolly-Seber
(J-5) estimates (Jolly, 1965; Seber, 1965) of survival
probabilities, births and total population numbers, resulting
from a multiple mark-recapture exercise carried out on a
population of tsetse flies Glossina morsitans morsitans
Westwood (Diptera: Glossinidae) in 1980-1983 (Vale et al.,
1986). The population grew from a stock of pupae introduced
onto Antelope Island, Lake Kariba, Zimbabwe with a view
to testing odour-baited traps and 'targets' against a tsetse
population of known size. Vale et al. (1986) provide the
background to the experiment and a preliminary analysis of
the data.

The delays involved in reproduction, and the fact that the
rate of development changes with temperature from day to
day during larval and pupal life, make it particularly difficult
to develop a realistic analytical model of tsetse populations.
These factors do not pose a problem for a simulation routine;
at each point in the simulation the development rates are
simply modified according to the appropriate temperature
(see below).

As a preliminary to the description of this example of
optimized simulation, a brief account of the tsetse fly life
cycle is provided for those unfamiliar with its biology.

The tsetse life cycle

Female tsetse mature only one egg at a time. They ovulate
for the first time at age c. 8 days; the egg hatches in the uterus
and the resulting larva is nourished through three instars via
a specialized 'milk gland'. Pregnancy lasts c. 9 days at 25°C.
The mature third instar larva does not feed after parturition;
it burrows under the ground to the depth of an inch or so,
and pupates inside a puparial case. It then develops over the
following c. 30 days at 25°C into the adult fly.

Linking simulation and iterative minimization

In the standard use of iterative minimization routines, the
parametric model under consideration is such that, given a
set of values for the independent parameters, the predicted
values can be computed directly. Simulation procedures are
typically used in cases where the predicted values are not
easily generated from explicitly defined equations. Nonethe-
less, the simulation process produces a set of predicted data
that is dependent on the specified values of the parameters
in the model. The aim is then to select a set of parameter
values that minimizes the difference between the observed
and predicted data.

It is shown below that this aim can be achieved by linking
the simulation process to an iterative minimization routine.
In many standard statistical packages this option is not
available, but it is possible with SEARCH (@ Copyright
Kenneth Lange, 1985-1991) which is a FORTRAN 77
subprogram for function minimization. In order to carry out
the minimization the following are required: (i) a set of
observed data; (ii) a parametric model to describe the data;
(iii) a loss function which measures the difference between
the observed and predicted data; and (iv) starting values for
each parameter in the model.

The minimization starts by producing a set of predicted
data with the initial parameter values as inputs. In the
present case, these predictions are produced using simu-
lation. The difference between the observed and predicted

Simulation procedure

The fates of cohorts of individual males and female, and
the progeny of the latter, were followed. This simulation
procedure involved the following steps:

'Y~
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1. Define the data set to be fitted. The J-S estimates of the
,total population of male and of female G. m. morsitans, and
the numbers of births, were viewed as a series of estimates
of a single dependent variable. The sum of squared
differences between observed and predicted estimates was
used as a loss function; for the purposes of estimation, each
value was weighted by the inverse of the J-S estimate of its
variance.

2. Define an initial distribution of (cohorts of) individuals.
In the actual experiment, tsetse pupae were collected in
August-October 1979, in the field at Rekomitjie Research
Station, Zambezi Valley, Zimbabwe. The pupae were placed
in trays of sand and allowed to emerge naturally. The results
only record the number of pupae collected on each day and
there is no way of knowing the stage of development of each
pupa, nor its sex. At a first approximation, it was assumed
that there was a 1:1 sex ratio and that the numbers of each
were uniformly distributed on [O,P] where P is the pupal
period pertaining to the mean temperature (T, in °C) at the
time when the pupae were collected. The expected puparial
durations in days for males (Pm) and females (Pr) were
estimated by:

Pm = 1/(0.05415/(1 +exp(4.8184- T 0.2149»)

Pr= 1/(0.05884/(1 +exp(4.8829- T 0.2159»)
(Phelps & Burrows, 1969). A starting distribution of males
and females, each on their day of deposition as fully
developed third instar larvae, was thereby estimated (fig. 1).
Preliminary investigations showed that long-term popu-
lation changes were not seriously affected by the distribution
of the pioneering stock.

