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Executive Summary 
 
The aims of the project were as follows: 
 
1)  to reach a biological understanding of trypanosomiasis transmission in a number 
of key study sites.   
2)  to integrate high- and low-resolution satellite data for the study sites. 
3)  to relate the biological models of Step 1 and the statistical models of Step 2. 
4) to model representative data sets using satellite imagery and to define the minimum 
field data necessary for acceptable accuracy. 
5)  to verify the approach by using independent fly and disease data sets. 
6)  to use the models to define optimal disease control strategies. 
7)  to disseminate the results and run a Training Workshop for middle/advanced level 
personnel (workshop dependent upon additional funds).  
 
The first aim was achieved for The Gambia and Kenya study sites, within the limits of 
the data sets available (Section 5).  Satellite derived Land Surface Temperature 
measures were the best predictors of monthly fly mortality rates in both sites, and the 
resulting models explained > 90% of the variance of fly numbers, as recorded by the 
traps.  The transmission models developed within the project were able to explain > 
50% of the variance in monthly infection prevalences in cattle at each site, a 
remarkably good figure given the simplifying assumptions that had to be made in the 
models.  Extension of the tsetse models to larger areas seems feasible, and such 
models can form the basis for modelling intervention at a number of scales.  
 
The second aim was achieved by showing how different sorts of data, with different 
spectral, spatial and temporal resolutions may be brought together to provide a 
unique, multi-variate picture of epidemiological landscapes (Sections 2 and 4), 
through the use of wavelet techniques, here applied for the first time to the 
combination of Landsat and AVHRR data.    
 
The third aim was achieved by demonstrating how our statistical and biological 
approaches may be unified by a common set of multi-temporal satellite data that both 
describes statistically and helps to explain biologically the tsetse and disease data, in 
both space and time.    
 
The fourth aim was achieved by applying generic models to tsetse and disease 
transmission, using standard sets of field data.  There is no particular need for more 
types of fly data but the Report emphasises that it is important to ensure that the fly 
data apply to the cattle disease data.  Usually these data sets are collected by different 
teams of workers, not always seeking a common epidemiological overview of the 
problem . 
 
The fifth aim was difficult to achieve within the limitations of the data sets available 
to the Project.  Ideally we need sets of data spanning a range of ecological conditions:  
the models will then allow us to fill in the gaps between representative sample sites. 
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The sixth aim may be realised within the context of particular project sites, and 
Section 6 gives a brief example of this. 
 
The seventh aim of the project was realised during a brief work-shop held in Addis 
Abeba, Ethiopia, with the Regional Co-ordinators charged with gathering data on 
poverty nation-wide.  Presentations were given high-lighting the potential importance 
of RS/GIS methods to poverty and health mapping. 
 
During the project, collaborations with other organistaions and institutes were 
strengthened.  TALA personnel are now actively involved with NASA's Interagency 
Partnership for Infectious Diseases (INTREPID) project and the pan-African MARA 
project mapping malaria risk in Africa.  Collaboration with ERGO continues, and has 
resulted in a number of further FAO Reports and the electronic updating of the Ford 
& Katondo tsetse distribution maps, using TALA-processed satellite data. 
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Background 
 
Work during the first Trypanosomiasis and Land-use in Africa (TALA) project 
('TALA1', Reference No: X0239,  Identifying the constraints on livestock productivity 
and land-use in Africa imposed by trypanosomiasis) concentrated on the statistical 
relationships between remotely sensed satellite variables and ground-based 
meteorological, ecological and epidemiological variables of the tsetse transmitted 
trypanosomiases, with a view to extending these predictions in both space and time.  
The achievements of TALA1 included: 
 
• Integration of ground-level and satellite-derived variables within a geographical 

framework. 
• Development of methodologies for dimensional reduction of satellite data without 

loss of biological information.  This is especially important for the application of 
high-temporal resolution data such as NOAA AVHRR imagery which, despite 
their relatively poor spatial resolution, contain useful information on habitat 
distribution and seasonality. 

• Establishment of the statistical relationships between the criterion (dependent) 
variables (tsetse distribution and abundance and trypanosomiasis prevalence) and 
predictor (independent) variables (remotely sensed satellite data).  As far as 
possible these statistical relationships, based on linear and non-linear discriminant 
analysis, were improved by the application of a simple understanding of the 
processes involved in generating the data, or through the use of new indices 
appearing regularly in the literature.  These indices covered both the ‘vegetation’ 
channels (AVHRR Ch1 and Ch2; NDVI, GEMI and SAVI indices) and the 
thermal channels (Ch4 and Ch5; split window algorithms).   

• Examination of areas where the best statistical predictions were apparently in error 
when compared with the original data.  This usually led to a modification of the 
analytical methods and an improvement in the accuracy of the classifications. 

• Application of the best statistical correlations to make predictions about the 
distributions of resources (i.e. vegetation type), vectors (tsetse) and disease 
(trypanosomiasis) in other places (usually adjacent countries or regions). 

                                                           - 
The results of TALA1 were most encouraging.  We were able to predict the 

distribution of dominant vegetation types with accuracies up to 96 %, the distribution 
of tsetse with accuracies up to 95 % and the prevalence of the African animal 
trypanosomiases with accuracies up to 74%. 
 

The logical ‘next step’ was to integrate this statistical approach with a biological 
analysis of field data on tsetse/trypanosomiasis in Africa in order to establish the 
biological mechanisms underlying the statistical relationships.  This integration 
should lead to process-based, mechanistic or biological models which are the only 
firm foundation on which sustainable, economic intervention strategies can be 
planned.  This was the objective of the current project, entitled 'TALA2'. 
 



Final Technical Report:  Integrated analysis of  tsetse and trypanosomiasis programmes NRI Ltd. code ZCOO12  page 6 of 57 

Project Purpose 
 
Purpose: To develop ecologically sound and sustainable tsetse and trypanosomiasis 
control programmes at local levels. 
  
Objectively verifiable indicators:  Local and regional maps identifying ecological 
areas within which alternative control strategies are optimal. 
  
Means of verification:  Uptake of results by NARs and NGOs.  Changes in local 
approaches to tsetse control. 
  
Assumptions:  Tsetse/trypanosomiasis continues to be recognised as major constraint 
on livestock production in Africa.  Tsetse control still supported. 
 

Research Activities 
 
TALA2 had a number of aims, as set out in the original project document.  The way in 
which the project addressed these aims, and the results obtained, form the subject of 
this Report.  How the results meet the project purpose is discussed at the end of this 
section of the Report. 
 

The aims of the project were as follows: 
 
1)  to reach a biological understanding of trypanosomiasis transmission in a number 
of key study sites.   
2)  to integrate high- and low-resolution satellite data for the study sites. 
3)  to relate the biological models of Step 1 and the statistical models of Step 2. 
4) to model representative data sets using satellite imagery and to define the minimum 
field data necessary for acceptable accuracy. 
5)  to verify the approach by using independent fly and disease data sets. 
6)  to use the models to define optimal disease control strategies. 
7)  to disseminate the results and run a Training Workshop for middle/advanced level 
personnel (workshop dependent upon additional funds).  
 

The original project purpose is encapsulated in the first aim (above) and the 
remaining project aims are concerned with the means by which this first aim can be 
reliably achieved, and the ends to which any resulting understanding might be put.  
The present report deals with each aim in turn, although it will be appreciated that a 
full understanding of the discussion of the first aim may depend upon the results of 
activities dealt with under later aims. 
 

Data sets used in the study 

This section describes the sources of the data used in this study, and the manipulation 
of these data sets for use by the project. 
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Tsetse/trypanosomiasis data sets 
 
The first project activity involved gathering together data sets from past projects on 
tsetse and trypanosomiasis in a variety of habitat types in Africa, and establishing a 
common data format for data storage within the project.  The project also gathered  
new sets of passive satellite data (both AVHRR and Landsat) and sets of active 
satellite (radar) data for many of the field sites from which the tsetse/trypanosomiasis 
data came. 
 

We are most grateful to our collaborators for providing us with the 
tsetse/trypanosomiasis data used in the project.  Without such careful data 
management we would not have been able to make any progress in TALA2.  The data 
came to us in database or spreadsheet formats that were easily manipulated within MS 
Access and Excel for further analysis.   
 

For a number of studies, information on the tsetse populations and infection 
rates and on local cattle populations and their infections were recorded on a monthly 
basis for periods of up to several years.  The value of such data increases considerably 
with their duration.  One or two years' of data are a minimum for any new area, to 
sample a variety of local seasons.  Several more years are required to see how the 
interactions between flies and their hosts may be modulated by unusual weather 
patterns.  Long period data sets involve another problem, however, of  changing 
habitats or herd grazing patterns in relation to local fly challenge.  In general, data-
bases are rather poor at documenting such changes, and we have had to rely on 
conversations with the original data gatherers who alerted us to changing trap 
positions, fly suppression schemes, or novel herd management practices.  When these 
occurred we have had to split longer period data sets before carrying out separate 
analyses. 
 

