

COLLABORATIVE RESEARCH PROGRAMME ON HIGHWAY ENGINEERING MATERIALS IN THE SADC REGION

Volume 4

Establishment of Information Systems for Managing Road Construction Material Resources in Southern Africa

Transport Research Laboratory, Crowthorne, Berkshire, United Kingdom

Establishment of Information Systems for Managing Road Construction Material Resources in Southern Africa

by C S Gourley and P A K Greening

Published Project Report PR/OSC/170/99 Project Record No. R6022

PROJECT REPORT PR/OSC/170/99

Establishment of Information Systems for Managing Road Construction Material Resources in Southern Africa

by C S Gourley and P A K Greening

Copyright Transport Research Laboratory November 1999

Subsector:	Geoscience
Theme:	G4
Project Title:	Materials Database for the SADC Region of Southern Africa
Project Reference:	R6022

	APPROVALS	
Project Manager	Quality reviewed	

This document is an output from a DFID-funded knowledge and research project, carried out for the benefit of developing countries. The views expressed are those of the authors and not necessarily those of the DFID.

Transport Research Foundation Group of Companies Transport Research Foundation (a company limited by guarantee) trading as Transport Research Laboratory. Registered in England, Number 3011746. TRL Limited. Registered in England, Number 3142272. Registered Offices: Old Wokingham Road, Crowthorne, Berkshire, RG45 6AU.

The information contained herein reflects the views of the Transport Research Laboratory which are not necessarily the views or policies of DFID for whom this report was prepared.

Whilst every effort has been made to ensure that the material presented in this report is relevant, accurate and up-to-date at the time of publication, the Transport Research Laboratory cannot accept liability for any error or omission.

ESTABLISHMENT OF INFORMATION SYSTEMS FOR MANAGING ROAD CONSTUCTION MATERIAL RESOURCES IN SOUTHERN AFRICA

Contents

1.	Intro	duction	1
	1.1 1.2 1.3 1.4 1.5	Background Objectives Regional emphasis General approach Content of report.	1 1 2 2
2.	Infor	mation and data	4
	2.1 2.2 2.3	Information needs Stages of data collection and storage Data volumes	4 4 6
3.	Requ	irements for the computerised materials inventory	7
	3.1 3.2 3.3 3.4	User and institutional issues Laboratory management practice Data sources Development framework	7 7 8 9
4.	Deve	elopment of the materials inventory for Zimbabwe	11
	4.1 4.2 4.3 4.4 4.5 4.6	Historical background Classification of road construction materials Application of the classification The Zimbabwe road data bank Structure of the Zimbabwe materials inventory Data capture	
5.	Deve	elopment of the materials inventory for Malawi	26
	5.1 5.2	Structure of the Malawi materials inventory Data capture	26 27
6.	Datal	base queries and interrogation	28
7.	Mana	agement of materials inventories	29
8.	Value	e of materials inventories	
9.	Futur	re development	32
	9.1 9.2 9.3 9.4 9.5	Institutional arrangements Additional data Additional registers Additional user groups The materials inventory as a prospecting tool	
10.	Conc	clusions	

	10.1	Establishment of a computerised materials inventory	37
	10.2	Updating and sustaining the database	37
	10.3	Link between the database and a GIS	37
	10.4	Value	37
	10.5	Prediction of new sources of material	38
	10.6	Regional strategy	38
11.	Refer	ences	39
12.	Ackn	owledgements	39
Appei	ndix A	: List of registers and contents	40
Apper Apper	ndix A ndix B	: List of registers and contents	40 51

ABBREVIATIONS

AASHTO	American Association of State Highway and Transportation Officials
ASTM	American Society for Testing and Materials
CAS	Central African Standards
CRL	Central Roads Laboratory
CBR	California Bearing Ratio
DFID	Department for International Development
DMR	Departmental Materials Reports
GIS	Geographical Information System
HDM	Highway Design Manual
Ic	Coarseness Index
If	Fineness Index
Ip	Plasticity Index
MoTE	Ministry of Transport and Energy
RDB	Road Data Bank
SADC	Southern African Development Community
SATCC	Southern African Transport and Communications Commission
SIDA	Swedish International Development Agency
TRL	Transport Research Laboratory

Executive Summary

Aims

The project objective was to create a system in which data on the location and use of road building materials could be held and accessed centrally by computer. The scope of the work involved the following main tasks:

- Establish a database of road building materials to provide a user-friendly system for the recording, organising, storage and retrieval of information
- Recommend methods for updating and sustaining the database
- Evaluate the potential of linking the database to a geographical information system (GIS)
- Assess the value of the database
- Investigate the possibility of using the database to predict the occurrence of new sources of material
- Identify the scope for a regional strategy for materials inventories.

Work Undertaken

The type, quality and volume of data available were assessed for each of the countries involved in the project. This assessment indicated that the most cost-effective utilisation of project resources would be to focus on Zimbabwe and Malawi, where significant amounts of materials information were readily available. Different development procedures were adopted in each country in consultation with potential users.

Rigorous data management procedures incorporating good laboratory management practices and quality assurance procedures, were identified as an important prerequisite to setting up a materials inventory in order to ensure reliable data and sustainability of the database.

Materials database systems were designed for use in Zimbabwe and Malawi based on the nature of the information available and the manner in which it was originally stored. The sophistication of the systems implemented was partly a function of the available level of computer literacy.

Appropriate computer training has been provided to database staff and large amounts of data have been accessed and entered onto the databases utilising specially designed procedures.

Achievements

Materials inventories have been developed and established in Zimbabwe and Malawi in which data on the location and use of road building materials is now held centrally by computer and accessed by users. The computerised systems enable materials information to be recorded, stored, organised and retrieved.

The information has been stored in related files (.dbf format) that are readily transferable between software packages and potentially compatible with further Information Technology developments.

Requirements for information and queries on various aspects of road making materials can now be directed to staff responsible for the materials inventories who can interrogate the systems to generate reports on behalf of users.

The materials inventories can be linked to other data through a GIS to provide a means of mapping, predicting and managing engineering resources. This has been demonstrated in a pilot trial.

The cost of collecting the data stored on the systems has been estimated. Materials inventories provide a means of getting added value from this investment by providing information for new development projects more cheaply through reducing survey and other costs.

Information from the materials inventory can now be used in conjunction with digitised topographic, geological, climatic and soils maps to predict where materials with required engineering characteristics are likely to occur.

Recommendations

Rigorous data management procedures incorporating good laboratory management practices and quality assurance procedures are an important prerequisite to sustaining a materials inventory.

Although the basic structures of the materials inventories are in place, these inventories need to be continually updated, upgraded, and maintained. This requires the on-going provision of adequate financial resources.

Sections I and II of the original geotechnical data bank in Zimbabwe should be brought back into routine use. Two additional registers in the materials inventory are needed to achieve this.

A regional strategy, perhaps co-ordinated by SATCC, could be adopted to develop centralised materials inventories for the benefit of other countries in the region. Detailed implementation would depend on the available computer literacy, but this need not rule out the development of paper based systems as a first step.

The soil and materials classification and design CBR prediction procedures developed in Zimbabwe have potential for adoption outside the country. Additional research is required to determine how best to approach this. It is unlikely that data of the type and quantity available in Zimbabwe will be found elsewhere in the region, other than in South Africa. However, it is likely that the region could benefit by sharing and adopting many of the Central Roads Laboratory procedures and practices for the storage and retrieval of data.

The approach of using climatic area, parent materials type and simple soil classification procedures to predict the engineering characteristics of soils could probably be implemented in other countries in the region and elsewhere.

1. Introduction

1.1 Background

In the period between 1988 and 1991, TRL held discussions with government departments in countries of the Southern African Development Community (SADC) to identify subject areas which would benefit from research and technology development. The outcome of these discussions led to a programme of research on highway engineering materials in the SADC region funded by the Department for International Development (DFID) and the Swedish International Development Authority (SIDA). A two-man TRL team was established in Zimbabwe to work in collaboration with government departments in the region, other regional organisations, academic institutions and consulting engineers.

1.2 Objectives

The overall aim of the programme was to promote the economic and environmental use of natural gravels for roadbases in low-volume road construction and maintenance. This particular project focused on the availability of information on road building materials and the management of this information. The project objective was to create a system in which data on the location and use of road building materials could be held and accessed centrally by computer.

The scope of the work involved the following main tasks:

- Establish a database of road building materials to provide a user-friendly system for the recording, organising, storage and retrieval of information
- Recommend methods for updating and sustaining the database
- Evaluate the potential of linking the database to a geographical information system (GIS)
- Assess the value of the database
- Investigate the possibility of using the database to predict the occurrence of new sources of material
- Identify the scope for a regional strategy for establishing materials inventories

1.3 Regional emphasis

The programme had a regional focus. One of the main reasons for this was to enable national engineering organisations, both in government and the private sector, to benefit from the results of research conducted outside national borders. In the past, there had been a reticence to do this. Where good information on materials exists in a particular country, these data can often have application in neighbouring countries where similar conditions of geology, terrain, and climate exist. The project was therefore undertaken in collaboration the Southern African Transport Coordinating Commission (SATCC) so as to try and achieve a greater awareness of the research findings and increase the opportunities for technology transfer. This enabled SADC countries not directly involved in the programme to have an opportunity to comment on the project objectives and research methodology. It also provided greater opportunities for dissemination of

the results of the research to representatives of the SADC countries at SATCC meetings, regional conferences and workshops.

There were also technical benefits by operating regionally. Collaboration with different road authorities enabled the project team to achieve a better appreciation of some of the existing practices and traditional methods, many of which are not widely known, even within the region. These methods are often based on long practical local experience but, because they have not had the benefit of modern research methods, they have not always been given wider consideration. It was considered very important that those techniques with proven track records should be identified and highlighted in the project. By operating in different countries, it was possible to extend the range of working practices, procedures and environments, to identify the user needs, and to tailor the recommendations to different institutional capacity. This approach extended the conditions to which the results of the research can be applied.

Although regional application was not a project objective, the importance of sharing and using the available information, data and knowledge should be an achievable future aim for the region.

1.4 General approach

The main activities in the project related to the development of a computer-based inventory to store existing data on road building materials. This could then be used to provide readily accessible engineering materials information early in project planning, site investigations and resource surveys.

It was clear at the project outset that extensive data existed in Zimbabwe, and that this represented a valuable local and regional resource. Some of the data management methods, classification procedures and innovative data handling techniques could also have much wider application in the region. The first priority was to capture these data and this task determined the early focus of the project. There was a need to enter these data into a database before interrogation procedures could be used in a meaningful way. Transfer of the data from paper files to the computer database was a major task, which involved a team of four people compiling and entering data over a three-year period. The large amount of data and the absence of a viable GIS in the Roads Department changed the scope of the project to some extent.

There was less information available in Malawi compared with Zimbabwe. The data in Malawi was contained mainly in documents reporting materials investigations carried out by the Ministry of Works or by private consultants. In Malawi two staff were employed part-time on data entry over a two year period. There was less information available in either Botswana or Zambia, so the project was based in Malawi and Zimbabwe.

1.5 Content of report

Chapters 2 and 3 discuss information in terms of the type of data required for road building purposes, the way that it is collected and stored, and the requirements of a computerised materials inventory. The development of the materials inventories implemented in Zimbabwe and Malawi are described in Chapters 4 and 5, respectively. An appendix lists the contents of the inventories in each case. Chapter 6 describes how the databases can be interrogated to obtain information stored in the inventories, and an appendix gives detailed examples of how this can

be done. Issues concerning how the inventories need to be managed in a sustainable manner are discussed in Chapter 7, and this recognises the high value of the information currently stored, which is quantified in Chapter 8. Proposals for future development of the inventories are given in Chapter 9 and, finally, Chapter 10 draws conclusions from the work that has been undertaken.

2. Information and data

2.1 Information needs

The planning, design, construction and maintenance of projects in an effective and economic manner depend on reliable information being available to the engineer in an easily recognisable and accessible format, at an appropriate level of accuracy. Highway engineering projects present particular information problems because they can cover long distances across different terrain, geology and soils. Compiling and maintaining an inventory of material sources and properties is one way of making information available. Storing this information on microcomputer database provides a rapid, reliable and effective method of sorting, retrieving and presenting relevant information. Computer technology is now an accepted tool in a number of the materials laboratories in the region. It can be used to increase organisational capacity, ease high work loads and increase productivity.

A very large volume of data is collected during the construction, maintenance, rehabilitation or reconstruction of roads. These data are normally held centrally by the ministry or road department testing laboratory, who are responsible for the collection of data on the preliminary materials design and other aspects of road projects. Subsequent surveys are often carried out separately by contractors, whilst consultants compile the data on the as-built project.

The need for the storing of materials information in an organised way is well understood in the region. However, accessing historical records stored in paper files is a slow and laborious exercise. Potential users of this information have little incentive to search through records of this nature, and there is little interest in storing data in this way if it is unlikely to be used in the future.