3. Define the time course of reproduction in females. For
poikilotherms such as tsetse the rates depend on the mean
temperature (T). The expected time in days (I,) taken for a
female to produce her first larva is given by:

I1=33.38-T 0.690

(Hargrove, 1994) and the interval (In) in days between
subsequent pupae by:

In = 18.39- T 0.352

(Hargrove, 1994, 1995). The preceding four equations were
used, with temperature data, to produce tables which gave
the emergence day for any male or female fly deposited as
a larva on a given day, and the days on which a female,
emerging on a given day, is expected to produce a larva.
There was a problem in the selection of the mean
temperature (T) in these calculations. Hargrove (1994) found
that tsetse development rates on an island in Lake Kariba
were significantly higher than at the same screen tempera-
ture at Rekomitjie Research Station, Zambezi Valley,
Zimbabwe. A possible reason for this was that the flies on the
island were living at a temperature 3°C higher than indicated
by the Stevenson screen temperatures. We assume that this
is the case for the purposes of the present paper.

4. Define a model for calculating mortality during the
experiment. The factors which might affect mortality can be
climatic, e.g. saturation deficit (Nash, 1937) or temperature
(Rogers" 1979), or biological, in the form of density
dependent effects (Rogers & Randolph, 1985; Rogers, 1990)
or related to the levels of mortality imposed by the
experimenters using traps and odour-baited targets (Vale et
ai., 1986). The idea is to find the best fit with a very simple
model, then add one candidate variable factor at a time in an

attempt to improve the fit. Initially, the mortality was taken
as zero in the immature phase, constant in males and a linear
function of maximum temperature in females. Formally:

~(I) = 0.0

~(M) = mo

~(F)=/o+fiTmAX (1)
where ~(I), ~(M) and ~(F) are the mortality rates in
immature, adult male and adult female tsetse respectively; /0
and mo are constants; fi is the coefficient for the effect of
maximum temperature T mAX. The most complete model used,
with a list of all of the variables and their associated
parameters, is shown in table 1.

5. Create tables defining each mortality factor at all times
during the experiment. These include tables of T ",ax and the
number of traps and targets deployed on each day.
Odour-baited traps were used during the last 3 h of the
afternoon in weeks 129-204; and for the first 3 h of the
morning in weeks 168-204. From week 205 until the end of
the experiment the traps were replaced with odour-baited
'targets' which operated all day (Vale et al., 1986). The targets
consisted of black cotton cloth mounted on wire frames and
sprayed with insecticide; tsetse reacting to the visual and
olfactory stimuli of the targets alighted on the cloth and
acquired a lethal dose of the insecticide.

6. Pick starting values for the coefficients defined in
step 4.

7. Using the infomiation provided by steps 2-6, produce
a particular trajectory of the populatioI}. This procedure
involves the following steps:
A. Consider the fate of the cohort of female pupae deposited
on day 1 of the experiment.

i. From the appropriate table, predict the emergence
day of females born on day 1.

ii. For each day of female pupal life, calculate the
survival probability using Equation 1.

iii. The product of these survival values gives the
proportion of the cohort emerging as adults.

iv. Using the daily adult survival, estimate the number
of females from this cohort alive at the beginning of each
week of the experiment. Accumulate these values.

v. When the cohort falls below an arbitrary value (we
chose 1.0) it is considered 'extinct'. ,,'
B. Calculate the pupal production by each cohort.

vi. Check, using the information in the table referred to
in step 3 in the text, whether a surviving female would have
deposited a larva during each week. If so, store a number of
pupae (on the appropriate day) equal to the number of
females (rounded to the nearest integer) surviving to that
time. Assume equality of sexes among the pupae unless the
number is odd, in which case the extra offspring is assumed
female. This reflects the slight sex bias seen in the laboratory.
C. Repeat for all days of the experiment

vii. Repeat steps i-vi for each day of the experiment.
Notice that each cohort of females produces larvae whose
fate is in turn considered as the simulation proceeds.
D. Consider the fate of all male pupae deposited on each day
of the experiment.

viii. Repeat steps i-v for the male pupae.