Satellite data sets 
 
NOAA AVHRR satellite data came from the public domain Pathfinder source 
(http://edcwww.cr.usgs.gov/landdaac/) and was routinely temporal Fourier processed 
to extract the 'seasonal fingerprints' in vegetation index and thermal channels (see the 
Final Technical Report of TALA1 for more details).  METEOSAT Cold Cloud 
Duration (CCD) imagery was obtained from the ARTEMIS program at FAO, Rome.   
In addition Landsat MSS and TM data were obtained from the USGS (Souix Falls) 
via collaborative agreements with NASA Ames, and radar imagery was obtained from 
the European and Japanese radar satellite archives.   
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SECTION 1 

Deriving meteorological variables from passive sensor satellite data 

Investigations were undertaken in TALA1, correlating satellite and meteorological 
variables throughout Africa.  One important activity of TALA2 was to investigate the 
reliability of using satellite data to estimate ground-level meteorological conditions 
quantitatively.  This is especially important for the development of process-based 
biological models that depend upon laboratory or field-derived relationhips between 
developmental and infection processes and air or water temperatures.  For satellites to 
provide a useful proxy for these variables, their accuracy at estimating them remotely 
must first be assessed.  Alternative approaches to estimating meteorological 
conditions on the ground often involve some sort of extrapolation/interpolation of 
ground level conditions at generally sparsely distributed meteorological station sites.  
Recent developments in spatial interpolation methods have significantly improved the 
accuracy of estimation of weather variables at sites far away from meteorological 
stations (Lennon and Turner, 1995) and such spatial interpolation may provide a 
better measure of local climates than direct measurement by satellites through the 
variable and occasionally unpredictable atmospheric column.   The relative 
performance of remotely sensed (RS) and spatially interpolated (SI) estimates of local 
climate was investigated through collaboration between TALA2 (Dr. Simon Hay) and  
Dr. Jack Lennon using a variety of ground-based meteorological station records and 
data from the NOAA and METEOSAT satellites. 
 

Ground-based meteorological data 
 
Temperature, atmospheric moisture and rainfall surfaces were independently derived 
from spatial interpolation (SI) of measurements from the World Meteorological 
Organisation (WMO) member meteorological stations of Africa (from NOAA-
NCDC), using the methods of (Lennon and Turner, 1995).   
 

Satellite data - sources and initial processing 
 
Daily NOAA-11 imagery for 1990 for Africa were obtained from the Pathfinder 
(PAL) site (James and Kalluri, 1994).  The data include brightness temperatures 
(channels 4 and 5) and the Normalised Difference Vegetation Index (NDVI) (Myneni 
and Asrar, 1994).  Data were extracted and scaled using information provided in 
(Agbu and James, 1994).  Additional bands of ancillary information were used for 
quality control.    Firstly, those pixels contaminated by clouds as determined by the 
“Clouds from AVHRR (CLAVR)” algorithm (Stowe et al., 1991) were masked.  
Secondly, pixels viewed by the AVHRR sensor at an angle of greater than 42o were 
eliminated to reduce error introduced by observing the Earth at large view angles.  
Thirdly, those pixels recorded at solar zenith angles of greater than 80o were excluded 
because at these angles the twilight of dawn and dusk affects measurements.  Land 
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surface temperature (LST) and VPD surrogate information were then derived from 
these corrected daily PAL data. 
 

Satellite data - Temperature 
 
As detailed in the Final Technical report of TALA1, AVHRR Channel 4 and 5 data 
may be used in Price's split-window approach (Price, 1984) to measure land surface 
temperature (LST), TP (Kelvin) as follows: 

)(33.3 454 ChChChTP −+=
 

 
 where Ch4 and Ch5 refer to the brightness temperatures in the respective AVHRR 
channels.  This equation has a stated LST accuracy of ± 2-3 K. 
 

The daily temperature data were then maximum value composited (MVC) by 
taking the maximum temperature for a given pixel over the monthly period.  The 
rationale for this procedure is that clouds are generally colder than the land at tropical 
latitudes, so that the highest thermal value in the series will probably be the least 
cloud contaminated (Lambin and Ehrlich, 1995).   
 

Satellite data - Atmospheric moisture 
 
In order to estimate humidity, some estimate is required of the water content of the air 
at ground level.  This is generally derived from the total precipitable water content  U 
(kg/m2) of the atmosphere (i.e. the water content of the entire atmospheric column), 
which may also be estimated from AVHRR data (Eck and Holben, 1994) where; 
 
                                       U A B Ch Ch= + −( )4 5  

with A and B constants, generally given values of 1.337 and 0.837 respectively.  U is 
first converted to its equivalent in cm, by dividing by 10 (since 1kg of water over 1m2    
will have a depth of 0.1 cm), before conversion to a near surface dew point 
temperature, Td (oF), using the following relationship (Smith, 1966); 

                              
0393.0

))1ln(113.0((ln +−−
=

λUTd            

  
where λ is a variable that is a function of the latitude and the time of the year.  In this 
analysis a mean value of λ = 2.99 was calculated from the annual mean λ presented 
by Smith (1966) for locations between 0 and ± 40 degrees of latitude. 
The dew point temperature values were then converted into Kelvin and used with the 
Price (Price, 1984) estimate of land surface temperature, Tp (K), to calculate the 
vapour pressure deficit, VPD (KPa), using the equation provided in (Prince and 
Goward, 1995); 
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These data were then subject to MVC by using the VPD from the date in the 

month when the NDVI was highest, because the NDVI value is generally reduced by 
cloud and other atmospheric contamination.  The highest NDVI values recorded over 
any relatively short period therefore occur when cloud cover and atmospheric 
contamination are least and such values are taken to represent the least attenuated 
pixel value for the period ((Holben et al., 1986; Stoms et al., 1997)). 
 

Satellite data - Rainfall 
 
In the CCD imagery  each pixel's value represents the number of hours for which the 
area it represents was covered by cold (i.e. rain-bearing) clouds during the 
compositing period.  These values were therefore taken as a measure of rainfall, 
without further data manipulation.  

Predictive accuracy of remote sensing 

The latitude and longitude of each meteorological station was used to extract the 
corresponding RS pixel value from the satellite sensor data.  Meteorological stations 
located within 20 km of the coast and large inland lakes and rivers were excluded 
from the RS analysis (leaving n = 207) because the corresponding pixel in the satellite 
image could have been contaminated by the signal originating from these water 
bodies.   
 

The RS LST predictions were consistently higher than meteorological station 
screen temperatures.  In order to quantify the accuracy with which RS predicts screen 
temperatures a linear regression of screen temperature against LST was applied.  
Similarly, for the purposes of accuracy assessment, rainfall was regressed against 
CCD and humidity against VPD.  From these regressions, the root mean square error 
(RMSE) and the coefficient of determination (r2) were used as goodness of fit 
statistics for each monthly comparison.  The RMSE describes the accuracy with 
which climate at a new site may be predicted.  The problem of missing meteorological 
station reports and the masking of cloud-affected data in the MVC imagery led to 
variation in the number of observations and the subset of sites investigated each 
month.  For this reason the population adjusted coefficient of determination, the 
adjusted r2 , are shown throughout (Sokal & Rohlf 1995). 

Spatial interpolation methods 
 
The interpolation method used has been described in (Lennon and Turner, 1995) and 
consists of a composite Digital Elevation Model (DEM) regression with variable 
selection and thin-plate spline algorithm.  This is an elaboration of Hutchinson’s 
implementation of thin-plate spline interpolation theory (Hutchinson, 1989).  
Interpolation is a two-stage procedure.  First, the DEM and a system of spatial co-
ordinates are used to account for spatial variation in the climatic factors associated 
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with simple linear spatial trends and topographic effects.  Second, the thin-plate spline 
technique reduces the remaining trends in the residuals from the regression analysis. 
 

Spatial co-ordinate data included in the multiple regression procedure 
comprised the latitude, longitude, and altitude co-ordinates, with the addition of two 
other co-ordinates: the cosine of latitude and the distance to the sea.  It was considered 
necessary to include oceanic influences on climate, while the latitude transformation 
potentially represents the spatial rate of change of energy input more accurately than 
simple latitude alone.  The three basic co-ordinates of latitude, longitude and altitude 
were forced to be present in each of the regression models. 
 

Simple functions summarising the local topography were extracted from the 
original 1 x 1 km spatial resolution DEM.  Around each site two quadrats were 
defined: a large quadrat (21 x 21 pixels) and, nested within this, a small quadrat (5 x 5 
pixels).  Within these quadrats four functions of altitude (the mean, maximum, 
minimum and standard deviation) of the regularly-spaced elevations were extracted.  
Additionally, the slopes to the south and to the west were calculated.  This set of 10 
DEM variables, together with the 5 spatial co-ordinate variables, were used as 
independent variables in a multiple regression analysis with the climatic factor as the 
dependent variable.  Each of the three climate variables, for each of the 12 months, 
was individually regressed against the set of 15 covariates using a variable selection 
procedure (the stepwise algorithm, SAS 1990), in which the independent variables 
were entered and removed from the model at a basic significance level of P < 0.05.  
Since there were 12 independent variables (the three basic spatial co-ordinates were 
forced to be present), this translated to P < 0.004 for the entry and exit criteria after 
application of the Bonferroni correction (Sokal & Rohlf 1995). 
 

The 12 months of the year were considered separately and the significant DEM 
variables changed between months because of variation in their individual 
contributions to the predictive power of the model.  Those DEM variables that were 
significant in six or more months of the year were selected for subsequent analyses.  
In doing this a balance was struck between the use of a different set of topographic 
factors for each month and using all factors uncritically (Lennon and Turner, 1995).  
While a case may be made for using the former approach on the grounds that some 
topographic factors might only be important in particular months, there is a trade-off 
between including potentially non-significant factors (i.e. different topographic 
factors for each month) and using the same topographic factors each month: the latter 
may capture more completely the underlying causal trends than the former. 
 