The restructuring of many roads departments in the region has resulted in staff changes. Consideration is being given to privatising government organisations, including materials laboratories where many of the data are currently stored. In these circumstances, it is likely that archived information will be lost or destroyed. This emphasises the need to protect the substantial investment in collecting and storing of existing materials data in the region. Computer databases provide an effective method of storing data in a way that their availability for future use is reasonably assured.

The materials used in road construction and maintenance materials are an important and expensive resource. Furthermore, these resources are not limitless and are mostly non-renewable. Therefore, they need to be managed correctly. Proper management is only possible if the quality, volume and location of these road-building materials are known. Lack of access to historical data means that materials investigations often need to be repeated which incurs unnecessary cost. As such, the storage and use of existing data is very cost-effective.

2.2 Stages of data collection and storage

Materials engineers and technicians spend a great deal of time prospecting, mapping, sampling and testing materials. This work provides a source of information and data that are used by the planners and engineers in their decision-making processes. A conventional materials prospecting operation for either paved or unpaved roads includes the location of borrow materials and investigation of alignment soils. It is undertaken in a number of stages:

- 1. Planning or site investigation
- 2. Laboratory design
- 3. Construction
- 4. Data reporting and filing

Data are collected to ensure that the materials used in the road project meet the quality standards required by the specifications. They also provide an as-built record for the road.

Planning or site investigation

This stage usually involves collection of data on:

- Pit nomenclature and road project (unique reference)
- Location of borrow areas (geographic reference)
- Land ownership, current use and compensation arrangements
- Accessibility and haul distances
- Type of materials (over-burden and seam)
- Thickness and volumes of deposits
- Proposed use of the material
- Alignment soils and terrain characteristics
- Site investigation testing for structures and quarries
- Collection and labelling of samples for testing
- Location reference and date

Laboratory design

The design or approval testing stage involves characterisation of samples collected at the planning stage by:

- Location, description and type
- Index or classification testing (eg plasticity, grading etc.)
- Compaction testing
- Strength testing of compacted materials (eg unconfined compressive strength (UCS), soaked CBR, Texas triaxial)
- Particle strength testing
- Approval for use or rejection

Construction

This stage includes laboratory and site tests carried to approve quality of materials used in the work, including:

- Location by chainage (unique reference)
- Construction date
- Construction layer and material source
- Compaction characteristics (eg density and moisture condition)
- Index or classification check tests
- Treatment details (eg percentage of stabiliser added)

- Thickness
- Approval/rejection statements

Data reporting and filing

This stage involves the filing of planning, testing and as-built records by:

- Collection, sorting and filing of paper copies of information
- Compilation of summary reports
- Storage of this information
- Re-use or reference to the data at some later date

2.3 Data volumes

An example of the volume of work carried out and the amount of data collected by a typical materials laboratory in the region is given in Table 2-1. This summarises some of the activities of the Materials Planning Unit at the Central Roads Laboratory (CRL) in Zimbabwe over recent years.

Table 2-1	Summary	y of activities	of a	typica	l material	s laborato	ory in the	region

Activity	1993	1994	1995	1996	Total
Soil survey (km of road)	248	158	175	24	605
Gravel location (m ³ x 1 000)	711	522	973	103	2 309
Concrete aggregate location (m ³ x 1 000)	6.5	11.5	47.3	4.9	70.2
Bridge site investigations (number of sites)	12	17	5	1	35

Each of these activities is supported by the collection of samples, transporting of materials, test preparations, testing and reporting of data. Table 2-2 illustrates the associated activities of the Soils Section at CRL in terms of the type and number of tests carried out. These tables illustrate the high output of work carried out by central materials laboratories in the region, and emphasise the need to introduce computer based materials inventory technology to assist with the storage, manipulation and presentation of these data.

Table 2-2 Example of the quantity of testing carried out by a typical materialslaboratory in the region

Test type	1993	1994	1995	1996	Total
Classification tests (alignment soils and	1 231	2 734	1 095	768	5 828
borrows)					
Subgrade design CBR (alignment soils)	313	414	339	122	1 188
Activity	540	113	130	65	848
Texas triaxial (base and sub-base)	707	560	515	583	2 365

3. Requirements for the computerised materials inventory

3.1 User and institutional issues

The identification of the end users, their needs and requirements forms an integral part of the development process, and the commitment available at local level to support the system will underpin its success.

It is also important to appreciate that a materials inventory is not just a computerised data storage system. The data are derived principally from field and laboratory testing, thus raising issues of quality assurance and laboratory management. Also, management procedures and the availability of suitably trained staff need to be in place to enable the system to be updated, managed, maintained and used properly. Good laboratory management practice, and staff training and supervision, are essential elements to running an effective efficient materials laboratory. For example, the degree of staff training, equipment maintenance, calibration and sample handling will effect the quality, reliability and usefulness of the test results on which subsequent engineering decisions will be made. These issues are important if the data stored in a materials inventory are to be reliable, so are fundamental to the planning, design and operation of a materials inventory which is to be sustainable.

Meetings with senior materials staff and testing officers were held to establish user requirements, current laboratory practices, and information on the type, volume and quality of data available.

3.2 Laboratory management practice

Information was sought in the following areas:

- Laboratory organisation
- Provision of services
- Type of work undertaken
- Organisation of the work
- Organisation and recording of the data
- Standards and operational procedures
- Budgets, costs and staffing
- Quality control procedures
- Training
- Data storage procedures

Although the work carried out in the laboratories is generally similar in all countries, differences in management practices were identified in the following areas:

- Quality, standards and operating procedures
- Organisation, staffing and management
- Maintenance, checking and calibration of equipment and instruments
- Laboratory planning and operation

- Collection, handling, preparation and storage of samples
- Test equipment and measuring instruments
- Understanding and application of test procedures
- Operation of site laboratories and field investigations
- Data collection, control and reporting
- Level of staff training
- Provision of information services

A number of different test standards are in use in the region. These include Central African Standards (CAS), American AASHTO and ASTM standards, British Standards, South African Standards, and various mixtures of all these standards. Results derived from local procedures therefore need to be treated with care if they were to be applied in other countries or compared with test results elsewhere.

Some government laboratories are operating with old equipment, and funding for maintenance and upgrading of equipment is scarce. This is likely to have impacts on the ability to control testing quality and on the reliability of test results. The introduction of effective laboratory procedures and adequate funding are essential if quality standards are to remain high, and are prerequisites to the establishment of sustainable materials inventories.

3.3 Data sources

It was apparent the materials laboratories in both Malawi and Zimbabwe held good data, which was regarded as an investment. However, an assessment of the paper files recording the data suggested that separate materials inventories would need to be developed to meet the different practices adopted in the two countries.

In Malawi, data from materials investigations for road works have been kept in an organised series of Departmental Materials Reports (DMR series) since 1982. One of the first activities in Malawi was to source and collate these reports and establish a library of information within the Materials Branch. Approximately two hundred of these reports have been issued covering materials investigations for roads, buildings, bridge sites. These reports would be the sole source of information input to the materials inventory.

In Malawi, there is little in-house capability to construct roads and external contractors and consultants are normally used. In many cases, the files containing the materials data relating to construction projects are retained by the individual contractors and consultants, and copies of these files are often not passed to the Ministry. Where the Ministry does have copies, these are often widely dispersed and difficult to locate. In addition, contractors and consultants use different methods of presenting information in summary reports, and this makes it very difficult to establish a consistent data capture procedure that is user friendly. The fact that a number of reports could not be located underlines the importance of capturing these data on computer and protecting them for future use.

A typical DMR report on materials investigations includes information on:

- Geology and topography
- Climate and vegetation

- Alignment soil survey (soil description, sampling, Atterberg limits, grading, compaction, and CBR testing)
- Gravel pit survey (location, description, sampling, Atterberg limits, grading, compaction, and CBR testing)
- Rock sources for quarries
- Other relevant information

Zimbabwe has extremely good and very well organised historical information on its road construction materials. Materials test data and other information relating to the road construction process are stored at the CRL Records Office after being checked and verified by senior materials testing officers. The key test record sheets providing data summaries for the materials inventory were:

• *CL19: Gravel pit forms*

containing information on location, material type, quantities, haul route and costing, pit plan, details of trial holes, indicator and grading tests, and summaries of Texas triaxial results for gravel pits

• CL16: Field check sheet

containing as-built information and data on chainage, pavement design, laboratory and on-site compaction, sources, and the amount and type of stabiliser

- *CL7: Triaxial summary sheet (pit/stockpile)* describing of pit and stockpiled materials, approved use, and Texas triaxial and other engineering test results
- *CL2: Soils-gravels summary sheet* containing information on location, description, classification and CBR testing of alignment soils
- *Field log book* containing site information on alignment soils and terrain characteristics

The volume of data held in Zimbabwe is extremely large, with dedicated buildings and cabinets to the store the data, which remains in very good condition. Comparatively, much less information was accessible in Malawi. One of the reasons that the volumes of data available are so different is because of the way that road construction works are conducted in the different countries. In Zimbabwe, most road construction is carried out in-house and only in rare cases are external contractors and consultants employed. Thus, all information relating to the design, construction and maintenance of roads originates from and is held by the Ministry.

3.4 Development framework

The design and implementation of the materials inventories in Zimbabwe and Malawi followed a similar logical sequence of steps. The first step was to establish:

- Stakeholder and user needs and expectations
- Information type and availability

- Management structure and local technical capacity
- Initial data capture mechanisms and monitoring of operational procedures
- Staff requirements and training needs
- Computer training programmes
- Acquisition of hardware and software

Some staff training was carried out early in the project. Technical staff in Malawi and Zimbabwe attended computerised spreadsheet and database familiarisation courses, using the Lotus 1-2-3 and Microsoft FoxPro software packages. A two-week refresher course on laboratory testing was organised for technicians from Zimbabwe, Zambia, Malawi and Botswana.

The second stage of development comprised:

- Design of modular components of the system in a suitable format (such as data entry screens or simple spreadsheet)
- Development of the system components within the agreed framework (system can be stand-alone or part of larger information system)
- Prototype testing
- Bulk data entry
- Advanced computer training (database queries and reporting)
- Establishment of the system within the existing management framework
- Identification of system support and maintenance needs

In developing a system to meet the needs identified, the target solution might range from a complex integrated system to a simple database or spreadsheet. Any approach must satisfy the basic requirements of a materials inventory. The complexity of the systems developed in Malawi and Zimbabwe was different. This reflected the level of computer literacy and expertise, information availability, and the expectations of the end users. Each of the systems were developed to be:

- Sustainable, with budgets and trained staff available in the longer term
- Flexible to changes in user needs, hardware or software
- A recognised part of the materials laboratory management structure

4. Development of the materials inventory for Zimbabwe

4.1 Historical background

A geotechnical data bank has been in use in the Department of Roads for the last 25 years. The main reasons for its original development were to:

- Reduce operations to a minimum by indicating those areas where construction materials are known to exist, and by supplying the necessary information to identify these areas on the ground
- Assure uniformity of grouping and classification throughout the Ministry, (ie enabling everybody to 'speak the same language' in terms of materials)
- Supply information on the load bearing values of sub-soils
- Provide a means for training and instructing new staff

In its original format, described by Holden (1971), the geotechnical data bank consisted of four sections:

- I Air photo interpretation
- II Construction materials, identification and location
- III Construction materials, mechanical properties
- IV Sub-soil investigation data (this referred to information from layers below the normal hand excavated trial pits)

In recent years, the use of air photo interpretation has been discontinued, largely because of the loss of skilled staff from the department, and the main emphasis has been on recording and using information from Sections III and IV. Section III information has been incorporated within the materials inventory. However, the quality and relevance of the data held in Sections I and II is such that they still have application and, ideally, should be brought back into the materials planning procedures at CRL. Box 4-1 and Box 4-2 show examples of the data held within Sections I and II of the data bank. The existence of these data was not discovered until the final stages of the project, so they were not initially incorporated into the materials inventory. However, this is now being addressed by the Roads Department who are continuing with the task of updating and extending the materials inventory.

It is evident that the data recorded have considerable value for use in future engineering projects, both in Zimbabwe and elsewhere in the region. The data also have potential for application by district level engineers in low cost or labour based construction projects where there is little materials information, and where there is limited funding for prospecting.

Box 4-1 Example of data held in Section I of the geotechnical data bank

Geoclimatic Province: N<2 Eastern Highlands

Parent material group: Sandstone

Type: Sandstone, Arkose

Characteristics

Sedimentary rocks consisting of various sizes of angular to rounded grains from 2mm down. Usually cemented and fairly well consolidated. Minerals generally quartz. When broken, fracture goes around single grains. The massive fine variety is dark grey with scattered shale bands. The medium to coarse varieties are ochre and cream coloured and are sugary in texture.