The resulting trajectories, of births and total populations for
each sex, form the input for the minimization routine,
described in steps 8-17. These steps are independent of the
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Fig. 1. The estimated distribution of Coday-old pupae of Glossina morsitans morsitans introduced to Antelope Island, Lake Kariba,
Zimbabwe. Key: Open histograms, males; solid histograms, females.

problem being tackled. For a different modelling problem it
would therefore be necessary only to provide input, using
appropriate simulation procedures, analogous to that
provided by steps 1-7.

8. Calculate the residual sums of squared differences

(RSS) between the observed and predicted functions. In this
particular case we sum, over all weeks and for both sexes, the
squares of differences between the observed and expected
populations and births.

9. Make a small increase in one coefficient in Equation 1,

Table 1. The equations determining mortality in immature and adult stages of
Glossina morsitans morsitans in a model of the dynamics of an island population
of that species.

Symbol Description
T ...(i) Maximum temperature on day i (OC).
C(i) Point on the annual cycle of day i.
A(i) Number of traps operating on the morning of day i.
P(i) Number of traps operating on the afternoon of day i.
5(i) Number of targets operating on day i.
<pp(i) Probability of survival of a pupa on day i.
<p/i) Probability of survival of an adult female on day i.
<pm(i) Probability of survival of an adult male on day i.

The full model defining mortality is:

<pp(i) = exp( -(po + p,T _(i»

<p/i) = exp( -ifo + j;T,=(i) + j;C(i) + loA(i) + j,P(i) + /.5(i»)

<pm(i) =exp( -(mn+ m,T,..x(i) + m,C(i) + m.A(i) + m?(i) + m,5(i»)

where the p", f' and m' are the parameters which are varied to achieve the
least squares fit. Subsets of the full model are produced by setting particular
parameters to zero. Notice that, in all forms of the model considered here,
the survival probability is of the form <p = exp( -j!) where j!, the mortality rate,
is a linear function of the model variables.
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effects, on female mortality, of the numbers of targets
deployed, and of the numbers of traps deployed in the
afternoon and morning reduced the RSS by 70% (table 2;
rows 1-4).

Adult male mortality

Inclusion of an effect of maximum temperature on male
mortality significantly reduced the RSS (table 2; row 5).
Interestingly, the parameter estimate was twice as high in
males as in females, suggesting that the latter are more
sensitive to high temperatures. Similarly, the addition of
each factor relating to the degree of killing of males by traps
and targets caused a significant decline in the RSS and in
each case the parameter estimates were higher for males than
for females (table 2; rows 6-8).

Attempts were now made to improve the model by
including other meteorological factors such as saturation
deficit and humidity but none of these was successful.
Nonetheless, there did appear to be other seasonal effects.
Inspection of the mortality data suggested that after variance
due to temperature and trapping had been removed there
was a residual effect, which showed a strong annual cycle,
not obviously related to any meteorological measurement.
This phenomenon will be investigated more thoroughly
elsewhere; for present purposes a factor was entered
consisting of a sinusoidal wave with period one year, range
[-1.0, 1.0], with maximum in the second week of May and
minimum in the second week of November. Inclusion of this
factor for males and females gave rise to a further substantial
reduction in the RSS (table 2; rows 9 and -10).

keeping all other coefficients at their original levels. Repeat
steps 7 and 8.
, 10. Repeat step 9 making a small decrease in this

coefficient. (The size of the changes in steps 9 and 10
decreases with the sensitivity of the RSS to changes in the
parameter).
11. Repeat steps 9 and 10 for each coefficient with all other

coefficients at their original levels.
12. Lange's algorithm now has a measure of the change,

and rate of change, in the RSS resulting from changes in each
of the coefficients in Equation 1. It uses this information to
select a new set of values of the coefficients which moves the
RSS towards its minimum value.
13. Repeat steps 7-12 until the difference between the RSS

in consecutive iterations is less than some arbitrarily
stipulated value.
14. The algorithm calculates the standard errors of all

coefficients and their covariance matrix.
15. Calculate the F statistic (Snedecor & Cochran, 1980):

Fab ~ ((RSSR -RSSF)/(PF- PR))/(RSSF/(N -P})

to test for a significant reduction in the RSS as a consequence
of adding the variable in question. RSSR is the RSS in the
restricted model; RSSF is the RSS in the full model; PF and PR
are the corresponding numbers of parameters and N is the
number of observations. The degrees of f1:~dom are given by
a = N -PF and b =PF-PR. In this study, N =~20 and PF-PR was
always 1, since only one variable was ever added or removed
at a time. The critical levels of F at the 0.05, 0.01, 0.001 and
0.0005 levels are c. 3.8, 6.6, 10.8 and 12.1 respectively.
16. Retain the variable if it had a significant effect, reject it

otherwise.
17. Add another variable to Equation 1 (step 4) and repeat

steps 1-16.