Application of the thin-plate spline routine to the residual variation left after the 
regression analyses automatically involves a generalised cross validation algorithm.  
This involves the attempted optimisation of the ‘roughness’ of the fitted surface, such 
that a good predictive fit is made.  The reason for doing this is that it is easy to fit a 
surface that goes through all of the given data points exactly, but this is no guarantee 
of  a good predictive fit.  The thin-plate spline algorithm therefore smoothes the 
surface to obtain an optimal predictive fit.  It achieves this by omitting each given 
data point in turn before fitting a provisional surface and adjusting the roughness 
parameter; the value of the roughness parameter that minimises the prediction error of 
the omitted data points is selected. 
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To quantify the accuracy of fit, in terms of the predictive power of the 
interpolation, this cross validation method was taken one stage further.  Each station 
was omitted in turn before applying the thin-plate spline.  This is quite distinct from 
the intrinsic cross-validation method within the thin-plate spline technique since it 
involved running the entire thin-plate spline procedure once for each available climate 
station.  This procedure of dropping a station before fitting the spline surface ensures 
that the information is completely absent from the surface, and hence that a prediction 
for the omitted site based on this surface is completely independent of its known 
value.  This is an advance over simply applying the spline surface over all stations at 
once and examining the residuals for accuracy, irrespective of the inherent cross 
validation calculations within the spline procedure. 
 

Predictive accuracy of spatial interpolation 

 
The predicted value for each site omitted from the thin-plate spline routine was 
compared in turn to the observed value.  The RMSE and the population adjusted 
coefficient of determination of the predictions regressed against actual meteorological 
variables for the network of meteorological station sites were again the goodness of fit 
statistics. 
  

Comparisons of the accuracy of RS and spatial interpolation methods 

 
The accuracy of the alternative methods is summarised in Figs 1 - 3 and Table 1 (for 
more details see (Hay and Lennon, 1999)).  Fig. 1 shows a comparison of the monthly 
RMSE of the satellite and SI estimates of temperature, rainfall and vapour pressure 
deficit, Fig. 2 shows continental maps of temperature predicted by the two methods 
for April, August and December 1990 and Fig. 3 shows continental maps of vapour 
pressure deficit and rainfall predictions for April 1990. 
 

The predictive accuracy of SI temperature estimates (2.3 oC RMSE, fig. 1a) 
compares well with the accuracies reported by (Hulme et al., 1996) on an averaged 
monthly data set derived from 30-year records (0.8 - 1.4 oC RMSE for maximum and 
minimum temperatures; they did not consider mean temperature).  Shorter time series, 
as used here, are likely to show more relative stochastic variability.  
 

The accuracies achieved using RS over continental Africa (RMSE 4 oC, fig. 1A) 
is approximately twice that reported for studies that have conducted daily 
comparisons of 1 x 1 km spatial resolution NOAA-AVHRR data, usually chosen for 
small areas on cloud free days (average RMSE ~2 oC; (Cooper and Asrar, 1989; 
Sugita and Brutsaert, 1993)).  The sites used in the present study, however, were 
situated in habitats as diverse as deserts and rainforests and were at altitudes spanning 
a range of 2000m, so the greater variability of the RS measurements here is 
understandable.   
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Fig. 1.1. Comparison of RMSE of satellite (closed squares) and SI estimates (open squares) of A) 
temperature, B) rainfall and C) vapour pressure deficit. 
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Table 1.1  The mean annual accuracy of spatial interpolation (SI) and remote sensing (RS) for 
predicting the land surface temperature, atmospheric moisture and rainfall across Africa in 1990. 

 

 RMSE Coefficient of determination 

 RS SI RS SI 

Land surface temperature 4.0 oC 2.3 oC 0.52 0.83 

Vapour pressure deficit 6.0 mbar 5.3 mbar 0.63 0.78 

Rainfall 38 mm 93.7 mm 0.63 0.19 

 

 
The SI technique was therefore more accurate in its predictions of screen 

temperature, perhaps because of its use of additional variables such as altitude which 
can account for a considerable amount of residual variance (Hay et al., 1996).  
Elevation has not been explicitly parameterised in any RS split-window equations but 
should be considered where application is required at the broad spatial scale, or where 
the range in local elevation is large.  In the same way latitude, longitude and distance 
to the sea functions might be incorporated into the RS techniques to improve their 
performance relative to the SI techniques.  A second difference between the two 
methods is that the satellite sensor records a surface temperature averaged over an 8 x 
8 km area not at a single point of a Stevenson screen position.  It remains to be 
established which measurement is more important to the population dynamics of 
disease vectors and how such measurements relate to the micro-climates actually 
experienced by the vectors.  
   

There is little difference in the accuracy of RS and SI for predicting VPD (fig. 
1b), although the satellite method has a less variable RMSE throughout the year.  
There appear to be no published attempts to validate VPD estimates from SI or RS at 
any spatial scale.  Thirty year vapour pressure averages however, have been mapped 
for Africa south of the equator (Hulme et al., 1996) with accuracies of 12% (N.B. 
RMSE is here expressed as a percentage of the mean).  Expressed similarly the mean 
annual accuracy for SI of VPD in this study was 33%.  This difference is probably 
again a consequence of the short time series of data, the larger geographical extent 
covered, the finer spatial resolution of the interpolations and the smaller number of 
stations used to interpolate the surfaces. 
  

Finally, RS is substantially more accurate in predicting rainfall than is SI (fig. 
1c).  This is consistent with the large spatial variability of rainfall over short distances.  
For example, measurements over a season have been shown to vary by a factor of two 
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over distances of less than 10 km in West Africa (Beek et al., 1992; Flitcroft et al., 
1989)). 
 

Hulme et al. (1996) present accuracy figures for SI of rainfall of 17% for 
January and 106% for July (Hulme et al., 1996).  In similar percentage units, the 
annual accuracy for SI implemented in this study is 118%, with a large variation in 
predictive accuracy between months.  Interestingly, the SI conducted here gives good 
results in January but also breaks down in July (fig. 1c), suggesting that some months 
are intrinsically more difficult to map accurately for precipitation than others, more or 
less regardless of the time series considered.  Again the RS method shows less month-
to-month variation in RMSE than does the SI method. 

 
Pinping and Arkin have estimated monthly precipitation for the globe (1987-

1995) at a 2.5 x 2.5o spatial resolution using outgoing longwave radiation estimates 
from the NOAA-AVHRR (Pinping and Arkin, 1998).  They report a RMSE of 54% 
between the latitudes of 20o S and 20o N.  (Herman et al., 1997), have also recently 
established a technique that uses a combination of RS from Meteosat-HRR and 
ground data to obtain decadal (10 day rainfall estimates for Africa).  Preliminary 
estimates of accuracy quoted for the Sahel region from June to September 1995 are 40 
% of the measured precipitation value.  Expressed in similar units the RMSE for 
precipitation estimates from Meteosat compares favourably at approximately 45%. 
 
 





 Fig. 1.2.  A comparison of remotely sensed (above) and spatially interpolated (below) temperature estimates for Afric
(right) for 1990.  Background colour within Africa = no RS estimate for that period.
a for April (left), August (middle) and December 



 
 

Fig. 1.3 A comparison of remotely sensed (above) and spatially interpolated (below) vapour pressure deficit (left) 
and rainfall (right) estimates for Africa for April 1990.
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SECTION 2 
 

Deriving environmental information from active sensor satellite data 

One of the aims of TALA2 was to investigate the application of radar imagery to 
habitat and disease risk mapping.  There are considerable potential advantages in 
using radar imagery, since it is unaffected by cloud contamination, although there are 
also numerous image processing difficulties involved in this application.  Part of the 
project therefore investigated whether the benefits of using radar imagery exceed its 
costs in terms of labour invested in image processing. 
 

Spaceborne (orbital) Synthetic Aperture Radar imagery (SAR), is a technology 
that allows prolonged observation of “reflectors” by synthesising a longer antenna and 
processing the signal as if it were observed from one point in both space and time. In 
other words, if over a period of time T, the returned signal is stored as amplitudes and 
phases, it is in principle possible to construct the signal which would have been 
obtained by an antenna of length vT, v being the speed of the platform.  Since T can 
be made large, this “synthetic aperture” can also be made large.  
 
 
Fig. 2.1: Advantage of a SAR over SLAR system in a space application. The length (L) of the Real Aperture is 8 m. The length 
of the Synthetic Aperture is 2 km. In this example the wavelength (λ) is 4 cm and R is 400 km. The resolution of the Real 
Aperture in the along-track direction is 2 km, The resolution of the Synthetic Aperture in along track is 4m. 
 

 

Real Aperture 
resolution = λR/L 
 
Synthetic Aperture 
resolution = L/2 

 

 
 

Thus the longer the aperture of the antenna the finer the detail it can resolve, and 
therefore the higher the spatial resolution of the final image.  The net effect is a 
system able to achieve high resolution independent of its altitude [Curlander, 1991 
#510]. A summary of the most commonly used orbital SAR systems in given in Table 
2.1. 
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Table 2.1: Specification summary of commonly used SAR satellites. 