Landform

Highly dissected, slightly tilted plateau; with only plateau remnants, with escarpments. Often step-like appearance. In lower terrain, also somewhat rounded and range like hills with gentle slopes.

Drainage pattern

Radial off isolated and rounded hills. Almost parallel off elongated plateau remnants. Bigger streams angular, with partly controlled drainage due to faulting. The steep, short watercourses have a typical (often arrow shaped) rather coarse herringbone pattern.

Erosional form Strong V-shaped gullies.

Vegetation

On the top of the plateau, only scattered remnants of trees. On the gentle slopes, light to medium dense vegetation (trees). Gullies heavily wooded. Thick grass cover.

Air photo pattern

Top of plateau, almost flat terrain, very smooth to velvety due to thick grass cover. Slopes and lower terrain coarse to very coarse due to widely spaced trees.

Photo toner/ R_i NW (9) to LG (7). More heavily wooded areas MG (5).

Photo tone colour:

Additional remarks:

Quartzitic sandstones in the southern Eastern Highlands is in places inter-bedded with shale bands. Old shelf deposit.

Box 4-2 Example of data held in Section II of the geotechnical data bank

Geoclimatic province: Limpopo-Sabi Depression

Area: Chisumbanje-Lower Sabi

Parent material type: Basalt (N>5)

Local landform: Flat terrain with depressions

Surface materials:

On higher ground rock bars and outcrops with either black or brown basaltic soils. Topsoil often silty, especially towards Sabi, caused by down wash from higher ground. Black basaltic soil in depressions greater than one metre deep.

Sub-soil:

On higher ground solid rock or disintegrated rock. In depressions, black basaltic soils, greater than one metre deep.

Agricultural classification:

Moderately deep to deep, dark self-churning clays. Clay fractions mainly montmorillonite. Dark brown to black soils.

Soil profile: BK 0845-3375 a-b BK 1835-2345 c BK 1315-3805 d-f

Construction materials

- Calcretes (show up as lighter patches); found in pans or slight depressions
- Disintegrating basalts may be used for sub-base in this area and are possibly suitable for lime stabilised bases; basalts are usually found in small rises or ledges
- Basalts provide good wearing course gravels, due to the continual disintegration, which produces fines. Only harder basalts are suitable for base; these may have to be crushed, in addition to stabilisation treatment
- Disintegrated basalt contains to a large extent montmorillonite in its clay fraction; when N>5, the basalt can be used for subgrade, sub-base and wearing course gravel

4.2 Classification of road construction materials

Zimbabwe has been divided into seven geoclimatic provinces, which roughly match the countries geomorphic provinces. Each of these is characterised by a Weinert (1980) 'N' factor. A map showing the provinces is included within Part E of the Ministry Design Manual, and a reduced copy is reproduced in Figure 4-1. The geoclimatic provinces (N-factor areas) are listed in Table 4-1.

Figure 4-1 Geoclimatic provinces in Zimbabwe

Geoc	limatic Province	N-factor
1	Eastern Highlands	<2.0
2a	Central Midlands	2.0-3.9
2b	Northern Midlands	
2c	Zambezi Valley	
3a	Southern Midlands	4-5
3b	Western Midlands	
4	Limpopo-Sabi Depression	>5.0

Table 4-1	Geoclimatic	provinces i	in	Zimbabwe
\mathbf{I} and \mathbf{T}^{-1}	ococimatic	provinces		Linnanwe

Nineteen different parent material groups have been identified within these geoclimatic zones in Zimbabwe. These have been sub-divided further to give the fifty types defined in Table 4-2. The road building materials are grouped using a standard Ministry classification procedure, which is based on index, tests, geology and climate. The group symbols, set out in Table 4-3, are used for plasticity (Ip), fineness index (If) and coarseness index (Ic) data ranges. The coarseness index is the percentage of material greater than 2.36mm, whilst the fineness index is the percentage of materials less than 751m in size. Group classifications can then be assigned to the soils based on these properties. These are then expanded to provide a full classification by adding the symbols for climatic zone and geology, as shown in the example in Table 4-4. For example, where the group range [Ip/If/Ic] is [0-5/11-20/c], the group symbol become 0315c. The geoclimatic N value and parent material type are then added to fully classify the material, eg 2 Gr 0315c. The classification process applies to stabilised and unstabilised granular base materials, subgrades, improved subgrades, fill and road bed materials.

Parent material		
group	Туре	Symbol
Granite	Granite	Gr
	Syenite	Sy
	Aplite	Ap
	Pegmatite	Pe
	Granite Porphyry	GrPo
Gabbro	Gabbro	Ga
	Pyroxenite	Py
	Norite	No
	Epidiorite	Ep
	Diorite	Di
Dolerite	Dolerite	Do
	Basalt	Bk
Serpentine	Serpentinite (all varieties)	Se
Gneiss	Gneiss (Ortho-Gneiss)	Gn
	Gneiss Granite	GnGr
	Para-Gneiss	Gn
Felsite	Felsite & Felsite Schist	Fl & FlSc
	Rhyolite	Rh
	Andesite	An
Greenstone	Greenstone & Greenstone Schist	Gsc
	Amphibolite, or	Am
	Hornblende Schist	Hsc
	Dolerite Schist	Dsc
	Porphyritic Schist	Psc
Schist	Phyllite	Pl
	Mica Schist	Msc
	Actinolite Schist	Asc
	Talc Schist	Tsc
Metallic schist	Banded Ironstone	Bi
	Jasper	Ja
Shale	Mudstone	Mu
	Shale	Sh
	Slate	S1

 Table 4-2
 List of parent material groups

/continued

Parent material		
group	Туре	Symbol
Limestone	Limestone	Ls
	Dolomite	Dm
	Marble	Ma
Sandstone	Sandstone	Sa
	Arkose	Ar
Conglomerate	Conglomerate	Су
	Grits	Gt
	Breccia	Br
Chalcedony	Chalcedony }	
	Chert }	Ch
	Opal }	
Quartz	Quartz (Crystalline)	Q
	Quartzite	Qu
Alluvium	Loose, river laid material	Al
Sand	Sand (river)	Rs
	Sand (aeolian)	As
	Pebbles	
Clay	Black Cotton Soil	BCS
Pedogenic	Silcrete	St
-	Calcrete	Ct
	Laterite	L
	Ferricrete	FC

 Table 4-2 List of parent material groups (continued)

Tuble I & Limbubile Schedule of Grouping for Son clubbilication	Table 4-3	Zimbabwe schedule of	f grouping f	for soil classification
---	-----------	----------------------	--------------	-------------------------

Plasticity		Fineness		Coarseness	
(Ip)		(If)		(Ic)	
	Group		Group		Group
Ranges (%)	symbol	Ranges (%)	symbol	Ranges (%)	symbol
0-5	03	0-10	05	0-10	а
6-10	08	11-20	15	11-20	b
11-15	13	21-30	25	21-30	с
16-20	18	31-40	35	31-40	d
21-25	23	41-50	45	41-50	e
25-30	28	50-70	60	51+	f
31-35	33	70-80	75		
36-40	38	80+	80		
41-45	43				
45+	45				

Indicator results			Group range				
Ip	If	Ic	Ip	If	Ic		
NP	16	с	0-5	11-20	с		
6	21	d	6-10	21-30	d		
3	12	с	0-5	11-20	с		
18 32 d 16-20 31-40 d							
19 27 c 16-20 21-30 c							
8 19 d 6-10 11-20 d							
Notes:							
NP Non-plastic							
Results are from same parent material type							

Table 4-4 Examples of groupings from indicator test results

4.3 Application of the classification

During the road reconnaissance survey, a centre-line soil survey is also carried out. Information on the soil classification in terms of Atterberg limits and grading is collected, together with information on soaked CBR, chainage, drainage and water table. In 1978, the historical records of these data were used to develop a method for the prediction of the subgrade soaked CBR for road design. The theory behind the development of this procedure is that soils falling within the same classification will attain similar strength values in terms of the soaked CBR if tested under the same conditions. Using statistical distributions of these data, decile, quartile, median and mean values of the strengths were computed and the predicted CBR values used for preliminary pavement design purposes. The selection of median, quartile or decile CBR values used depends on the design traffic group. These are median values for the traffic category of less than 50 000 cumulative equivalent standard axles (esa), quartile values for 50,000 to one million esa, and decile values for greater than one million esa.

Box 4-3 shows an example of the type of information held in Section III of the geotechnical data bank for a granitic soil. Knowing the basic classification [plasticity index (Ip), fineness (If) and coarseness (Ic)], together with the parent rock type and geoclimatic area, the relevant page or index card in the directory can be consulted and an estimation obtained of the engineering properties. These are given in terms of maximum dry density (average and range), optimum moisture content (average and range) and soaked CBR (decile, median and quartile).

This method of predicting CBR has been used very successfully in Zimbabwe for over 20 years. The method reduces the total amount of soils testing required, although it still requires confirmation and check tests. This provides an excellent example of how well organised historical materials data can be used to achieve substantial cost and time savings on the initial reconnaissance and design phases of road projects.

N-Jacio	<i>N-factor:</i> 2.0 - 3.9						
Geologi	cal origin:	Granite					
Ic		a to b					
Design	data				Prediction	S	
0					CBR (%)		
Ip	Classification	If (%)	Density (Kg/m^3)	Wo (%)	Lower Decile	Lower Quartile	Median
0-5	0305	0-10	1790-2000	7-10	46	49	52
	0315	11-20	1720-2080	7-15	24	33	43
	0325	21-30	1790-2090	6-14	21	29	39
	0335	31-40	1810-1960	9-14	18	21	26
	0345	41-50	1760-1860	13-15			15
6-10	0815	11-20	1840-2070	8-13	20	30	42
	0825	21-30	1830-2080	8-15	13	20	27
	0835	31-40	1850-2040	8-14	14	16	18
	0845	41-50	1730-1890	11-15	10	11	13
	0860	51-70	1680-2020	9-15			8
11-15	1315	11-20	1890-2050	10-13	17	24	32
	1325	21-30	1730-2100	8-17	9	13	18
	1335	31-40	1560-2130	10-23	9	11	14
	1345	41-50	1700-2000	9-17	6	8	10
	1360	51-70	1730-1770	16			5
16-20	1815	11-20	1920-2010	10-13			8
	1825	21-30	1900-2030	10-14	6	10	14
	1835	31-40	1740-2050	9-16	4	7	11
	1845	41-50	1710-1920	11-17	8	9	10
	1960	51 70	1620 1820	15-24	5	7	10

4.4 The Zimbabwe road data bank

The Department of Roads has, in recent years, developed a computerised road data bank (RDB). The system is used to store, update and retrieve key road related data items for Zimbabwe. The Ministry of Transport and Energy (MoTE) has derived a formal administrative procedure for adding, updating and validating data to the RDB. It is accessible to road administration departments and other users who need to obtain summary information. The structure of the RDB is illustrated in Figure 4-2 and contains nine basic information units, the contents of which are given below:

• Basic data

contains information about the road network including route number, total length, maintenance units and the codes used in the remainder of the RDB [RDB 0-9]

- *Administration* contains information on road function, type and maintenance responsibility [RDB 10-19]
- *Traffic* contains information on traffic count stations and traffic count statistics [RDB 20-29]
- *Design and construction* contains the pavement design standard, structural design, design life, design speeds and pavement types [RDB 30-39]
- Surface data contains all the necessary surface condition information for bituminous and gravel roads [RDB 40-49]
- Structures

contains information on structures such as culverts, drifts, grids along the road [RDB 50-59]

• Geometry

contains horizontal and vertical alignment and the road cross-section details for the road [RDB 60-69]

• Bridges

contains information on bridges including identity, name, chainage, structural details, hydrological information, maintenance details and accident history [RDB 70-79]

• Materials

contains information on the road construction materials used [RDB 80-89] (not established at project inception)

Figure 4-2 Structure of the Zimbabwe road data bank

The RDB software has been developed in Microsoft FoxPro using in-house staff from the Computer Branch, and a competent system has resulted. All of the data within the database are linked by unique identifiers, such as 'road number', and/or 'chainage-from to chainage-to'. All data relevant to an information set are contained within a series of registers (files), each of which can be interrogated using identifiers such as 'road number' and 'chainage'. Data in the different information sets can also be cross-referenced to give a variety of outputs. The data bank was distributed to the provinces in December 1993. They now have the responsibility to update certain registers and copy that information to the computer section within MoTE for validation and centralisation. The data are not available to reports until the validation procedure is complete.

At the time of the project inception, the materials register of the RDB had not been developed. It was therefore agreed with the Roads Department that the TRL project team and the CRL staff would work together with the Department's Computer Branch on the development of the materials inventory. In this way, the development could satisfy both the project objectives and the needs of the RDB materials register. Thus reference to the Zimbabwe materials inventory in this report, by implication, means the information sets of the RDB.