It is emphasized that optimized simulation can only be used
to improve models by comparing the best fits achieved with
different formulations of that model; the onus is on the
modeller to select candidate variables which might be of use

in this regard.

Results

Adult female mortality

The initial model assumed constant adult mortality in
male G. m. morsitans and a linear increase with maximum
temperature in females. Not surprisingly, the resulting best
fit to estimates of total population and births was poor (figs
2 and 3; trajectory 1) with an RSS value >105 (table 2, row 1).
For male survival values (assumed constant), the fit was
obviously poor (fig. 4, males). Surprisingly, however, the
best fit to the female survival data was quite good, even
though the model only included the effect of T'MX (fig. 4,
females) and the fits to the population and birth data were
poor (d. trajectory 1 in figs 2-4, females). Clearly, quite small
changes in female survival probability have major effects on
population levels. This is expected from the known dynamics
of tsetse populations (Hargrove, 1988) and forms the basis of
'bait' methods of tsetse control (Vale et ai., 1986, 1988).

Since females form the productive part of any population,
changes in their mortality strongly affect the numbers of both
sexes. Accordingly, model development concentrated first on
the factors affecting females. Introducing terms for the

Mortality in the immature stages

The factors entered up to this point refer only to mortality
in the adult stages. It has been assumed so far that there was
no mortality during the immature stages. The results in rows
11 and 12 (table 2) are for simulations where this mortality
was introduced, either as a fixed level of mortality, or at a
level increasing linearly with maximum temperature. There
were further significant decreases in the RSS, although the
coefficients of variation for the two factors were large. A
visual estimate of the progressive improvement in the fit is
shown in figs 2-4. If a model with p p~raJ11eters accounted
for all of the variability (apart 'from that du'e to noise), the RSS
would come from a X2 distribution with N -P degrees of
freedom. The critical level (when N = 820 and p = 12) is 877.
The RSS for the final model is 4026, indicating that there is
still some unexplained variation in the data.

The coefficients of variation (CVs) of the parameter
estimates in the final run (table 2, row 12) show that, for all
coefficients relating to adult mortality, the CVs are <1%. For
the parameters po and pt, associated with losses in the pupal
phase, the CVs are much higher (table 2) and are more highly
correlated with each other, and with several other
parameters, than the adult parameters are with each other
(table 3). The correlations are still within reasonable bounds,
however, and there are good biological reasons for retaining
the two parameters.

Thus, larval/pupal mortality is certainly greater than
zero, and there are good reasons for thinking that it depends
on temperature. The higher CVs may relate to the
discrepancy between the data sets for population numbers
and for births. The mean values for the latter set are smaller
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Fig. 2. Weekly Jolly-Seber estimates (circles; with standard error bars) of the total populations of female (a) and male (b) Glossina
morsitans morsitans on Antelope Island, Lake Kariba, Zimbabwe. The numbered lines are the best fits achieved with the models

summarized by the appropriate row numbers in table 2.

240

Density dependent mortalityand their standard errors relatively much bigger (d. figs 2
and 3). The birth estimates therefore have very much less
weight in the fitting process than the estimates of total
population; but it is specifically the information on births
which inform us about losses in the immature stages.

The introduction into the model of density-dependent
effects on adult or pupal mortality failed to result in any
significant reduction in the RSS. Given that the measured
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changes in population were greater than three orders
of magnitude, this was surprising. Equally surprising
was the fact that it was possible to obtain a good fit to
the data without recourse to density dependent

terms. Further investigation of this complex matter
is beyond the scope of the present study which
aims primarily to establish the technique of optimized
simulation.
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Fig. 3. Weekly Jolly-Seber estimates (circles; with standard error bars) of the numbers of births of female (a) and male (b) Glossina
morsitans morsitans on Antelope Island, Lake Kariba, Zimbabwe. The numbered lines are the best fits achieved with the models