Instrument Date Ban
ds 

Polarisatio
n 

Resolution 
(m) 

Swath 
width 

ERS-1/2 1991/1995 C VV 30 100 km 
JERS-1 1992 L HH 18 75 km 
Radarsat 1994 C HH 10 – 28 50-500 km 
SIR-C/X-SAR 1996 L, C, X Quad 10 – 60 15-90 km 
EOS-2 2000? L, C, X Quad 10 – 120 15-700 km 
ENVISAT 1999? C VV, HH 30 – 100 100-500 km 

Characteristics of radar signals 
Radar signals are characterised by wavelength (λ), polarisation, amplitude (A) and 
phase, all determined at the design stage of the sensor. The plane in which the signal 
“vibrates” is called its polarisation which may occur in the horizontal (H) or vertical 
(V) directions (achieved by filtering the outgoing and incoming waves).  Interactions 
with the objects of observation may change the polarisation, amplitude and/or phase 
of the returned signal.  These changes may be object specific and are therefore an 
important source of information for the discrimination of objects in radar images.  In 
theory, radars can operate in 4 modes: H transmit and H receive (HH), V transmit and 
V receive (VV) (both called like-polarisations), H transmit and V receive (HV) and V 
transmit and H receive (VH) (cross-polarisations).  In practice, current orbital radar 
systems are limited to the H or V like-polarised waves.  More advanced polarimetric 
radar systems are required to record all of the information in both polarisations and 
phase; these are currently available only on airborne, not satellite platforms. 
  

As with the passive satellite sensors, wavelength determines the extent to which 
objects in the environment may be discerned and also affects signal propagation 
through the atmosphere.  The extent to which the signal is returned depends on the 
size, shape, orientation and dielectric constant (ε) of the object in relation to the 
wavelength used.  Longer wavelengths are less susceptible to atmospheric attenuation 
and/or dispersal than shorter wavelengths (e.g. wavelengths < 3 cm).  The specific 
wavelengths used in radar platforms are often referred to by a letter code (which 
stems from its military history).  A number of frequencies are specifically reserved for 
Earth observation, thus reducing interference with other applications such as 
telecommunications and air traffic control [Hoekman, 1990 #13]. Some of the most 
commonly used radar bands are listed in Table 2.2. 
 
Table 2.2: Standard radar frequency letter-band nomenclature. The frequency range shown are based on 
the 1979 International Telecommunications Union (ITU) assignment. 

 
Band 
designatio
n 

Nominal 
frequency 
range  

Wavelength 
(cm) 

X 8-12GHz 3.47 - 3.51 
C 4-8  GHz 5.61 - 5.71 
L 1-2  GHz 23.08 - 24.69 
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Characteristics of radar images 
A radar image is a grey scale tonal representation of the strength (intensity) of the 
backscattered (returned) signals from a single radar pulse, with the grey scale 
becoming lighter as intensity increases. The most striking feature that makes radar 
imagery different from any other form of remotely sensed imagery is its geometry. 
Due to the side-looking configuration, objects are measured in slant range distance 
from the sensor (in contrast to ground range) and do not therefore have a constant 
scale. 
 
 Fig. 2.2. Image geometry: slant range versus ground range. (a) SLR- systems measure the slant range 
R rather than ground distance Rg. (b) such configuration leads ultimately to images with distortions in 
range direction images. (adapted from [van der Sanden, 1997 #5]) 
 

 
 

As is illustrated in fig. 2.2 the slant range scale increases with the slant range 
distance. As a result the image exhibits distortions in range direction. These 
distortions pose problems for images that require accurate geometry.   
 

In addition, radar images of terrain with varying relief may show different forms 
of shadowing and layovers (fig. 2.3). Shadowing is an effect of reduced radar return, 
when slopes face away from the sensor (back slopes).  Enhanced returns are received 
when slopes face the sensor (front slopes) and are referred to as layover areas. The 
return signals from each slope are therefore affected by the slope’s aspect and by its 
displacement towards the flight direction.  For front slopes the aspect causes enhanced 
reflection and leads to the reflected power being confined to small image regions. 
Back slopes show weak reflections towards the sensor and result in image spread over 
a wider area.  As a result, areas of foreshortening appear bigger (viewed longer) and 
areas of layover appear to be smaller than they are in an orthogonal map projection.  
 

The time delay of the returned radar pulse contains the information from which 
the across-track (range direction) coordinates of scatterers are deduced. This means 
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that the across-track coordinates of scatterers is represented by its distance (slant 
range) from the radar’s path, and this distance is determined not only by the 
‘horizontal’ coordinates (e.g. latitude and longitude) of the scatterers but also by their 
altitudes. In addition, distortion in the along-track (azimuth) direction is caused by 
variations across the swath width of the relative velocity of the Earth’s surface and the 
radar, due to the Earth’s rotation. 
 
Fig. 2.3. Geometrical effects in SAR imagery (Adapted from ESA, 1998) 

Sensor platform
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Correction for these effects, generally termed geocoding, involves differentially 
oving the pixels in a SAR image so that they correspond to a given map projection. 
he simplest type of geocoding corrects the data for the effects of the Earth's shape 
ssuming that this can be described by an ellipsoid.  These corrections are generally 
ade available by the space agency operating the SAR.  While such images are 

uitable for the study of areas having little or no relief, they are inadequate where 
here is significant topographic variation.  A scatterer located at a height h above the 
llipsoid will appear displaced by a distance of approximately h cot θ towards the sub-
atellite track, where θ it the local incidence angle (the angle between the incident 
adiation and the local vertical). As an example, for the ERS-1 SAR satellite 
minimum incidence angle of 19°) terrain exhibiting a range of heights of 1000m may 
how differential displacements of almost 300 m.  Correction for this effect requires a 
igital Elevation Model (DEM) of the imaged area, with a horizontal resolution 

omparable to the spatial resolution of the SAR.  
 
One common feature of SAR imagery is the occurrence of a grainy appearance 

ven of homogeneous areas.  This is called 'speckle' and is caused by interference of 
ackscattered signals from individual scattering elements present within one 
esolution cell.  Each of these individual scatterers will produce a certain phase and 
mplitude of the returned signal and these may interact constructively or destructively 
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giving a stronger or weaker backscatter, respectively.  Radar backscatter can often be 
improved by “speckle reduction”, which is currently achieved by averaging the 
signals from several different 'looks' at the same area.  Since speckle is effectively 
stochastically random, this averaging process results in images with a less grainy 
appearance.  Unfortunately averaging also results in a reduction in spatial resolution, 
and so new techniques to overcome this negative effect are being developed. 
 

SAR imaging 
 
As geometrical and electrical characteristics of object vary with time, the challenges 
of extracting useful information from SAR data reside in how to deconvolve these 
effects on radar backscatter [Dobson, 1995 #301].  Questions such as "What are the 
main scatterers (and their characteristics)?" and "What was the dominant mechanism 
that led to the formation of the measured backscatter signal?" can only be answered 
through theoretical modelling involving both the geometrical and electrical properties 
of the backscatteres.  Geometrical properties include the size, shape and orientation of 
objects. Large objects, relative to the wavelength, lead to more direct backscatterering 
patterns than small objects, which exhibit rather broad backscattering patterns. 
Smooth surfaces cause signals to scatter in the specular (random) direction. The 
smoother the surface, the more energy is scattered away from the sensor. Thus, 
structural properties exert considerable influence on the net backscatter [Dobson, 
1995 #301].  Electrical properties of backscatterers are determined by their dielectric 
constant ε (the relative electric conductivity of a medium) which is strongly 
dependent on moisture conditions. As a consequence the solar cycle and atmospheric 
conditions have pronounced effects on radar backscattering and attenuation. Values of 
ε can range from 3 - 8 for dry surfaces to 80 for water [Dobson, 1995 #301]. 
 

As with the visible/ir satellites, radar satellites encounter limitations for land-
cover classification due to signal saturation at high levels of biomass and ambiguities 
between various land-cover types.   These difficulties may be overcome by combining 
information from the different satellite series or by using, in addition, information 
from polarimetric airborne SARs. 

 
For present purposes we were concerned first to establish the correlations 

between radar imagery and the more usual LANDSAT imagery of the same sites and 
then to see if the radar imagery is able to add to the information about tsetse habitats 
that we can gain from the more widely used (passive) remotely sensed data. 
 