4.5 Structure of the Zimbabwe materials inventory

The structure of the Materials Inventory needed to reflect the nature of the materials data collected in the Department and the end user requirements. It was therefore developed through a series of meetings with stakeholders in CRL, Computer Branch and end users in various branches within the Department. The agreed format and content of the materials inventory comprised eight registers (or database files), as shown in Box 4-4.

The original Section III of the geotechnical data bank, from which the design CBR is determined, was completely revised and updated during the project. In its original form, the statistical data were based on soil tests carried out up to 1978. All of the original data were located, combined with the subsequent soil test information up to 1996, and used to recompute the statistics from the larger updated data sets. The design CBRs (decile, quartile, median and mean values) for approximately 3,250 soils, with different soil group classifications, are now available. The design values derived from these larger data sets have improved statistical significance.

The contents of each of the registers, field names and field descriptions are given in Appendix A. An example of each of the registers is given in Appendix B.

Box 4-4 Database registers in the Zimbabwe materials inventory

RDB 81: CBR data register

contains data on the soaked CBR (California bearing ratio) for a range of different soil types found in Zimbabwe

RDB 82: *Pit plan register* contains data on pit planning, such as pit identification number, location, area, and quantities of materials

RDB 83: Pit triaxial register contains data on the index properties and Texas triaxial test data for samples taken during the pit proving trials

RDB 84: Stockpile triaxial register contains data on the index properties and Texas triaxial test data for samples taken after the material has been stockpiled

RDB 85: In situ register contains data on the centre-line soils to one metre depth

RDB 86: Materials design register contains data on the road design, such as, subgrade design class, roadbase triaxial class and thickness, and recommended treatment

RDB 87: Construction register

contains data on the base materials used in the road, chainages, pit number and any modifications such as stabilisation of the materials

RDB 88: *Fill/subgrade register* contains data on subgrade and fill materials from in situ or borrow pit investigations

RDB 89: Wearing course register contains data on the wearing course from site investigations

The data items and their data types, which describe the materials test data, were set up as FoxPro data tables. Appropriate key field identifiers were chosen to link these tables to the main RDB. For the materials registers, the key fields or unique identifiers are road number (Road_No), chainage (From, To) and pit number (Pit_No). The Computer Branch developed a series of data entry screens to facilitate data input, editing and querying. The data entry screens display the data labels, which are fully explanatory, on a blue background, and users cannot change these. The data entry screen is shown in Figure 4-3. The user interface displays a menu bar at the bottom of the screen. As the user moves across the menu bar, a brief explanation of the function of the option is displayed. The menu bar comprises the fields shown in Box 4-5.

Figure 4-3 Example of data entry screen for Pit Plan register of materials data bank

Box 4-5	Contents	of	menu	har
DUA + J	Contents	VI	monu	vui

Ret	Retrieves a record
Beg	Go to the first record in the register
End	Go to the last record
Next	Go to the next record
Prev	Go to the previous record
Skip	Go forward/backward by a number of records. When selected, an entry block appears at the end of the entry/edit menu bar. The number of records to be skipped can then be entered.
Mod	Allows the user to edit the current record
Add	Add a record to the database. When selected, all fields are cleared, with the exception of the VAL_DATE and ACT_DATE.
Сору	Duplicates the current record. This is used for adding records when the major part of the data is the same as that of another record.
Del	Deletes the record displayed. When this is selected, confirmation will be required before execution of the command.
Lst	Display records beginning from current record. The records are displayed in a browse window. The escape button is pressed to exit from this window. When the escape command is executed the record highlighted will be retrieved.
Filt	Allows the user to view the database according to their own needs
Tally	Counts the number of records in the register
Quit	Terminates the program

4.6 Data capture

The database is structured in same way as the paper records have been organised at CRL. The materials registers were designed to use a single data record form for all of the information relevant to a particular register. Data capture comprised the following steps:

- 1. The original test data sheets were examined and summarised to identify the data required for the register
- 2. These data were then transferred to a data summary sheet, set up with a similar format to the data entry screens
- 3. The data were checked as they were transferred to the data entry sheet and rechecked after entry into the computer

The data collation, extraction to data entry sheet, and data entry into the computer were carried out by four full-time data entry clerks over a three-year period. Three desktop computers were used initially, but this was reduced to one when the bulk of the historical data had been entered.

Data entry continued until the end of the project. Table 4-5 shows the size of the materials inventory in Zimbabwe and the sources of data at the end of the project. CRL staff continued data entry for the design, construction registers and fill registers after completion of the project. Over 65 000 records were completed during the project, comprising over 2.25 million individual data items.

Register			No of	Total data	
no	Name	Data source	records	entries	
RDB 81	CBR	CL 2	3 246	58 428	
RDB 82	Pit plan	CL 19	3 658	103 264	
RDB 83	Pit triaxial	CL 19 & CL7	4 208	159 904	
RDB 84	Stockpile triaxial	CL 19 & CL7	3 232	122 816	
RDB 85	In situ soils	Field survey books	48 680	1 411 720	
RDB 86	Materials design	CL 16	5 169	82 704	
RDB 87	Construction	CL 16	9 402	291 462	
RDB 88	Fill		0	0	
RDB 89	Wearing course	CL 19(w)	588	17 640	
Note: Situation at March 1997					

 Table 4-5 Records held for each register in Zimbabwe

On average, it takes about 5 minutes to enter each record containing 25 to 30 fields. It is possible for one clerk to enter about 70 records per day, or approximately 15 400 records per year. The time taken just to enter data in Zimbabwe is equivalent to about five staff-years of work, and this is a factor that needs to be considered when planning other materials inventories.

5. Development of the materials inventory for Malawi

5.1 Structure of the Malawi materials inventory

The Departmental Materials Reports (DMR), produced by the Roads Department on soil and gravel pit investigations, provided the data source for the Malawi materials inventory. Computers were not used for routine data handling or reporting at the laboratory, so a programme of training courses were held to introduce project staff to basic computer skills and data handling. The Ministry had no computer department to support the development of the materials inventory, although some experienced staff were able to give intermittent support to the project team when required. A local specialist computer company was engaged assist with software development.

It was agreed with the senior staff at the Materials Branch that the format and contents of the materials inventory should follow the DMR format. Establishment of the inventory involved initial transfer of data from field survey and laboratory forms to Lotus spreadsheets. The registers developed for the Malawi materials inventory are listed in Box 5-1.

Box 5-1 Database registers in the Malawi materials inventory

MALPLAN

contains the general DMR information, including the hard copy report reference number, road name, road number, province, and the month and year of DMR publication

MALSOILS

contains information on the alignment soils, including on road name, chainage, sample number and depth, and description

MALSOILT

contains the laboratory soil test data for the alignment soils, including road name, number, chainage, sample number and depth (up to one metre), grading, plasticity, compaction characteristics and strength

MALPITS

contains the laboratory soil test data for gravel pits and quarries soils including road name, number, chainage, sample number and depth, grading, plasticity, compaction characteristics and strength

The contents of each of the registers, field names and field descriptions are given in Appendix A. An example of each of the registers is given in Appendix B.

Initially, spreadsheets were used for data entry, but as staff became more experienced and confident with computer technology, the completed spreadsheets were converted to database files for use in FoxPro. The link fields established made use of the road or pit name (Road_name; Pit_name), road or pit number (Road_No; Pit_No), and chainage (Chain_age) as the unique identifiers. Data entry was then continued through the standard FoxPro package.

5.2 Data capture

The data capture process was simpler than that used in Zimbabwe, as data entry followed the exact format of the summary tables in the DMR reports. These reports generally held information for all four registers. Data entry was carried out by two of the Roads Department materials technicians, part time over a period of two and a half years. The materials inventory is held on a dedicated desktop computer. Data entry continued until the end of the project. Table 5-2 shows the size of the Malawi Materials Inventory on completion of the project. Over 4300 records were completed comprising some 116000 individual data entries. Data entry has continued since the completion of the project.

	No of	Total data			
Register name	records	entries			
MALPLAN	44	265			
MASOILS 1 344 8 000					
MALSOILT	1 185	35 500			
MALPITS 1 741 71 50					
Note: Situation at March 1997					

Table 5-1 Records held for each register in Malawi
6. Database queries and interrogation

Use of a computerised database offers several advantages. Data can be:

- Accessed easily
- Interrogated and edited so that data are added, modified or deleted, according to the needs of the user
- Manipulated by sorting, querying, filtering, and indexing
- Related to different databases with the same key fields (eg pit number or road number and chainage)
- Used to produce reports which are designed and produced according to the users' or customers' specifications

A key advantage of the database is that it can be interrogated to find single or multiple records that match criteria set by the user. Some examples are:

- Finding the geographical location, engineering properties, or land owner information relating to a particular pit or group of pits on a particular road, group of roads or province
- Finding gravels or soils with certain classification properties, and predicting the range of triaxial strengths for similar materials where the triaxial strength is unknown
- Finding the design for a particular road between certain chainages
- Determining the as-built structure or age of a particular section of road, for example if a pavement evaluation is being carried out
- Finding the design CBR for a new or old construction
- Evaluating quantities of resources still available from new or partially utilised pits for maintenance operations
- Determining the properties of in situ soils along a stretch of road

These and many other queries can be answered quickly using the appropriate register, or related fields between registers, and the data can be generated readily as reports.

The materials inventories in both countries are held in FoxPro databases, and querying and data manipulation follow standard FoxPro procedures. It is also possible to move the data between programs (eg database to spreadsheet or to a word processing package) if other computations, graphical presentations or reporting procedures are required. The Materials Inventory in Zimbabwe is maintained by Computer Branch, who can assist CRL with the generation of more difficult queries or reports.

Examples of database queries are given in Appendix C.

7. Management of materials inventories

Materials inventories are dynamic and need to be updated continually to be effective. A key issue in the development of materials inventories is the management and sustainability of the system. Key considerations for the management of the system include the following:

- Recognition by senior management and financial co-ordinators that the system exists, is a useful resource, and requires support from the department
- Identification of key user groups within and outside the roads department
- The need for a dedicated team of staff, including a materials inventory manager
- Adequately trained staff
- System managers should hold regular liaison meetings with end users and prospective users
- Recognition of the need for updating continually with new information, including the need for routines to be established for on-going selection and capture of new information
- Existing information should be checked and verified
- Procedures need to be in place to generate reports and queries for users
- Security systems need to be established; information needs to be virus checked and backed up regularly
- The use and management of passwords to increase security
- Recognition of the importance and implementation of quality control procedures at every stage
- Recognition of adequate financial and manpower resources to sustain and maintain the system, including upgrading of hardware and software

8. Value of materials inventories

Costs associated with the planning, sampling and testing activities involved in forming the materials inventories were obtained in Zimbabwe and Malawi. The in-house costs, including manpower and transport, of surveying a gravel pit to provide the necessary planning information for a wearing course gravel, roadbase or sub-base material were estimated for Zimbabwe to be about US\$0.33/m³ (1997 prices). These costs include the cost of mobilising the survey teams, sampling, testing and reporting the data. Similarly the cost of carrying out a centre-line soils survey at every 80 metres would be in the order of US\$435/km. The cost of the information required to complete a field check sheet (CL16) would be around US\$560/km.

The estimated replacement cost of the information held in the materials inventories is given in Box 8-1: in Zimbabwe, this over US\$8 million; in Malawi, this estimated to be of the order of US\$200,000. Note that these costs are based on government accounting practices, and are unlikely to include full costs of depreciation, overheads, and the like. As such, they are likely to underestimate the value of the data in the inventory by a considerable amount.

	No of records in	Cost per	Total cost
Register	register	record (US\$)	(US\$ x 1000)
RDB 81	3 246	40	130
RDB 82	3 688	1 300	4 790
RDB 83	4 208	90	380
RDB 84	3 232	90	290
RDB 85	48 680	35	1 700
RDB 86	5 169	5	26
RDB 87	9 402	90	850
RDB 89	588	200	120
Total replac	ement cost		8 280

Table 8-1 Cost of data held in the Zimbabwe materials inventory

Large programmes of road rehabilitation are being planned in both Malawi and Zimbabwe. As the workload in this area increases, data in the materials inventories will become particularly valuable.

Consideration is being given to the commercialisation/privatisation of government testing laboratories. This means that, in the future, they will need to engage in income generating projects. The data in the materials inventories are a marketable resource, which could provide income by providing information on:

- Existing alignment soils
- Materials used
- Characteristics and typical location of the gravels available in the area
- Potential for existing borrow area extensions
- Previous design standard used and as-built condition

The information and data could be made available by interrogating the materials inventory with users paying for the service. User accessing information in the inventory could make large cost savings through reducing the amount of surveying and testing needed. The revenues generated

could be used to support, maintain and develop the system. Potential users are not just limited to road engineers. The data could be of use to other areas of civil engineering, building and water development, and this should be recognised when marketing the system.