summarized by the appropriate row numbers in table 2.
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The fitting technique was applied with success to various
subsets of the G. m. morsitans data set. Thus it was possible
to obtain good fits to the adult data only, the data for each
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sex taken singly, and for subsets of the experimental period.
Indeed it was helpful, in getting a first approximation to the
effect of meteorological factors, to focus initially on the early
part of the experiment (weeks 29-43) when there was nO
mortality due to trapping devices. The subset was then
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Fig. 4. Weekly Jolly-Seber estimates (circles; with standard error bars) of the survival probability of female (a) and male (b)
morsitans morsitans on Antelope Island, Lake Kariba, Zimbabwe. The numbered lines are the best fits achieved with the

summarized by the app! "'ite row numbers in table 2.
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expanded to include all data up to week 110, when the
populations peaked, then to week 168 to include the period
when traps were used in the afternoon only. Finally, all data
were included. Good fits were obtained with every subset
and there was always an effect of temperature on adult

mortality.

of the loss function was calculated for given parameter
starting values and again when small changes were made in
each parameter separately. The changes which resulted in
the largest decrease in the loss function were then used to
define the parameter vales for the next iteration. Derivatives
of the loss function were not calculated so that the problems
referred to above did not arise. On the other hand the rate
of convergence was now linear and the minimization took
10-100 times as long as the deterministic process.

The model developed for the Antelope Island data set can
undoubtedly be improved. The difficulty experienced in
entering variables relating to immature survival rates has
been mentioned, and no density dependent effects could be
detected. Moreover, mortality was assumed independent of
age among adults, whereas it is higher than average in very
young and in old flies (Hargrove, 1990). Trap and
target-related mortalities also increase with age (Hargrove,
1991). Further work is in progress on the model and on
attempts to extend it to tsetse populations in other areas. The
current exercise merely serves to illustrate the principle of
optimized simulation and to show how it can be used to
effect statistically significant improvements to a model in a
simple, methodical, step-wise manner.
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Discussion
The optimized simulation technique has the advantage of

automating the process of estimating the parameter values
which give the best fit to a given data set with a particular
model formulation. In so doing, the procedure estimates the
variance and covariance of the model parameters and hence
the sensitivity of the fit to changes in those parameters. None
of these objectives is generally achieved using existing
techniques and simulation studies often therefore lack these
details (see Introduction for examples). The present method
also facilitates comparisons between the best fits achieved
with various models. In the present case it was thus possible
to show, on the one hand, that there were separate effects of
the different trapping regimes and, on the other, that factors
such as saturation deficit and humidity were not required in
the model once an effect of temperature had been included.

In modelling the tsetse data, we are aware that we have
ignored difficult problems concerning numerical stability,
multi-modal surfaces and parameter and observational
correlation. These arise in the modelling of any complex data
set and will be dealt with in the production of more definitive
models of the Antelope Island tsetse populations. They are,
however, irrelevant to the principle of optimized simulation
whose introduction was our aim.

The technique has been applied, in this instance, to an
extraordinarily complete data set where birth~ survival and
total population estimates were available over a long period.
However, it could equally be used on less complete data,
such as estimates of total population alone. Indeed, it could
be used in any situation where simulation is applicable. Its
great advantage is its simplicity. In that respect the technique
is a useful adjunct to more sophisticated modelling, where it
is not clear how-to formulate the problem mathematically.
Instead of solving a series of difficult mathematical
problems, optimized simulation might allow a sufficiently
good approximation to be achieved such that only one final
mathematical formulation is necessary.

In the simulation approach developed above, the fate of
cohorts of flies was followed using a deterministic process.
Other approaches to population simulation have been
investigated. One method, which preserved better the spirit
of the biology, was to follow the fates of individual flies and
to make the simulation entirely stochastic. The survival level
on each day depended, as before, on the given model and the
conditions prevailing at the time. The fly's survival on that
day was then decided by the value of a random number
selected from a uniform distribution on [0,1]. In principle the
minimization could be carried out as above, but two
problems arose. First, the simulations took much longer.
Second, because of the discrete, stochastic nature of the
problem, small changes in parameter values led to relatively
large changes in the RSS. There were thus large numbers of
local minima in the loss function that made it impossible to
calculate derivatives.

The problem was overcome by using a simpler
minimization routine. In this approach, as before, the value
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