Correlations between active and passive sensors for selected study sites 
 
Radar imagery for The Gambia was obtained from the European and Japanese radar 
satellites and geo-registered with a Landsat image for the same area around Bansang.  
An example of the radar imagery is shown in Fig. 2.4.  Correlations were calculated 
between the optical and radar channels, with the result shown in Table 2.3.  There are 
often strong correlations between the channels from any particular satellite type: those 
between satellites are weaker, the best being the ERS-1 and Landsat TM correlations. 
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Table 2.3.  Correlations between JERS, ERS and Landsat TM bands for the Bansang region of The 
Gambia. 
 JERS-1 ERS-1 TM-1 TM-2 TM-3 TM-4 TM-5 TM-6 TM-7 VNIR-1 VNIR-2 VNIR-3 
JERS-1 1 0.5* -0.2 -0.3* -0.3 0.4* -0.0 -0.2 -0.1 -0.1 -0.1 0.5* 
ERS-1 0.6* 1 -0.4* -0.5* -0.5* 0.2 -0.3* -0.5* -0.5* -0.4* -0.3* 0.2 

TM-1 -0.2 -0.4* 1 0.9* 0.8* 0.1 0.5* 0.5* 0.6* 0.5* 0.5* 0.1 
TM-2 -0.3* -0.5* 0.9* 1 0.9* 0.2 0.2* 0.4* 0.6* 0.5* 0.5* 0.1 
TM-3 -0.3 -0.5* 0.8* 0.9* 1 0.2 0.7* 0.6* 0.8* 0.6* 0.6* 0.1 
TM-4 0.4* 0.2 0.1 0.2 0.2 1 0.4* -0.1 0.2 0.3* 0.3* 0.5* 
TM-5 -0.0 -0.3* 0.5* 0.5* 0.7* 0.4* 1 0.5* 0.9* 0.5* 0.6* 0.3* 
TM-6 -0.2 -0.5* 0.5* 0.4* 0.6* -0.1 0.5* 1 0.7* 0.3* 0.5* 0.2 
TM-7 -0.1 -0.5* 0.6* 0.6* 0.8* 0.2* 0.9* 0.7* 1 0.5* 0.6* 0.2 

VNIR-1 -0.1 -0.4* 0.5* 0.5* 0.6* 0.3* 0.5* 0.3* 0.5* 1 0.9* 0.3* 
VNIR-2 -0.0 -0.3* 0.2* 0.5* 0.6* 0.3* 0.6* 0.5* 0.6* 0.9* 1 0.4* 
VNIR-3 0.5* 0.2 0.1 0.1 0.1 0.5* 0.3* 0.2 0.2 0.3* 0.4* 1 

* Correlation are significant at the .05 level base (sample size = 90 pixels). 
TM-n: Landsat-TM band number.  VNIR-n: JERS-1 VNIR band number 

Fig.2.4  Example of radar imagery for the Bansang region of The Gambia.  Bansang is the pale region on the 
lower bend of the River. 
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SECTION 3 

Alternative time-series analytical methods 

In TALA1 and much of TALA2 we have routinely used temporal Fourier processing 
to extract characteristic habitat fingerprints from multi-temporal satellite data.  The 
temporal Fourier series represents one of a number of alternative methods of 
orthogonal signal decomposition into a series of waves, the sum of which is the signal 
itself.  Since temporal Fourier analysis produces information on the power contained 
within any particular resolved frequency (the Fourier 'harmonics'), the decomposition 
can be examined to discover what appear to be the main driving forces within each 
environment's seasonal cycle.  Within Africa, the obvious driving forces are annual 
and bi-annual cycles of the local weather systems.  In addition to these, however, 
there are other longer period cycles, the impact of which is important to discover, 
since what appears to be a trend on one time scale may become a cycle on a longer 
time scale.  Currently we are concerned that human-induced trends are causing a one-
way movement of habitat type and quality to some less desirable situation (e.g. of 
greater desertification or deforestation).  Clearly much stronger corrective action is 
required if a change is indeed a trend rather than part of a cycle. 
 

Extracting information about long-period cycles from relatively short term data 
involves two major problems.   The first is that statistically it is difficult to detect a 
cycle in data sets of length less than six times that of the cycle period.  The second is 
that the cycle may not be as regular as the Fourier series assumes.  The first problem 
is recognised by all time seriese analysts:  the second is of particular concern to 
geographers and meteorologists. 

 
Today a variety of alternatives to the regular harmonic decomposition of the 

Fourier series is available.  The alternatives retain the important property of 
orthogonality, but abandon the assumption of smooth, sine or cosine harmonics.  As 
part of TALA2 we investigated one recently developed addition to this family of 
alternatives, the Hilbert spectral decomposition method (Huang et al., 1999; Huang et 
al., 1998). 

 
Hilbert spectral analysis assumes that there may be variation in signal strength, 

frequency and phase over time and estimates each from the data set.  Analysis 
generally requires some pre-treatment of the data set that both removes trends and 
splits the data into a series of orthogonal components, called Intrinsic Mode Functions 
(IMFs), which are separately analysed for their amplitude and frequency 
characteristics.  Hilbert spectral methods are long-established, but their combination 
with IMFs appears to be relatively recent (Huang et al., 1998).  An IMF is a 
component of the original signal that has the same number of maxima or minima as 
there are crossing points (i.e. where y = 0).  Empirical Mode Decomposition (EMD) 
extracts IMFs from the signal by a process of sequential averaging and differencing.  
Spline curves are first fitted to the local maxima and minima and then averaged: the 
signal is then differenced from this average, and the averaging and differencing 
process is continued until the resulting curve has the required characteristic of no 
more maxima or minima than crossing points.  This resulting curve is the first 
Intrinsic Mode Function.  This is then subtracted from the original data series and the 
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result is subjected to further averaging and differencing to extract the second IMF; 
and so on.  Eventually the original data series is broken up into a number of IMFs and 
a residual trend line which generally crosses y = 0 once or twice only.  Successive 
IMFs have progressively lower fundamental frequencies and the sum of all the IMFs 
and the residual trend line is the original data series, i.e. EMD achieves orthogonal 
decomposition of the data series.  Much information about underlying processes may 
be gained by examining the IMFs without any further analysis.  Obviously IMFs with 
larger amplitudes are making more of a contribution to total signal variation that are 
IMFs with smaller amplitudes:  what is the average period of these important IMFs 
and does it correspond to any known environmental periodicity?  In regions of 
anthropogenic impacts are some of the IMFs characteristically different from those 
where there is no impact? 
 

The set of IMFs are then subjected to Hilbert spectral analysis that essentially 
extracts the instantaneous amplitude and frequency of each IMF by looking at the rate 
of change of the signal at each instant of time(Huang et al., 1999; Huang et al., 1998).  
The results from all IMFs can be plotted on the same graph of amplitude at each 
frequency for each instant of time (in general frequency is plotted on the y-axis, time 
on the x-axis and amplitude is colour coded within the x-y plane).  Examination of 
such graphs often shows that certain signal components remain constant over the 
entire duration of the observation, whilst others vary considerably.  Such variation is 
common in climatic/oceanographic applications and renders invalid the more 
traditional Fourier approach (which will 'force' all variation into one of the precisely 
regular harmonics). 

 
Fig. 3.1 shows an example of EMD analysis of temperature and dengue 

haemorrhagic fever (DHF) incidence (per 100,000 population) in Bangkok for the 
period January 1966 to December 1998 (there are unfortunately no long-term 
trypanosomiasis records for analysis).  In the case of the temperature records IMF2 
captures the annual cycle of variability, whilst IMF3 captures a semi-regular cycle 
with a period of about 2.5 years (note the changing scales of the IMFs).  IMF1 
captures within-year variation (i.e. variation around the normal seasonal cycle).   

 
In the case of the disease data, IMF2 again appears to capture the average 

annual variation, whilst IMF3 captures important variation with a period of between 
2.75 and 3.3 years (i.e. 12 or 10 cycles in the 33-year period of the data).  This 
variation was particularly pronounced around 1986/87 when there was a major 
increase in disease incidence (all IMFs except the first have high values at around this 
time: many also have high values near the end of the data series, coinciding with 
another major increase in DHF). 

 
The Hilbert spectra of these two sets of IMF are shown in Fig. 3.2, together with 

the spectra for rainfall in Bangkok and for a multi-variate index of the Southern 
Ocean oscillation, the MEI (the ENSO has recently been associated with outbreaks of 
other vector-borne diseases, notably malaria).  The temporal variations in frequency 
and power that Hilbert spectral analysis allows are colour coded on these images, with 
orange as the background (= zero power), and increasing power on a rainbow colour 
scale from blue (low) to red (high).  The temperature and rainfall images show most 
power concentrated in the region corresponding to a 12-month period - the annual 
cycle.  Although there is some variation on longer time scales (especially for rainfall) 
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this is random and not particularly pronounced.  The dengue image also shows a band 
of high power periodicities at 1 year period and, in addition, another band at 2 - 3 year 
periodicity, and a more diffuse, lower power band at a 10 - 15 year periodicity.  The 
MEI image does not show the annual band, but has a range of important periodicities 
between 2 and 5 years. 

 
Fig. 3.2. reveals the variability of the periodicities inherent within each signal.  

Whilst the temperature and rainfall images always show pronounced power at a 
period of 12 months, corresponding to the annual cycle, the MEI image has no 
consistently pronounced periodicity, reflecting the intrinsic variability of the ENSO 
signal. 

 
The mean power at each of the periodicities within images such as Fig. 3.2 can 

be estimated by averaging across each image row.  This essentially piles all the 
information within the image onto the y-axis.  The result is shown in Fig. 3.3.  This 
figure also includes a measure of the variability of the signal around the mean power 
at each period;  this is given as twice the standard error of the signal, assuming no 
serial correlation between successive data points.  Data are likely to be serially 
correlated for two reasons.  First although Hilbert analysis makes no assumptions 
about the constancy of cycle periodicity, it is unlikely that this will vary entirely at 
random from one observation period to the next.  Secondly  the images in Fig. 3.2 
were obtained by 7x7 Gaussian filtering of the original Hilbert spectral images, which 
makes visual interpretation easier;  this filter essentially smooths point observations in 
both the x- and y-directions (i.e. across observation periods and across periodicities 
respectively) and the former will increase the intercorrelation between adjacent data 
points.  Thus the error limits in Fig. 3.3 must be interpreted cautiously. (The unfiltered 
images were also treated in the same way to see the effect of filtering on the following 
conclusions:  the shapes of the spectra were very similar but, as expected, showed 
more variation from one periodicity to the next.  Hence Gaussian filtering of the 
images in Fig. 3.2 has an effect analagous to the windowing that must be carried out 
on the power spectral density graphs of the traditional Fourier approach (Chatfield, 
1980; Diggle, 1990)). 