9. Future development

9.1 Institutional arrangements

The materials inventories that have been developed have the potential for expansion into much larger and more powerful systems. At the moment, it is important to put the management structures and other support systems in place, so that the inventories are sustainable in their current form. As staff become more familiar and proficient with the systems, expansion and development can be considered.

9.2 Additional data

In Zimbabwe, data are still being entered into RDB86 (Design) and RDB87 (Construction). Work has yet to start on data entry for RDB88 (Fill/subgrade), and this is planned to commence once RDB86 and RDB87 have been completed. Further data have also been entered into the Malawi materials inventory since project completion, and this has doubled the size of the database.

In both Malawi and Zimbabwe, staff in the provinces have been contacted and requested to provide any missing data or additional information appropriate to the materials inventories.

9.3 Additional registers

As other users of the system are identified and additional needs become apparent, new fields and registers can be added. Both systems developed in the project have this capability. The materials inventory in Zimbabwe Roads Department has recently been evaluated by end users in the Planning, Design, CRL and Computer Branch, and a number of amendments and new registers have been proposed.

The pit plan data register [RDB82], in the Zimbabwe materials inventory, holds information on the land ownership, area of pit, and notification dates for designation of the borrow area. This register can be updated to incorporate data on de-reservation, rehabilitation and compensation. This information would be very useful to the Planning Branch in the Departmental Headquarters. Planning Branch have indicated the need to determine the status of land acquisition arrangements, compensation payments and to track progress of claims. Such a system could be used to control fraudulent claims.

The information held on the pit plan register [RDB82] could also be used to determine the cost schedule for hauling materials, or to revise the haul schedule. More data items, or a related database table, could be added to store the unit cost of construction. These data could then be made available to the pavement design and planning sections.

The following additional information sets were highlighted as being of importance:

Quarry and aggregate

This would contain data on the location of quarries, and the engineering characteristics of materials produced for crushed stone base, concrete and bituminous surfacing aggregates.

Concrete control for structures

Important and expensive components of any road constructions are the bridges and other concrete structures. CRL in Zimbabwe routinely collect as-built data for these structures. This includes mix design, cement quality testing, aggregate testing, strength testing on concrete and steel, and impurities determination. These data would provide a complimentary as-built data source to a bridge management system or the bridges block of the RDB.

Site investigations for structures

Between 1993 and 1994, CRL carried out some 25 site investigations for bridges. These investigations involved logging the engineering characteristics of superficial and hard rock ground profiles close to the structure through digging trial pits and drilling, respectively. Tests modelling the in situ strengths of these materials were then carried out. The ground proof information and data obtained in this way is also of interest to the geological survey, the mining industry and water engineers. Similar information is available in some of the DMRs in Malawi.

Ad hoc materials

Other materials information on the characteristics and location of waste materials, such as mine waste, colliery spoil and furnace slags, could also be incorporated into the inventory.

Pavement evaluation register

This would contain data collected on the in situ strength of pavements from field surveys. These might include summarised dynamic cone penetrometer readings, deflection data from the falling weight deflectometer, deformation information from rut depth measurements, visual appraisal and surface condition information, the results of roughness surveys, such as those carried out using a bump integrator, and the like. These data could be used in conjunction with traffic data, which is held on the main RDB, to assist with planning future rehabilitation strategies, setting priorities, and generating local calibration factors for deterioration relationships, such as those in the HDM model.

9.4 Additional user groups

Considerable investment is currently taking place in the construction and maintenance of low volume access roads and tracks, often using labour based methods. District engineers working on these projects have little access to materials data or the funding necessary to carry out expensive materials investigation surveys. The materials inventory could provide valuable information to assist with this without needing to conduct full-scale materials surveys. By carrying out the fairly simple classification tests on site, a reliable estimate of the bearing capacity of the in situ soils can made using RDB81.

9.5 The materials inventory as a prospecting tool

The materials inventory in Zimbabwe has the potential to assist with the location of new gravel deposits, which are becoming increasing difficult to find in many parts of the country. The

historical data already on the inventory also provide a useful guide to the expected properties of new deposits, if these are located in the same or a similar area.

However, the predictive potential of the system will only be realised fully when the materials inventory is used in conjunction with terrain data which exists in Zimbabwe. This information was described in Section 4.1. The use of a geographic information system (GIS) in conjunction with the materials inventory could provide a powerful tool for targeting prospective areas for detailed investigation. The pit database tables record the pit locations as grid references. Use of a GIS would enable materials data be displayed spatially on maps, from which interpolations into unknown areas can be made.

The soil survey information in RDB85, design information in RDB86 and the construction data in RDB87 and RDB88 are spatially referenced by chainage. Geographic co-ordinates corresponding to chainage would need to be recorded, perhaps using a global positioning system (GPS), so that chainage-related data could be mapped. The soils information, which is logged every 80 metres along the network, could also be mapped according to its classification and, when used in combination with the climatic and geological data, an engineering soils map showing design CBR could be produced.

Digitised topographic, geological, climatic and soils maps can be used in combination with the known materials and terrain information from the materials inventory to determine conditions where materials, exhibiting certain engineering characteristics, have been found previously. Once these conditions are known, other areas where similar conditions exist can be identified and mapped.

A simple pilot investigation to demonstrate the potential of such an approach was carried out during the project. Some of the geographic data were converted to a geographic co-ordinate system and overlaid on a portion of the digitised road map of Zimbabwe using the MapInfo GIS package. The result is shown in Figure 9-1. Use of such a system enables data held in the pit record on the map to be displayed by simply clicking the mouse pointer on the relevant borrow pit marker.

Management of non-renewable resources, such as gravels, is becoming an increasingly important issue for roads departments in the region. Materials inventories provide a method to track use and hold data on quantities and quality of future available resources. They provide a means whereby management decisions on their use can be made.

The data held in the materials inventories, if developed further as outlined above, could be used to assist materials prospecting and engineering soil characterisation in neighbouring countries where less materials, terrain and other engineering information is available. A number of countries in the region have expressed a desire to evaluate and pilot test the potential of using this approach, in addition to developing many of the materials data management procedures already used in Zimbabwe.

Std_dev	Gr_quant	Basic_use	Treatment	New_state	Access_inf	Remark	Val_date	Status	Act_date
0	2,000	WC		B1	UN	UNSUITABLE WC IP TOO HIGH	16/07/1996	0	16/07/1996
53	4,900	WC		81	PR-FRD	SUITABLE FOR USE AS WC	16/07/1996	0	16/07/1996

Figure 9-1 Example map showing borrow pit location and background information

A system established in this way also has the potential for use in development planning, including land for housing, dams, reservoirs and other engineering structures, where construction materials are required and soils need to be characterised. Swell data, for example, can provide a relatively simple method of generating soil geohazard information when mapped geographically. Another user of the data could include the geological survey, where the soils information and data could be used to strengthen geological boundary extrapolations which would be useful in mineral prospecting. The soils and profile data also have application to agriculturists, land use planners and environmental specialists. The Ministry of Lands and Water Development (Research and Specialist Services) who are building a database of agricultural soils has already expressed interest in the materials inventory.

10. Conclusions

10.1 Establishment of a computerised materials inventory

- 1) Materials inventories have been developed and established in Zimbabwe and Malawi in which data on the location and use of road building materials can be held centrally by computer and accessed by users. The computerised systems enable materials information to be recorded, organised, stored and retrieved.
- The type, quality and volume of data available were different in each of the countries. Different development procedures were adopted in each case in consultation with potential users.
- 3) The sophistication of the systems implemented was partly a function of the available level of computer literacy. Some computer training was provided.
- 4) Requirements for information and queries on various aspects of road making materials can now be directed to staff responsible for the materials inventories who can interrogate the systems to generate reports on behalf of users.

10.2 Updating and sustaining the database

- 5) Although the basic structures of the materials inventories are in place, these inventories need to be continually updated, upgraded, and maintained. This requires the on-going provision of adequate financial resources.
- 6) Good laboratory management practices, including quality assurance procedures, were identified as an important prerequisite to setting up a materials inventory. This requires good laboratory management and staff training to ensure reliable data and sustainability of the database.
- 7) Sections I and II of the original geotechnical data bank in Zimbabwe should be brought back into routine use. Two additional registers in the materials inventory are needed to achieve this.

10.3 Link between the database and a GIS

8) The materials inventories can be linked to other data through a GIS to provide a means of mapping, predicting and managing engineering resources. This was demonstrated in a pilot trial.

10.4 Value

9) The value of the data stored on the systems has been estimated. Materials inventories provide a means of protecting this investment. Such investment has benefits by providing

information for new development projects more cheaply through reducing survey and other costs.

10.5 Prediction of new sources of material

10) Information from the materials inventory can be used in conjunction with digitised topographic, geological, climatic and soils maps to predict where materials exhibiting certain engineering characteristics are likely to occur.

10.6 Regional strategy

- 11) A regional strategy, perhaps co-ordinated by SATCC, could be adopted to develop centralised materials inventories for the benefit of other countries in the region. Detailed implementation would depend on the available computer literacy, but this need not rule out the development of paper based systems as a first step.
- 12) The soil and materials classification and design CBR prediction procedures developed in Zimbabwe have potential for adoption outside the country. Additional research is required to determine how best to approach this. It is unlikely that data of the type and quantity available in Zimbabwe will be found elsewhere in the region, other than in South Africa. However, it is likely that the region could benefit by sharing and adopting many of the CRL procedures and practices for the storage and retrieval of data.
- 13) The approach of using climatic area, parent materials type and simple soil classification procedures to predict the engineering characteristics of soils could probably be implemented in other countries in the region. The benefits of using the system in this way also has application to other sectors and disciplines.

11. References

Holden, A, 1971. The establishment of a data bank for geotechnical information at the Ministry of Roads and Road Traffic. *Rhodesian Engineer, Paper No 125*, November, 1-5.

Weinert, H H, 1980. The natural road construction materials of Southern Africa. Pretoria: Academica.

12. Acknowledgements

The Transport Research Laboratory gratefully acknowledges the assistance of the Roads Departments in Malawi and Zimbabwe, as our main collaborating partners in this project, for making their data available and for providing technical assistance. Special thanks are necessary to the programmers in Computer Branch and the technicians in the Central Testing Laboratory in Zimbabwe, and to the technicians in the Materials Branch in Malawi for their advice and assistance. We also wish to acknowledge the assistance of S Howera, E January, C Mutandi, N Pedhuru and P Goba for their patience in undertaking the daily task of data entry.

Appendix A: List of registers and contents

A1 Zimbabwe materials inventory

RDB82.DBF PIT PLAN REGISTER

This register contains general planning information for gravel (base and wearing course) pits. The source of the data is the corresponding CL19 or CL19w.

PIT_NO	pit number
ROAD	road number
PEG_H	haul to km peg on the road
CONDITION	condition of the land at the time of erecting the prospecting notice
RES_AREA	approximate area of reservation (in hectares)
CAIRN_AREA	area to be worked (delimited by beacons)
OWNER	name and postal address of the owner or agent
NOTIF_DATE	date the owner is informed of prospecting
HAUL_DIST	total haul distance from the pit to the peg (in km)
GRID_REF	grid reference of the pit on 1:50000 map
MAP_NO	number of the appropriate 1:50000 map used
OVB_TYPE	geological material type of the overburden
SEAM_TYPE	geological material type of the seam which will be used
SUB_SOIL	geological material type of the sub-soil
OVER_BURD	thickness of the overburden (mm)
SEAM	reduced thickness of the seam (mm)
STD_DEV	seam thickness reduction (mm)
GR_QUANT	volume of material extractable (m3)
BASIC_USE	approved use of the un-modified material
TREATMENT	percent and type of modification or stabilising agent
NEW_STATE	approved use of the modified material
ACCESS_INF	type of route available to the pit
REMARK	approval information given by or for the chief material engineer
VAL_DATE	date the validation status was given
STATUS	validation status of the record
ACT_DATE	actual date of entry of the record

RB83.DBF PIT TRIAXIAL REGISTER

This register contains testing information and data for gravel (base) pits obtained at the prospecting stage of the investigation. The source of the data is the corresponding CL19.