 
Fig. 3.3. confirms the impression from Fig. 3.2 that most variation in the 

temperature and rainfall signals occurs with a periodicity of 12 months.  There is very 
little sign of variation on a multi-annual time scale (except, perhaps, for a 24-month 
cycle in the rainfall data).  In contrast the spectra for both the DHF and MEI data 
show a number of pronounced peaks.  Fig. 3.3. shows quite clearly that there is a 
shared peak at c. 30 months periodicity in both data sets.  There are also matched 
peaks at a period of about 4 years, but this is much stronger in the MEI data series 
than in the DHF series.  There is quite a pronounced mis-match at periods of about 
one year.  The DHF data has its major peak at 13 months (only 5% higher than the 
value at 12 months), but the less pronounced peak in the MEI data occurs at a 
periodicity of 17 months; the value here is 37% greater than that at 12 months.  Even 
allowing for serial correlations, the standard error bars suggest that many of the 
differences in Fig. 3.3 are significant. 

 
It is clear from this analysis that the Hilbert spectral approach overcomes many 

of the objections to the application of  Fourier analysis to quasi-periodic time series 
data.  Two obvious problems remain.  The first concerns the spline fitting involved in 
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EMD of the original signal:  some assumption must be made about the slope of the 
fitted spline curve at the start and end of the data series (i.e. at the very first and last 
points).  This analysis assumed a default value of zero, but Fig. 3.2. suggests that this 
is not always appropriate.  The second problem, mentioned above, is the estimation of 
the confidence intervals of spectral plots derived from the Hilbert spectral images, 
such as those shown in Fig. 3.3. 
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Fig. 3.1.  Empirical Mode Decomposition of temperature (left) and dengue incidence data (right) for Bangkok, from 1966 to 
1998 inclusive.  Each panel shows one Intrinsic Mode Function (IMF).  Notice how each IMF captures a different range of 
frequencies. 
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Fig. 3.2 (below).  Hilbert spectra of the IMFs shown in Fig. 3.1. for temperature (top left), rainfall (top right), dengue 
incidence data (lower left) in Bangkok and for the MEI, a multi-variate index of the Southern Ocean oscillation (an ENSO 
measure) (lower right), from 1966 to 1998 inclusive.   The images show how the signal power is concentrated at particular 
frequencies (expressed here as periods, in years on the y-axes); signal power (within each image) is rainbow scale colour 
coded (blue = low, red = high power, with zero power in orange).  Original images were filtered with a 7x7 Gaussian filter.  
Notice the strong and constant annual signal in the temperature data, a slightly less constant one in the rainfall data and a 
more variable one in the DHF data.  In the latter there is also a variable 2-3-year signal and a more diffuse 9-15 year signal.  
The MEI data shows an irregular band at 1.5 - 6 year periodicity (with one peak coinciding with the 2-3 year DHF peak) and 
signs of a lower frequency cycle of c. 14-17 years.  
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Fig. 3.3.  Mean spectral density plots from the Hilbert spectra of Fig. 3.2.  Upper, rainfall and temperature; lower, DHF and 
MEI.  Dashed lines show the +2 standard error limits of each spectrum assuming no serial correlation between successive 
data points (see text for further details). 
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SECTION 4 

Increasing the spatial resolution of AVHRR data using wavelet techniques 

Currently only the AVHRR instrument on board the NOAA series of satellites can 
give us the multi-temporal imagery of terrestrial surfaces from which the 
characteristic seasonality profiles of different vegetation types may be extracted by 
Fourier processing.  The maximum resolution of this instrument is 1km for beneath-
track recording stations:  imagery is often degraded to 4km or 8km spatial resolution 
by the time it reaches the end-users. 
 

The next generation of multi-temporal instruments will have a spatial resolution 
of 0.25 km (MODIS/TERRA) which will provide imagery of about the right spatial 
scale for many vector-borne disease studies, since 0.25km is about the size of the 
smallest habitat unit within which many vector population can survive, and also 
approximates the daily flight range of many vectors. 

 
Until these higher resolution images become available, however, it is possible 

artificially to increase the spatial resolution of the AVHRR imagery by introducing 
spatial details from higher resolution imagery such as that of Landsat or SPOT.  The 
principle here is that many spatial features of habitats are seasonally invariant.  For 
example, a piece of riverine forest neither expands nor contracts during the year, 
although its spectral characteristics will change.  If we can fuse the spatial 
characteristics as detected by Landsat with the seasonal spectral characteristics as 
detected by AVHRR, then we should have a higher spatial resolution, seasonal image 
which would be our 'best guess' of the distribution of different vegetation types in the 
habitat being studied. 

 
A variety of wavelet techniques ((Starck et al., 1998; Stollnitz et al., 1996)) 

allows us to do this with satellite imagery.  As the name implies, wavelets are filters 
of fixed length (which might be in units either of time or space) that are passed over 
(i.e. convolved with) imagery to extract temporal or spatial features at the 
temporal/spatial scale of the wavelet.  By changing the size of the wavelet relative to 
the image, different scale features are extracted in different 'passes' of the filter.  In 
general fine features are extracted first with wavelets of small physical size, followed 
by coarser scale features as the wavelet size increases.  It follows that as long as two 
images of the same physical ground area, with equivalent spectral characteristics but 
of different maximum spatial resolution, are correctly geo-registered the details of one 
may be applied to the other artificially to increase its spatial resolution. 

 
There are three problems in this exercise.  The first is to choose the types of 

imagery that will be fused in this way;  the second is to achieve accurate geo-
registration of the two images; and the third is to choose the sort of wavelet transform 
to use. 

 
To investigate wavelet fusion techniques we selected Landsat and 1km AVHRR 

NDVI imagery for one of our field sites, at Nguruman, SW Kenya.  The Landsat 
equivalent of the NDVI is derived from Landsat channels 3 and 4 which are spectrally 
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closest to the AVHRR channels 1 and 2.  For present purposes fine spatial resolution 
imagery was required which could be aggregated up block-wise to achieve a spatial 
resolution equivalent to that of the coarser imagery:  to achieve this the Landsat 
imagery was first re-sampled to a pixel size of 32.5 metres.  The Landsat and AVHRR 
images used in the following analysis are shown in Fig. 4.1.   

 
There is a voluminous literature on co-registration of imagery, emphasising 

either co-registration of data values (when the images are of the same type, as here) or 
else co-registration of the Fourier phase information (when images are of different 
types).  In theory it is possible to use Fourier techniques to co-register images of 
different spatial resolution, as long as one spatial resolution is a 2-tuple (i.e. a two 
times multiple) of the other (the Fourier coefficients are cross-correlated, missing out 
those from the finer-scale spatial resolution imagery that are not present in the coarser 
resolution imagery).  In this study it was decided first to aggregate the Landsat pixels 
to a 1km spatial scale equal to that of the AVHRR image, before subsequent cross-
correlation.  The latter was achieved using a Fast Fourier Transform (FFT) technique 
(Press et al., 1995) that output the cross correlation at all possible values of both 
positive and negative lags. The AVHRR image was shifted relative to the Landsat 
image until the cross correlation was highest at lag zero in both the x- and y- image 
directions.  Finally the shifted image was clipped to the same size as the target image.  
At this point the best registration between the two original images had been achieved.  
The original, full resolution Landsat image was then used for the next, wavelet stage. 

 
There are many wavelet transforms available for use in image analysis.  The 

present study was essentially a feasibility exercise so the Haar wavelet transform, one 
of the simplest available, was chosen for its tractability.  The principle of its operation 
is explained in the following section. 

A brief guide to wavelet transforms 
 
Consider a 1-dimensional image of four pixels 
 
                      9     7     3      5 
 

Averaging pairwise, this can be reduced to a two-pixel (lower spatial resolution) 
image 
 
                          8        4 
 
but some information has been lost.  This ‘lost’ information can be stored in ‘detail 
coefficients’, shown as the last two figures in the following: 
 
                          8         4             1        -1 
 

Thus the first pair of numbers in the original set (9 and 7) is obtained by 
addition and subtraction of the first average (8) with the first detail coefficient (1), 
8+1 = 9, 8 - 1 = 7.  And so on. 
 

The averages can be processed further to give lower spatial resolution means, 
with further sets of detail coefficients.  Thus in the next round of wavelet filtering the 
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image mean values of 8 and 4 become a new mean (6) with a new detail coefficient 
(2). 
 
                                 6           2 
 

This process continues recursively until the ‘wavelet decomposition image’ 
consists of a single average value (the overall image average) and series of detail 
coefficients applied at different spatial scales. 
 
                     6         2         1       -1 
 

The following comments apply: 
 
• The wavelet image is exactly the same size as the original image, although most 

pixels are storing detail coefficients and only a single one is storing information 
about the overall image mean. 

• The transform is easily extended to 2-dimensional images: alternate (block-wise) 
row and column transforms are the basis for the 'non-standard' image 
decomposition method used in the present analysis. 

• Addition and subtraction to generate two pixels from a single average and detail 
coefficients is the basis of Haar wavelet decomposition.  More complex wavelets 
average over several detail coefficients using modified B-spline wavelets. 

• Image re-construction is an exact reversal of the image decomposition process, 
and can be halted at any level of spatial resolution. 

 
An example of a partially wavelet decomposed image is shown in Fig. 4.2.  In 

general it is quite difficult to display such imagery since most pixels have very low 
values whilst the single average pixel has a very high value.  Automatic image 
contrast stretching shows an image which is apparently uniformly grey.  Only by 
stretching across the values of the detail coefficients can the details be revealed. 
 

Correlating the imagery at the same spatial scales 
 
To investigate whether it is appropriate to use the detail coefficients from one image 
in the other it is first necessary to demonstrate that there are significant correlations 
between the detail coefficients of the two images at the same spatial scales.  This was 
done by extracting from each fully decomposed image the detail coefficients at the 2, 
4, 8 etc km stage of aggregation.  The results are shown in Fig. 4.3.  The correlations 
between the AVHRR and Landsat images are significant at all spatial scales, and 
increase as the mean pixel size increases.   
 

Introducing spatial detail into the AVHRR image 
 
Having established the above correlations, the patterns of change in the values of the 
(major-axis) regression coefficients and intercepts of the relationships shown in Fig. 
4.3 were calculated, in order to predict the expected relationships at finer spatial 
scales than are present in the AVHRR imagery (i.e. of 0.5 km and 0.25km).  From 
these relationships could be predicted the expected detail coefficients of the AVHRR 
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imagery at these finer spatial scales.  Finally these detail coefficients were applied to 
the AVHRR imagery to produce 0.5 km and 0.25km spatial resolution AVHRR 
images.  An example is shown in Fig. 4.4 (upper). 
 
Fig. 4.4, as expected, shows considerably more spatial detail than the original 1km 
AVHRR imagery:  it includes features such as water courses that are otherwise only 
visible on the Landsat image.   By producing a series of such images for each month 
of the year, we hope to be able to produce seasonal Fourier images at the same spatial 
scales (e.g. Fig. 4.4, lower), and these images will form the basis of higher resolution, 
more accurate predictions of tsetse habitats. 
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Fig. 4.1.  Landsat TM and AVHRR NDVI imagery for part of SW Kenya, including the Nguruman site (bottom 
right in each image).  Mount Shompole is on the bottom edge of the image, near the right-hand margin:  the 
escarpment is the large bright feature from which various rivers run towards the Ewaso Ngiro, which drains into a 
swamp (the small bright area above and to the right of Mount Shompole).  West and North of the escarpment the 
TM image shows many rivers and streams which are not visible in the much coarser AVHRR image. 
Landsat TM NDVI, 4096 by 4096 pixels, 32.5x32.5 m.  

 

AVHRR NDVI, 128 by 128 pixels, 1km by 1km. 
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Fig. 4.2.  Upper. Non-standard Haar wavelet decomposition of the Landsat TM image shown in Fig. 4.1.  This is an 
intermediate image, where the original 32.5m. pixels have been aggregated to 1km pixels into the top left-hand 
corner of the image (the white square, which is therefore at the same spatial scale as the AVHRR image in Fig. 4.1).  
The rest of the image shows detail coefficients produced during this aggregation.  The large red squares show the 
detail coefficients at the first level of aggregation, the yellow squares show those at the next level of aggregation, and 
so on.  In each of the three quadrants of detail coefficients at any particular level of aggregation, the top-right 
quadrant captures vertical features of the image, the bottom-left quadrant captures horizontal features and the 
bottom-right quadrant captures diagonal features.  This image has been contrast-stretched to reveal the detail 
coefficients rather than the mean values of the 1km pixels (which are very much higher). 
Lower.  Full wavelet decomposition of the 1km AVHRR (left) and 1km TM (right) images (the TM image is that 
within the white square of the upper image).  Notice the similarity of the detail coefficients in the two images.   
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Fig. 4.3.  Relationship between the TM and AVHRR detail coefficients of wavelet images at 5 different levels of 
aggregation of both, starting at the stage of aggregation from 1km to 2km pixels ('level 6').  Each graph shows the 
standard least squares regression line, but the analysis eventually used the geometric mean of the least squares 
regressions of y on x and x on y (since there are errors in each variable).  x- and y-values are in DN units of the 
original images. 
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Fig. 4.4.  Upper. Wavelet-enhanced AVHRR NDVI image for part of SW Kenya, each pixel 
representing 0.25 km on the ground.  Wavelets have introduced into the original 1km imagery (Fig. 
4.1, lower) the spatial detail from the Landsat image (Fig. 4.1, upper) as captured by the coefficients 
displayed as an image in Fig. 4.2.  Wavelet analysis retains the overall mean value of each 1km pixel, 
but distributes this mean between the sub-pixels according to the values of the detail coefficients. 
Lower.  False colour-coded, wavelet enhanced images of the same area, for January to June, showing 
details of seasonal changes. 
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SECTION 5 

Analysis of tsetse population data from selected field sites 

 
Generic models for vectors involve components of birth and death, at least one of 
which must be density dependent.  The temperature and humidity dependence of 
demographic rates may be investigated in the laboratory (e.g. (Buxton and Lewis, 
1934)), but these studies provide only an approximate guide to such rates in field 
conditions.  Tsetse apparently carefully select micro-habitats that are considerably 
moister (Bursell, 1959) and, at least in the hottest conditions, cooler than ambient 
(Hargrove and Packer, 1993).  The remarkably slow rate of offspring production by 
tsetse have been described by simple equations involving only air temperature 
(Glasgow, 1963; Hargrove, 1994).  These equations may be used in predictive models 
using either meteorological or satellite data.  One problem of the latter is that satellite 
sensors record directly only the thermal radiance (reflected or emitted) of the soil and 
vegetation cover, which is often much higher than air temperature (Hay et al., 1996).  
Various manipulations of the satellite data can give air temperature estimates with 
accuracies of a few degrees Celsius (Prihodko and Goward, 1997; Prince et al., 1998), 
sufficiently good for initial models. 
 

In sharp contrast to birth rates, tsetse death rates appear to depend on both 
temperature and atmospheric moisture (Rogers and Randolph, 1986), and there is also 
strong evidence for density dependence at both the puparial and adult stages (Rogers, 
1974; Rogers and Randolph, 1984; Rogers et al., 1984). 

 
A combination of birth and death rates, each described by the locally 

appropriate meteorological variables, and with a variable amount of density 
dependence, successfully described tsetse population changes in both West and East 
Africa (Rogers, 1990; Rogers et al., 1994).  It is now possible to use satellite data as a 
surrogate for the standard meteorological data.  For example, in the Yankari Game 
Reserve in Nigeria the correlation between the bi-monthly mortality rate of Glossina 
morsitans submorsitans and Land Surface Temperature (LST) estimates derived from 
satellites orbiting more than 800 km above the earth's surface is stronger than the 
correlation between mortality and saturation deficit (the best ground-based correlate) 
calculated from meteorological data collected about 50km from the field site (Fig. 
5.1).  

  
A satisfactory description of seasonal changes in tsetse populations is achieved 

by fine tuning several critical parameter values in the biological models.  This fitting 
process can be automated by steepest descent search methods (Hargrove and 
Williams, 1998) although a careful check must be kept on parameter values since 
there appear to be many locally stable equilibria when models are fitted to population 
data.  One example, using the satellite data to predict the monthly mortality rate of G. 
m. submorsitans in Nigeria, is shown in Fig. 5.2.  The model also requires some 
estimate of air temperature for predicting both inter-larval and puparial developmental 
periods.  Rather than predicting temperature from published formulae relating land 
surface radiance to air temperature, the model in Fig. 5.2 included an additional fitted 
parameter to relate satellite (LST) and air temperature directly.  This parameter was 
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varied along with all the others to achieve a least-squares fit of the model to the field 
data. 

 
Figs. 5.3 shows the same generic model applied to data for G. morsitans from 

the Gambia and for G. pallidipes from the Nguruman area of Kenya.  The least 
squares method manages to explain >90% of the variance of the mean monthly trap 
catches at each site. 
 

These and other fitted tsetse population models suggest that substantial density 
dependence operates on tsetse in the field (Rogers and Randolph, 1984), although the 
agents of these mortalities have never been sufficiently investigated.  Fly abundance is 
a product of both the density independent, abiotic mortalities (which may be predicted 
from satellite data) and density dependent biotic ones, and hence models developed 
for one area may not be easily extended to others unless the density dependent 
components are in some way described by satellite data.    

Predictive biological risk maps of tsetse 
 
The tsetse model produced from the ITC trap catch data for Bansang was then used 
with the mean LST satellite data layer to produce a predicted density surface for tsetse 
for the Bansang region and beyond.  This is shown in Fig. 5.4.  This appears to be the 
first satellite derived risk map for any species.  Once tested for accuracy, such maps 
can be the starting point for modelling intervention strategies on an area-wide basis, 
using any means of fly suppression, as long as the impact of the chosen method on fly 
fertility or mortality rates is known. 
 
Initial inspection of Fig. 5.4 suggests that the tsetse model has not yet captured the 
constraining influence of the higher temperatures North of The Gambia: the model 
appears to over-estimate fly population density in such areas, probably because the 
higher temperatures cause a higher tsetse reproductive rate in the model without any 
counter-balancing extreme mortality in these dry areas.  Clearly data for this species 
from other sites are required, to investigate the hot temperature limits tsetse 
population growth.  Nevertheless, this first attempt shows that it is possible to produce 
spatially detailed risk maps using satellite imagery. 