PIT_NO	pit number
SAMP_CLASS	material classification for the sample
STOCK_QTY	estimated quantity of material (m^3)
GEO_ORIGIN	geological origin of the material
TREATMENT	condition (natural or modified) that the sample tested
LIQ_LIMIT	liquid limit of the material
PLAST_LIMIT	plastic limit of the material
PLAST_INDEX	plasticity index of the material
COURS_INDE	coarseness index of the material
FINENESS	percent passing a 0.075mm sieve
FINE_INDEX	fineness index of the material
PLAST_PROD	plasticity product of the material
REJECT_IND	reject index of the material
MAX_DENSIT	maximum dry density of the material for the compactive effort (COMP_EFFOT)
	used
OMC_CONT	optimum moisture content for the maximum dry density of the material at the compactive effort (COMP_EFFOT) used
MC_TEST	moisture content of the sample after capillarity and testing
MASS_CAPIL	surcharge applied to the sample (kg)
DAYS_CAPIL	days in capillarity
COMP_EFFORT	the compactive effort used to obtain the optimum moisture content and maximum
	dry density of the material
COHESION	cohesion measured in the sample at zero normal stress
TRIA_CLASS	triaxial class strength number
UCS_STRESS	unconfined compressive strength of the material
SURF_TEXT	surface texture of the material
PART_SHAPE	particle shape of the material
ORGAN_CONT	estimated organic content of the material
MICA_CONT	estimated mica content of the material
BASIC_USE	approved use of the un-modified material
NEW_STATE	approved use of the modified material
G_M	grading modulus of the material
IP_RANGE	range of plasticity index for the material
AASHTO_CL	AASHTO classification for the material
APPROVAL	approved use of the material given by or for the chief material engineer
VAL_DATE	date the validation status was given
STATUS	validation status of the record
ACT_DATE	actual date of entry of the record

RDB84.DBF STOCKPILE TRIAXIAL REGISTER

This register contains testing information and data for gravel (base) pits obtained from samples taken from the stockpiles at the pit. The source of the data is the corresponding CL19.

PIT_NO	pit number
SAMP_CLASS	material classification for the sample
STOCK_QTY	estimated quantity of material (m^{3})
GEO_ORIGIN	geological origin of the material
TREATMENT	condition (natural or modified) that the sample tested
LIQ_LIMIT	liquid limit of the material
PLAST_LIMIT	plastic limit of the material
PLAST_INDEX	plasticity index of the material
COURS_INDE	coarseness index of the material
FINENESS	percent passing a 0.075mm sieve
FINE_INDEX	fineness index of the material
PLAST_PROD	plasticity product of the material
REJECT_IND	reject index of the material
MAX DENSIT	maximum dry density of the material for the compactive effort (COMP_EFFOT)
	used
OMC_CONT	optimum moisture content for the maximum dry density of the material at the
	compactive effort (COMP_EFFOT) used
MC_TEST	moisture content of the sample after capillarity and testing
MASS_CAPIL	surcharge applied to the sample (kg)
DAYS_CAPIL	days in capillarity
COMP_EFFORT	compactive effort used to obtain the optimum moisture content and maximum dry
	density of the material
COHESION	cohesion measured in the sample at zero normal stress
TRIA_CLASS	triaxial class strength number
UCS_STRESS	unconfined compressive strength of the material
SURF_TEXT	surface texture of the material
PART_SHAPE	particle shape of the material
ORGAN_CONT	estimated organic content of the material
MICA_CONT	estimated mica content of the material
BASIC_USE	the approved use of the un-modified material
NEW_STATE	approved use of the modified material
G_M	grading modulus of the material
IP_RANGE	range of plasticity index for the material
AASHTO_CL	AASHTO classification for the material
APPROVAL	approved use of the material given by or for the chief material engineer
VAL_DATE	date the validation status was given
STATUS	validation status of the record
ACT_DATE	actual date of entry of the record

RDB85.DBF IN SITU REGISTER

This register contains information collected from in situ surveys carried out along the road alignment. The source of the data is the in situ materials survey field notebook.

ROAD	road number
FROM	chainage where the data applies from
ТО	chainage where the data applies to
LAY1_DEPTH	start depth of the first soil layer
LAY1_GEO	parent geology of the first soil layer
LAY1_IP	plasticity index of the first soil layer
LAY1_IF	fineness index of the first soil layer
LAY1_IC	coarseness index of the first soil layer
LAY2_DEPTH	start depth of the second soil layer
LAY2_GEO	parent geology of the second soil layer
LAY2_IP	plasticity index of the second soil layer
LAY2_IF	fineness index of the second soil layer
LAY2_IC	coarseness index of the second soil layer
LAY3_DEPTH	start depth of the third soil layer
LAY3_GEO	parent geology of the third soil layer
LAY3_IP	plasticity index of the third soil layer
LAY3_IF	fineness index of the third soil layer
LAY3_IC	coarseness index of the third soil layer
LAY4_DEPTH	start depth of the fourth soil layer
LAY4_GEO	parent geology of the fourth soil layer
LAY4_IP	plasticity index of the fourth soil layer
LAY4_IF	fineness index of the fourth soil layer
LAY4_IC	coarseness index of the fourth soil layer
FEATURE	details of any natural or man-made features within or adjacent to the road
	servitude
NAT_DRAIN	natural drainage adjacent to the road line
N_AREA	Weinert climatic area
VAL_DATE	date the validation status was given
STATUS	validation status of the record
ACT_DATE	actual date of entry of the record

RDB86.DBF DESIGN REGISTER

This register contains the design data for the road. The source of the data is either the CL 16 field check sheet or the completion drawing.

ROAD	road number
FROM	chainage where the data applies from
ТО	chainage where the data applies to
DESIGN_STD	design traffic standard for the road
BASE1_THICK	design thickness of base one
BAS1_CLASS	design Texas triaxial class of base one
BASE2_THICK	design thickness of base two
BAS2_CLASS	design Texas triaxial class of base two
BASE3_THICK	design thickness of base three
BAS3_CLASS	design Texas triaxial class of base three
BASE4_THICK	design thickness of base four
BAS4_CLASS	design Texas triaxial class of base four
SUB_GRADE	design subgrade CBR class
VAL_DATE	date the validation status was given
STATUS	validation status of the record
ACT_DATE	actual date of entry of the record

RDB87.DBF CONSTRUCTION REGISTER

This register contains as-constructed testing information and data for all layers placed on the road. The source of the data is the CL 16 field check sheet.

ROAD	road number
FROM	chainage where the data applies from
ТО	chainage where the data applies to
CONS_DATE	date of construction
LAYER	layer for which the data is applicable
THICKNESS	design thickness
MDD	Mod.AASHTO maximum dry density of the material
MFD	mean field density
OMC	optimum moisture content at the Mod.AASHTO maximum dry density
MCC	field moisture content at compaction
STABILISER	type of stabiliser used
PERC_SPEC	percent of stabiliser specified
PERC_ADDED	percent of stabiliser actually used
DEPTH	mean layer thickness (mm)
SUB_GRAD	design class of the subgrade
REMARK	comments and approval information of the RE
PIT_NO	pit number for the material
PIT_NO2	pit number if a second pit has been used
PIT_GEOL	pit 1 parent geology
MINPIT_IP	minimum plasticity index
MAXPIT_IP	maximum plasticity index
MINPIT_IC	minimum coarseness index
MAXPIT_IC	maximum coarseness index
MINPIT_IF	minimum fineness index
MAXPIT_IF	maximum fineness index
SITE_GEOL	parent geology of the materials used on the road
SITE_IP	plasticity index of the material used on the road
SITE_IC	coarseness index of the material used on the road
SITE_IF	fineness index of the material used on the road
VAL_DATE	date the validation status was given
STATUS	validation status of the record
ACT_DATE	actual date of entry of the record

RDB88.DBF FILL/SUBGRADE REGISTER

This register contains testing information and data for subgrade and fill materials obtained from in situ or borrow investigations. The source of the data is the CL 2 summary sheet.

ROAD	road number
PIT_NO	pit number
GRP_CLASS	group classification
IND_CLASS	individual classification
I_R	reject index
MICA_CONT	estimated mica content
DESCRIP	description of the material
GEO_ORIGIN	parent geology of the material
SURF_TEXT	surface texture of the aggregate
AGRE_HARD	hardness of the aggregate
AGRE_SHAPE	shape of the aggregate
TEST_TYPE	test type (group or individual)
TEST_STD	compactive effort used to obtain the optimum moisture content and maximum dry
	density of the material
STABILISER	type and percent of stabiliser used
MAX_DENSIT	maximum dry density of the material for the compactive effort (TEST_STD) used
OMC_CONT	optimum moisture content for the maximum dry density of the material at the
	compactive effort (TEST_STD) used
SCBR	design soaked CBR value
EXPANSION	percent expansion on testing
PLAST_PROD	plasticity product
REMARK	approval information and other relevant remarks
VAL_DATE	date the validation status was given
STATUS	validation status of the record
ACT_DATE	actual date of entry of the record

RDB89.DBF WEARING COURSE REGISTER

This register contains testing information and data for wearing course gravels obtained at the prospecting stage of the investigation. The source of the data is the corresponding CL19w.

PIT_NO	pit number
PI_MAX	maximum plasticity index
PI_MIN	minimum plasticity index
PI_MEAN	mean plasticity index
IR_MAX	maximum reject index
IR_MIN	minimum reject index
IR_MEAN	mean reject index
IF_MAX	maximum fineness index
IF_MIN	minimum fineness index
IF_MEAN	mean fineness index
IC_MAX	maximum coarseness index
IC_MIN	minimum coarseness index
IC_MEAN	mean coarseness index
MAX_200	maximum percent passing the 2.0mm sieve
MIN_200	minimum percent passing the 2.0mm sieve
MEAN_200	mean percent passing the 2.0mm sieve
MAX_425	maximum percent passing the 0.425mm sieve
MIN_425	minimum percent passing the 0.425mm sieve
MEAN_425	mean percent passing the 0.425mm sieve
GRAD_MOD	grading modulus (mean)
MICA_CONT	estimated mica content
ORG_CONT	estimated organic content
GEO_ORIGIN	parent geology of the material
AGRE_SHAPE	estimated aggregate shape
AGRE_NAT	nature of the aggregate
REMARK	approval and remarks made by or for the chief material technician
VAL_DATE	date the validation status was given
STATUS	validation status of the record
ACT_DATE	actual date of entry of the record

A2 Malawi materials inventory

MALPLAN: SOURCE OF DMRs

FIELD DESCRIPTION

REPORT_NO	relevant DMR report number
ROAD_NAME	name of the road (from-to)
ROAD_NO	route identification number
PRO_VINCE	province responsible for the road
MONTH	month of publication of the DMR
YEAR	year of publication of the DMR

MALSOILS: SOILS DESCRIPTION ALONG THE ROAD ALIGNMENT

oute identification number
name of the road (from-to)
hainage of the test pit
ample number
lepth of the layers in the soil profile in metres
engineering description of the soil

MALSOILT: ENGINEERING TEST DATA FROM SAMPLES

REPORT_NO	route identification number
ROAD_NAME	name of the road (from-to)
ROAD_NO	route identification number
CHAIN_AGE	chainage of the test pit
SAMPLE_NO	sample number
DEPTH_M	depth of the layers in the soil profile in metres
P_375	percent passing the 37.5mm sieve
P_265	percent passing the 26.5mm sieve
P_19	percent passing the 19.0mm sieve
P_132	percent passing the 13.2mm sieve
P_95	percent passing the 9.5mm sieve
P_475	percent passing the 4.75mm sieve
P_236	percent passing the 2.36mm sieve
P_600	percent passing the 0.6mm sieve
P_425	percent passing the 0.425mm sieve
P_300	percent passing the 0.3mm sieve
P_150	percent passing the 0.15mm sieve
P_075	percent passing the 0.075mm sieve
W_L	liquid limit
W_P	plastic limit
CLASS	AASHTO classification
BSH_MDD	British Standard Heavy Maximum Dry Density
BSH_OMC	British Standard Optimum Moisture Content
CBR_93	soaked CBR at 93% British Standard Heavy Maximum Dry Density
CBR_95	soaked CBR at 95% British Standard Heavy Maximum Dry Density
CBR_98	soaked CBR at 93% British Standard Heavy Maximum Dry Density
S_WELL	percent swell recorded in the CBR test
S_HRINKAGE	shrinkage
R_EMARKS	reserved for any special comments

MALPITS: PLANNING INFORMATION AND ENGINEERING TEST DATA FOR GRAVEL PITS AND QUARRIES

REPORT_NO	route identification number
ROAD_NAME	name of the road (from-to)
ROAD_NO	route identification number
PIT_NO	number of the gravel pit
PIT_NAME	name of the gravel pit
PIT_GEOL1	parent geology of the gravel
PIT_GEOL2	additional parent geology if applicable
Q_UANTITY	estimated quantity of gravel/rock available
SAMPLE_NO	sample number
P_375	percent passing the 37.5mm sieve
P_265	percent passing the 26.5mm sieve
P_19	percent passing the 19.0mm sieve
P_132	percent passing the 13.2mm sieve
P_95	percent passing the 9.5mm sieve
P_475	percent passing the 4.75mm sieve
P_236	percent passing the 2.36mm sieve
P_600	percent passing the 0.6mm sieve
P_425	percent passing the 0.425mm sieve
P_300	percent passing the 0.3mm sieve
P_150	percent passing the 0.15mm sieve
P_075	percent passing the 0.075mm sieve
W_L	liquid limit
W_P	plastic limit
CLASS	AASHTO classification
BSH_MDD	British Standard Heavy Maximum Dry Density
BSH_OMC	British Standard Optimum Moisture Content
UCBR_95	unsoaked CBR at 95% British Standard Heavy Maximum Dry Density
UCBR_98	unsoaked CBR at 98% British Standard Heavy Maximum Dry Density
SCBR_95	soaked CBR at 95% British Standard Heavy Maximum Dry Density
SCBR_98	soaked CBR at 98% British Standard Heavy Maximum Dry Density
S_WELL	percent swell recorded in the CBR test
S_HRINKAGE	shrinkage
R_EMARKS	reserved for any special comments
DEPTH_OB	depth of overburden in metres
DEPTH_GRAV	depth of gravel in metres
GRID_ZONE	map reference sector
EAST_ING	easting reference
NORTH_ING	northing reference
A_CV	Aggregate Crushing Value
E_I	Elongation Index
F_I	Flakiness Index

Appendix B: Examples of records in registers

B1 Zimbabwe materials inventory

RDB82.DBF	PIT PLAN REGISTER
FIELD	DESCRIPTION
PIT_NO	LNGU-022
ROAD	470
PEG_H	38.0
CONDITION	LB
RES_AREA	3.38
CAIRN_AREA	1.63
OWNER	Mr Chimwande
NOTIF_DATE	13/11/87
HAUL_DIST	0.8
GRID_REF	119850
MAP_NO	2031A1
OVB_TYPE	GRS
SEAM_TYPE	L-Q
SUB_SOIL	FI-Q
OVER_BURD	466
SEAM	437
STD_DEV	166
GR_QUANT	4700
BASIC_USE	B1
TREATMENT	NIL
NEW_STATE	B1
ACCESS_INF	BT
REMARK	Approved as use for Base 1 (0.1M) Nat
VAL_DATE	15/12/95
STATUS	0
ACT_DATE	15/12/95

RB83.DBF PIT TRIAXIAL REGISTER

PIT NO	LNGU-022
SAMP CLASS	NP-E-14
STOCK_QTY	470
GEO_ORIGIN	L-Q
TREATMENT	NAT
LIQ_LIMIT	NP
PLAST_LIMIT	NP
PLAST_INDEX	NP
COURS_INDE	50
FINENESS	30
FINE_INDEX	14
PLAST_PROD	
REJECT_IND	0
MAX_DENSIT	2090
OMC_CONT	8.0
MC_TEST	9.0
MASS_CAPIL	6
DAYS_CAPIL	10
COMP_EFFORT	TEXAS
COHESION	20
TRIA_CLASS	3.0
UCS_STRESS	153
SURF_TEXT	GRA-ROU-HC
PART_SHAPE	IRR
ORGAN_CONT	LOW
MICA_CONT	NIL
BASIC_USE	B1
NEW_STATE	
G_M	2.20
IP_RANGE	NP-SP
AASHTO_CL	
APPROVAL	B1 (0.1M) NAT
VAL_DATE	01/12/96
STATUS	0
ACT_DATE	01/12/96

RDB84.DBF STOCKPILE TRIAXIAL REGISTER

FIELD	DESCRIPTION	
PIT_NO	LNGU-022	LNGU-022
SAMP_CLASS	6-E-16	6-E-16
STOCK_QTY	1700	1700
GEO_ORIGIN	L-Q	L-Q
TREATMENT	NAT	1%CMT
LIQ_LIMIT	18	14
PLAST_LIMIT	12	5
PLAST_INDEX	6	NP
COURS_INDE	49	49
FINENESS	30	30
FINE_INDEX	16	16
PLAST_PROD	96	
REJECT_IND		
MAX DENSIT	2090	
OMC_CONT	7	
MC_TEST	6	9
MASS_CAPIL	6	2
DAYS_CAPIL	10	7
COMP_EFFORT	TEXAS	TEXAS
COHESION	12	30
TRIA_CLASS	3.0	1.2
UCS_STRESS	121	512
SURF_TEXT	GRA-ROU-HC	GRA-ROU-HC
PART_SHAPE	IRR	IRR
ORGAN_CONT	LOW	LOW
MICA_CONT	NIL	NIL
BASIC_USE	B1	B1
NEW_STATE		
G_M	2.20	2.20
IP_RANGE	NP-SP	NP
AASHTO_CL		
APPROVAL	B1 (0.1M) NATB1	(0.1M) NAT
VAL_DATE	02/06/96	02/06/96
STATUS	0	0
ACT_DATE	02/06/96	02/06/96

RDB85.DBF IN SITU REGISTER FIELD DESCRIPTION ROAD 940 FROM 12.28 ТО 12.36 LAY1_DEPTH 10 LAY1_GEO Q LAY1_IP 8

LAY1_IF	25
LAY1_IC	С
LAY2_DEPTH	20
LAY2_GEO	GR
LAY2_IP	8
LAY2_IF	25
LAY2_IC	А
LAY3_DEPTH	60
LAY3_GEO	GR
LAY3_IP	8
LAY3_IF	15
LAY3_IC	F
LAY4_DEPTH	20
LAY4_GEO	GR
LAY4_IP	8
LAY4_IF	25
LAY4_IC	А
FEATURE	AH
NAT_DRAIN	G
N_AREA	2-3.9
VAL_DATE	08/09/96
STATUS	0
ACT_DATE	08/09/96

RDB86.DBF DESIGN REGISTER

ROAD	940
FROM	12.38
ТО	13.16
DESIGN_STD	0.3
BASE1_THICK	120
BAS1_CLASS	2.8
BASE2_THICK	120
BAS2_CLASS	3.6
BASE3_THICK	150
BAS3_CLASS	3.9
BASE4_THICK	
BAS4_CLASS	
SUB_GRADE	SG9
VAL_DATE	13/03/97
STATUS	0
ACT_DATE	13/03/97

RDB87.DBF CONSTRUCTION REGISTER

ROAD	410	410	410
FROM	49.82	49.84	49.80
ТО	50.08	50.12	51.14
CONS_DATE	25/10/86	30/11/86	14/03/87
LAYER	SG	B2	B1
THICKNESS	150	133	133
MDD	2080	2098	2044
MFD	2024	2037	2070
OMC	9.5	8.5	9.5
MCC	93.3	61.7	75.1
STABILISER	NIL	NIL	CMT PC15
PERC_SPEC			2.0
PERC_ADDED			2.0
DEPTH			133
SUB_GRAD	SG9	SG9	SG9
REMARK			
PIT_NO	IN SITU	CISR/31	CISR/23
PIT_NO2			
PIT_GEOL	GN	GN	GN
MINPIT_IP	11	NP	NP
MAXPIT_IP	15	10	NP
MINPIT_IC	11	34	43
MAXPIT_IC	20	62	65
MINPIT_IF	21	9	11
MAXPIT_IF	30	22	15
SITE_GEOL	GN	GN	GN
SITE_IP	6	4	NP
SITE_IC	26	44	48
SITE_IF	24	15	16
VAL_DATE	16/08/97	15/08/97	14/08/97
STATUS	0	0	0

RDB89.DBF WEARING COURSE REGISTER

PIT_NO	HEMA-705
PI_MAX	16
PI_MIN	13
PI_MEAN	15
IR_MAX	0
IR_MIN	0
IR_MEAN	0
IF_MAX	22
IF_MIN	16
IF_MEAN	19
IC_MAX	80
IC_MIN	22
IC_MEAN	34
MAX_200	74
MIN_200	67
MEAN_200	71
MAX_425	34
MIN_425	28
MEAN_425	31
GRAD_MOD	18
MICA_CONT	NIL
ORG_CONT	LOW
GEO_ORIGIN	DGR
AGRE_SHAPE	GRA
AGRE_NAT	SOFT
REMARK	
VAL_DATE	10/12/96
STATUS	0
ACT_DATE	10/12/96

B2 Malawi materials inventory

MALPLAN.DBF.

FIELD

DESCRIPTION

DMR139 LIMBE-THYOLO-MULOZA
M2
SOUTHERN
FEBRUARY
1990

MALSOILS.DBF

REPORT_NO ROAD_NAME CHAIN_AGE SAMPLE_NO DEPTH_M	DMR139 LIMBE-THYOLO-MULOZA 10.0 11 2.0
DEPTH_M	2.0
DES_CRIPTION	BROWN SANDY-SILT

MALSOILT.DBF

FIELD	DESCRIPTION
REPORT_NO	DMR139
ROAD_NAME	LIMBE-THYOLO-MULOZA
ROAD_NO	M2
CHAIN_AGE	10.0
SAMPLE_NO	11
DEPTH_M	2.0
P_375	
P_265	
P_19	
P_132	
P_95	100
P_475	99
P_236	98
P_600	75
P_425	65
P_300	55
P_150	43
P_075	37
W_L	NP
W_P	NP
CLASS	A4(0)
BSH_MDD	1820
BSH_OMC	15.2
CBR_93	15
CBR_95	17
CBR_98	19
S_WELL	0.1
S_HRINKAGE	
R_EMARKS	

MALPITS.DBF

FIELD	DESCRIPTION
REPORT_NO	DMR139
ROAD_NAME	LIMBE-THYOLO-MULOZA
ROAD_NO	M2
PIT_NO	9
PIT_NAME	MUHURA
PIT_GEOL1	LATERITE
PIT_GEOL2	
Q_UANTITY	9000
SAMPLE_NO	MIXED
P_375	
P_265	100
P_19	95
P_132	88
P_95	77
P_475	55
P_236	40
P_600	30
P_425	28
P_300	26
P_150	22
P_075	20
W_L	32
W_P	17
CLASS	A2-6(1)
BSH_MDD	2026
BSH_OMC	9.2
UCBR_95	
UCBR_98	
SCBR_95	36
SCBR_98	42
S_WELL	
S_HRINKAGE	
R_EMARKS	
DEPTH_OB	0.1
DEPTH_GRAV	0.6
GRID_ZONE	36LYT
EAST_ING	432
NORTH_ING	272
A_CV	
E_I	
F_I	

Appendix C: Database queries

C1 Selecting the materials inventory database

In the FoxPro command window, or by running a FoxPro command .PRG program, set the default directory to where the database tables are stored. For example:

SET DEFAULT TO C:\EARTH\AFRICA\ZIMBABWE

C2 Example 1

Finding the geographical location, engineering properties, or land owner information relating to a particular pit or group of pits on a particular road, group of roads or province. Queries are set up in a format such as the following:

SELECT road, pit_no, map_no, grid_ref, owner FROM rdb82.DBF WHERE road = "843"

By default, the query outputs to a temporary read-only table named 'query.dbf', which becomes the active work area. Because it is an active work area, if the user requires a printout of the results, or wants to save a file for word processing, then the following should be typed:

LIST ALL TO PRINT or LIST ALL TO road843.TXT

or, to save the query results for further processing:

SELECT road, pit_no, map_no, grid_ref, owner FROM RDB82.DBF WHERE road = "843" INTO TABLE road843

which will create a table named road843.DBF

Note that sorting on a key field may not sort the output into an order which is immediately obvious. For example:

SELECT road, pit_no, map_no, grid_ref, owner FROM rdbB82.DBF WHERE road = "843" ORDER BY pit_no

ROAD	PIT_NO	MAP_NO	GRID_REF	OWNER
843	KENI-700	1829C4	567023	ARDA SESOMBI RANCHES BOX 718 KWEKWE
843	KENI-701	1829C4	494023	SESOMBI(NYONI)RESETTLEMENT SCHEME.RESETTLEMENT OFF
843	KENI-702	1829C4	484024	SESOMBI RESETTLEMENT SCHEME, RESETTLEMENT OFFICER.B
843	KENI-703	1829C4	461031	SESOMBI RESETTLEMENT SCHEME, RESETTLEMENT OFFICER, B
843	KENI-704	1929A2	373978	MR J MUNJANJA Z.R.P SILOBELA,BOX 8010 KWEKWE
843	KENI-705	1829C3	345003	MR M MALALISA, HLANGANISA WARD. FATIMA SCHOOL P BAG
843	KENI-706	1829C3	175003	MR K SAYI.KANDA SCHOOL,P BAG 291 KWEKWE
843	KENI-708	1929A1	149945	M.M MALALISA HLANGANISA WARD, FATIMA SCHOOL, P BAG 8
843	KENI-709	1929A1	139953	M.M MALALISA HLANGANISA WARD, FATIMA SCHOOL P BAG 8
843	KENI-710	1928B2	083941	M.M MALALISA HLANGANISA WARD.FATIMA SCHOOL P BAG 8
843	KENI-711	1829C3	342002	MR J MUNJANJA.SILOBELA Z.R.P P.O BOX 8010 KWEKWE
843	KENI-712	1829C4	558984	MR JA BRONKHOST SOUTHCUM FARM P.O BOX 1281 GWERU
843	KENI700A	1829C4	555993	MR JA BRONICHOST. P.O BOX 1281 GWERU
843	KENI701A	1829C4	559988	MR JA BRONKHOST, SOUTHCUM FARM, P.O BOX 1281 GWERU
843	KENI707A	1921A1	156947	M.M MALALISA HLANGANISA WARD.FATIMA SCHOOL P BAG 8
843	KENI707B	1929A1	163939	M.M MALALISA, HLANGANISA WARD, FATIMA SCHOOL P BAG 8

This example shows that care should be taken when constructing key fields.

The GROUP BY clause can be used to summarise information. For example, to derive a summary list of roads featured in the PIT PLAN register, and a count of the number of pit records for each:

SELECT road, COUNT(road) FROM RDB82.DBF GROUP BY road

ROAD	CNT	
1	112	1
1	113	5
-	131	75
	134	1
	137	26
	138	170
	142	4
1	144	6
1	157	19
1	167	32
1	169	118
1	183	11
1	191	5
1	196	35
2	202	5
2	214	47
2	230	15
2	234	6
2	239	8
2	247	3
2	249	12
2	259	1
2	261	3
2	264	41
2	268	9
2	269	1
2	277	16
2	278	7
	etc	
C3 Example 2

Finding gravels or soils with certain classification properties and predicting the range of triaxial strengths for similar materials where the triaxial strength is unknown, perhaps when considering extending a borrow pit.

SELECT pit_no, stock_qty, ip_range, MIN(ic), MAX(ic), MIN(if), MAX(if), MIN(ttc), MAX(ttc) FROM rdb83 WHERE "LNGU" \$ pit_no AND "NAT" \$ treatment

The operator '\$' is used to find occurrences of a text string contained within a longer text string, and is useful for finding approximate matches.

PIT_NO	SAMP_CLASS STC	CK_QTY GEO_ORIGI	NTREATMEN	IT LIQ_LIMIT	PLAST_LIM	PLAST_INDE (COURS_INDE	FINENESS	FINE_INDEX	PLAST_PROD	REJECT_IND	OMC_CONT N	IC_TEST	MASS_CAPIL	DAYS_CAPIL
LNGU-014	5-E-11	1200 L-Q	NAT	21	16	5	50	25	11	55	2130	7	7	6	10
LNGU-018	NP-F-11	1700 L	NAT	0	0	0	52	29	11	11	2060	7	7	6	10
LNGU-019	6-E-12	1800 L-Q	NAT	20	14	6	47	25	12	72	2090	6	7	6	10
LNGU-017	NP-E-12	2100 L	NAT	0	0	0	42	32	12	12	1980	10	10	6	10
LNGU-020	NP-F-9	2200 L-Q	NAT	0	0	0	58	25	9	9	2140	6	7	6	10
LNGU-024	NP-E-16	2300 L-Q	NAT	22	16	6	49	31	16	96	2050	8	7	6	10
LNGU-020	4-F-15	2300 L-Q	NAT	21	18	4	56	30	15	60	2140	7	6	6	10
LNGU-013	4-E-13	2700 Q-L	NAT	18	14	4	45	28	13	52	2090	7	7	6	10
LNGU-011	NP-F-14	2900 L-Q	NAT	0	0	0	56	30	14	14	2090	8	8	6	10
LNGU-025	4-F-10	3000 L-Q	NAT	19	15	4	56	25	10	40	2060	7	8	6	10
LNGU-008	5-C-17	3000 L	NAT	16	11	5	29	34	17	85	2200	7	6	6	10
LNGU-010	NP-E-10	3000 L	NAT	0	0	0	48	27	10	10	2130	7	9	6	10
LNGU-016	NP-E-10	3200 L	NAT	0	0	0	43	30	10	10	2050	9	9	6	10
LNGU-005	8-E-15	3800 L	NAT	19	11	8	48	28	15	120	2230	6	6	6	10
LNGU-023	NP-E-14	4000 L-DGR-Q	NAT	0	0	0	45	31	14	14	2060	7	6	6	10
LNGU-002	SP-F-8	4100 L-Q	NAT	0	0	0	60	24	8	9	2100	7	8	6	10
LNGU-022	NP-E-14	4700 L-Q	NAT	0	0	0	50	30	14	14	2090	8	9	6	10
LNGU-001	5-F-9	5800 L	NAT	17	12	5	53	25	9	45	2060	8	9	6	10
LNGU-007	NP-F-10	6200 L-Q	NAT	0	0	0	51	22	10	10	2220	5	6	6	10
LNGU-009	7-E-16	7400 L-Q-DGR	NAT	22	15	7	44	33	16	112	2260	7	7	6	10
LNGU-004	5-E-19	13000 Q	NAT	18	13	5	44	31	19	95	2120	7	7	6	10
LNGU-003	8-E-25	19200 Q	NAT	22	14	8	46	37	25	200	2230	7	6	6	10

C4 Example 3

Finding the road design for a particular road between a certain chainage. Using the Materials Design Register, compare:

SELECT * FROM rdb86 WHERE "169" \$ rdb86.road AND (rdb86.from >= 35.00 AND rdb86.to <= 38.00) ORDER BY rdb86.chfrom with SELECT * FROM rdb86 WHERE "169" \$ rdb86.road AND (rdb86.from <= 38.00 AND rdb86.to >= 35.00) ORDER BY rdb86.chfrom

The latter will select road sections which pass through chainage points 35 and 38 as well as those in between them. Note : when recording data on return carriageways, it is sometimes the practice for the 'from' chainage to be greater than the 'to' chainage.

DOAD		CUTO	DECION						
ROAD	CHEROM	CHIO	DESIGN	_SILBASE1_	THIC BAST_C	LASS BASEZ_I	HIC BASZ_CLASS BASE3_THIC BA	S3_CLASSBASE4_THICT	BAS4_CLASESUB_GRADE
169	35.40	35.92	0.1	150	3.0	0	0	0	SG9
169	35.48	36.24	0.1	150	3.0	0	0	0	SG9
169	36.14	36.30	0.1	150	3.0	0	0	0	SG9
169	36.28	36.92	0.1	150	3.0	0	0	0	SG9
169	36.40	36.56	0.1	150	3.0	0	0	0	SG9
169	36.60	37.02	0.1	150	3.0	0	0	0	SG9
169	36.92	37.12	0.1	150	3.0	0	0	0	SG9
169	37.12	37.48	0.1	150	3.0	0	0	0	SG9
169	37.48	38.00	0.1	150	3.0	0	0	0	SG9
ROAD	CHFROM	CHTO	DESIGN	_STE BASE1_	THIC BAS1_C	CLASS BASE2_T	HIC BAS2_CLASS BASE3_THIC BA	S3_CLASS BASE4_THIC	BAS4_CLASS SUB_GRADE
169	34.6	35.4	0.1	150	3	0	0	0	SG9
169	34.64	35.08	0.1	150	3	0	0	0	SG9
169	35.4	35.92	0.1	150	3	0	0	0	SG9
169	35.48	36.24	0.1	150	3	0	0	0	SG9
169	36.14	36.3	0.1	150	3	0	0	0	SG9
169	36.28	36.92	0.1	150	3	0	0	0	SG9
169	36.4	36.56	0.1	150	3	0	0	0	SG9
169	36.6	37.02	0.1	150	3	0	0	0	SG9
169	36.92	37.12	0.1	150	3	0	0	0	SG9
169	37.12	37.48	0.1	150	3	0	0	0	SG9
169	37.48	38	0.1	150	3	0	0	0	SG9
169	37.96	38.92	0.1	150	3	0	0	0	SG9

C5 Example 4

Determining the as built structure or age of a particular section of road, for example if a pavement evaluation is being carried out.

As above but using the Construction register:

SELECT * FROM rdb86 WHERE "169" $\$ rdb86.road AND (rdb86.from <= 38.00 AND rdb86.to >= 35.00) ORDER BY rdb86.chfrom

		CUTO	CONSTRUCT		THICK			OMC	MCC	
RUAD	CHEROW	СПІО	CONSTRUCT	LATER	INCK	טטועו	IVIFD	ONC	IVICC	STADILISER
169	34.86	35.08	9/2/1989	BASE 1	169	2100	2098	7	91	PBFC
169	37.12	37.28	11/26/89	BASE 1	143	2140	2140	7	94.3	RSC
169	37.28	37.48	11/26/89	BASE 1	160	2120	2090	8	76.9	RSC
169	37.48	37.75	12/28/89	BASE 1	158	2140	2091	7	86.2	RSC
169	37.75	38	12/28/89	BASE 1	172	2090	2120	8	85.6	RSC
169	38	38.19	3/18/90	BASE 1	151	2130	2066	9	74.2	RSC

C6 Example 5

Finding the design CBR for a new or old construction.

For road 457, given a soil with class Gn0315c N2-3.9, what are the design median CBR, lower quartile CBR and lowest decile CBR and how many tests were they based on:

SELECT med_cbr, lrqle_cbr, lrdec_cbr, no_tests FROM rdb81 WHERE ("2-3.9" n_area) AND ("GN" $geol_orig$); AND ($i_p = 3$) AND ($i_f = 15$); AND ("C" $i_c c$)

MED CBR	I ROLE CBR	LRDEC CBR	NO TESTS	
MED_OBIC	ERGEL_OBIC	ERBEO_OBIC	110_12010	
45	30	20	8	
40	00	20	5	

C7 Example 6

Evaluating quantities of resources still available from new or partially utilized pits for maintenance operations. Conceptually, Road 169 is not yet built, but borrow pit planning is completed; what is availability of material of Base 1 quality, Base 2 quality, Wearing Course:

SELECT seam_type, basic_use, SUM(gr_quant) FROM RDB82 WHERE road = "169" AND (SUBSTR(seam_type,1,1)="Q" OR SUBSTR(seam_type,1,1)="L" OR SUBSTR(seam_type,1,2)="GR" AND (basic_use="B1" OR basic_use="B2" OR basic_use="WC" GROUP BY basic_use, seam_type ; ORDER BY basic_use, seam_type

SEAM_TYPE	BASIC_USE	SUM_GR_QUA	
Q	B1	3600	
Q-DGR	B1	7700	
Q-L	B1	9000	
GRS	B2	4300	
L	B2	17900	
L-Q	B2	3400	
Q	B2	97700	
Q-DGR	B2	31600	
Q-L	B2	63151	
Q-L-DGR	B2	1000	
Q	WC	10900	
Q-DGR	WC	1900	

C8 Example 7

Determining the properties of in situ soils along a stretch of road.

Information is required for all borrow pits on Road 952 to determine the sum of gravel quantities for seam types Q_3600, L_15000 and Gr_12000. Queries of the following form are used:

SELECT * FROM rdb85 WHERE

When setting up queries as outlined above, simple queries such as the following can be used to help guide the user ascertain the range of values that will be found for a given data item:

SELECT no_tests, count(no_tests) FROM rdb81 GROUP BY no_tests ORDER BY no_tests

IO_TESTS	CNT
0	1
1	2165
2	370
2	168
3	100
4	101
5	18
6	51
7	50
8	29
9	16
10	12
11	13
12	7
12	, 0
13	9
14	8
15	4
16	6
17	3
18	3
19	7
20	3
21	2
22	<u>-</u> 4
22	
23	1
24	3
25	2
26	1
27	3
28	1
30	3
31	1
30	1
32	1
35	4
37	1
40	2
42	1
43	4
46	2
50	1
52	1
52	1
53	1
54	1
63	1
65	1
84	1
99	1
107	1
227	1
221	1
303	Т

SELECT i_p FROM rdb81 GROUP BY i_p

GR	I_P	
GT	3	
IS	8	
KS	12	
L	13	
LS	16	
М	18	
MS	23	
MT	25	
MU	28	
MW	33	
NO	38	
PI	43	
PL	45	
PO	48	
PY		
Q		
RS		
SA		
SC		
SE		
SH		
SI		
то		
TS		

SELECT i_f FROM rdb81 GROUP BY i_f

I_F	
5	
15	
18	
25	
35	
40	
45	
60	
70	
75	
80	

SELECT i_c FROM rdb81 GROUP BY i_c

I_C			
A			
В			
С			
D			
E			
F			

SELECT geol_orig FROM rdb81 GROUP BY geol_orig

GEOL_OR			
AL			
AN			
AP			
AR			
AS			
BCS			
BI			
BK			
BS			
CT			
DG			
DM			
FC			
FI			
GN			
GR			
GT			
19			
KS			
M			
MS			
MT			
MII			
M\A/			
NO			
PI			
PI			
PO			
PY			
0			
RS			
SA			
SC			
SE			
SH			
SI			
TO			
TS			

SELECT n_area FROM rdb81 GROUP BY n_area

_AREA	
3.9	
-5	
+	
2	