Analysis of trypanosome infection data from selected field sites  

Once the tsetse model has been fitted to field data, the disease transmission 
component may be added to it.  A simple transmission model for the African 
trypanosomiases, based on the standard susceptible, infected, recovered-immune 
model (Anderson and May, 1991) is described in the Appendix.  This model contains 
equations describing changes in the proportions of vectors and hosts that are currently 
incubating infections, and of hosts that have recovered and are immune to re-infection 
for a period of time (these proportions are usually set to their equilibrium values in 
models that predict only equilibrium disease prevalences (Rogers, 1988)). 
 

Fig. 5.5 shows the results first of fitting the tsetse model and then of adding the 
trypanosomiasis component to field observations from The Gambia (data from 
(Rawlings et al., 1991a)). and Kenya (data from collaboration with KETRI). The 
Gambia model applies to locations where the major vector species is G. morsitans 
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submorsitans and the hosts are the local trypanotolerant N'Dama cattle: the Kenya 
model assumes that G. pallidipes is the only vector of trypanosomiasis to the local 
zebu cattle (G. longipennis is also present in the area, but at very much lower apparent 
densities).  The various parameters of the transmission equations were varied to 
provide a good fit to the field data both in terms of the average level of infections in 
both the vectors and hosts and in the seasonal changes in infection rates.  Fly infection 
rates are highest when large proportions of the vectors are old;  this does not occur at 
peak tsetse population levels, which include many young flies.  In The Gambia, fly 
infection rates show two peaks in the model, in February and August, whilst field 
infection rates were variable and showed no significant month-to-month differences 
(at around the same mean level).  Model host infection rates are highest in April, 
compared with May in the field, and show similar seasonal changes (Fig. 5.5).  In the 
Nguruman model, predicted host infection rates lag behind observed rates by one 
month, and there is only a single peak in fly infection rates two months after the peak 
in fly numbers and cattle infection rates.  The generic trypanosomiasis model explains 
50 - 60% of the variance of field infection rates, i.e. lower than that of the tsetse 
population models. 

 
The right-hand panels in Fig. 5.5. show some further outputs of the model, in 

terms of the age-prevalence curves of fly and host infections, and of host immunity.  
The Gambia model used a long duration of immunity in individual N'Dama hosts (800 
days) and a relatively slow build up to high levels of population (i.e. 'herd') immunity 
(relatively low effective challenge):  this explains why the level of host immunity is 
still rising in the oldest age class considered by the model (1000 days, Fig. 5.5): the 
variation in the host immunity curve around this overall trend occurs because the 
oldest animals have lived through 3 years' of seasonal fly challenge.  The host age 
prevalence curve for The Gambia shows an unpronounced peak at an intermediate 
age, characteristic of systems with temporary rather than life-long immunity:  the peak 
is not pronounced since herd immunity has not reached its equilibrium value.   

 
The situation is quite different for Nguruman (lower panels in Fig. 5.5).  

Infection rates are higher overall, immune duration is shorter (98 days) and population 
immunity reaches a plateau at about 20% in cattle of about 1 year of age or older.  In 
this situation host infection prevalences peak within the first year of life, as many 
susceptible animals become infected together, before they enter the immune category 
from which they are eventually re-cycled into the susceptible category.  Beyond one 
year of age herd immunity ensures that there is no recurrence of the high levels of 
infection seen in younger animals. 

 
Fitting both the tsetse and transmission models to field data revealed the 

following: 
 

• tsetse population models tend to be more accurate if driven by relationships 
between bi-monthly, rather than monthly, tsetse mortality rates and satellite data.  
Calculation of bi-monthly rates smooths the mortality rate data and results in 
estimates that are more appropriate (as are the satellite data) for the mid-points of 
the respective months.  Monthly mortality rate data apply to the ends of the months 
concerned, since they are calculated as the difference between the logarithms of the 
population sizes in consecutive months. 
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• least squares fitting of the tsetse population model revealed a number of local 
minima, each characterised by a different set of parameters values.  Thus, for the 
moment, we cannot be sure we have the best fits to the field data.  During fitting, 
attention was paid to the changing values of all the parameters that were allowed to 
vary in the model.  When particular parameters did not change during an entire 
round of least squares fitting, they were adjusted by large amounts before the next 
run of the model.  This sometimes resulted in finding a better overall least squares 
fit. 

• obviously some assumptions had to be made in fitting the trypanosomiasis model 
to effectively incomplete field data.  The proportion of tsetse blood meals taken 
from the domestic animals was fixed at reasonable levels (0.3 in the Gambia, 0.2 in 
Nguruman); other hosts of tsetse were assumed not to be involved in disease 
transmission, i.e. all model fly infections were derived only from the domestic 
animal hosts; finally, a model-variable parameter related trap catches of flies - a 
relative measure of fly abundance - to the total population of flies that bit hosts 
within the model;  

• the model seemed rather insensitive to large variations in certain parameters, e.g. 
the duration of immunity.  This may have been because average herd immunity 
was relatively low in both models, or because the least squares fit was applied to 
infection rate data, not to data on host immunity (which were not available).  
Obviously any field information about the age-specific model outputs shown in the 
right hand panels of Fig. 5.5 would be extremely useful in parameterising the 
model more accurately in the future. 

• it was not always clear that the tsetse data related to the cattle infection data.  
Although flies and cattle infections came from the same general areas in both The 
Gambia and Nguruman, the Gambian fly and cattle infection data published in 
(Rawlings et al., 1991b) were the means from several sites, whilst the traps in 
Nguruman nearest to the place where the cattle were normally kept showed an 
annual cycle of variation rather different from that modelled, which was the 
average from traps spread over a wider area. 

 
In view of the various assumptions in the trypanosomiasis model, and the 

reservations about the applicability of the modelled fly data to the transmission model, 
the overall results of this biological modelling are very encouraging.  We conclude 
that remotely sensed satellite data, selected on the basis of current understanding of 
tsetse dynamics in the field, may be used to drive a fully integrated disease 
transmission model.  The challenge for the future is to see if such models give 
realistic predictions when extended to other areas, and when subjected to variations 
mimicing those of natural (climate) and anthropogenic (intervention) changes. 
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Fig 5.1.  Relationships between the mean bi-monthly density independent mortality of Glossina morsitans 
submorsitans in the Yankar Game Reserve, Nigeria and monthly saturation deficit calculated from meteorological 
records from Bauchi, c. 50km away from the Reserve (left) or Land Surface Temperature derived from AVHRR 
receivers on the NOAA series of satellites >800 km above the Reserve.  The bi-monthly mortality rate (the average of 
the previous and present month's mortality rate) is the mean estimated mortality at the mid-point of the month. 
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 Fig 5.2.  Least squares fitted tsetse population model for Glossina morsitans submorsitans in the Yankari Game 

Reserve in Nigeria.  This model was driven by satellite data, using the relationship shown in Fig. 5.1 (right), and all 
other relevant parameters were fitted by iteratively varying them one at a time, to arrive at the least squares solution.   
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Fig 5.3.  Least squares fitted tsetse population model for Glossina morsitans submorsitans in The Gambia (above) 
and for G. pallidipes in Kenya (below).  In each case the model was driven by satellite data, using the locally-deriv
relationship between mortality rate and satellite-derived LST (Fig. 5.1, right, for an example).   
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Fig. 5.4. Predicted density surface for G. m. submorsitans in The Gambia.  The model for this species, 
developed for the Bansang site (the trap system is visible near the centre of the image) was applied to the 
region around Bansang and beyond, using the mean LST surface from the AVHRR sensor.  Mean predicted 
tsetse densities are colour coded from black (no flies) through blues, reds and yellows to green (dark green 
is the highest density).  This is the first satellite-derived biological risk map for any species.   

 
 
 
 
 
 
 
 
 
 

Fig 5.5.  Least squares fitted trypanosomiasis transmission model involving Glossina morsitans submorsitans in The 
Gambia (above) and G. pallidipes in Kenya (below).  In the left-hand panels observed cattle infection rates are shown 
in red, with filled boxes: modelled infection rates are shown in blue (for cattle) and green (for flies).  In each case the 
model fly population was as shown in Fig. 5.3, i.e. driven by satellite data.  The right-hand panels show the respective  
age-specific disease prevalences (blue for hosts, green for tsetse) and age-specific host-immunity profiles (in purple).  
For these panels, the x-axis shows successive, 5-day age categories (i.e. when x = 100, age = 500 days).  Although 
tsetse prevalences reach very high values in old flies within the model, very few flies reach such an age, and the 
average population infection rate is much lower, as the left-hand panels show. 
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SECTION 6 

Sythesis 

In this final section we summarise the results of this project in the light of the original 
objectives. 
 
1)  to reach a biological understanding of trypanosomiasis transmission in a number 
of key study sites.   
 
This aim was achieved for The Gambia and Kenya study sites, within the limits of the 
data sets available (Section 5).  Satellite derived Land Surface Temperature measures 
were the best predictors of monthly fly mortality rates in both sites, and the resulting 
models explained > 90% of the variance of fly numbers, as recorded by the traps.  The 
transmission models developed here were able to explain > 50% of the variance in 
monthly infection prevalences in cattle at each site, a remarkably good figure given 
the simplifying assumptions that had to be made in the models.  Extension of the 
tsetse models to larger areas seems feasible, and such models can form the basis for 
modelling intervention at a number of scales.  Obviously the tsetse population model 
can be interrogated for the relative importance locally of density dependent and 
density independent mortalities, and these are a guide to the ease or difficulty of tsetse 
eradication from each site. 
 
Future work needs to concentrate more on the links between the fly population 
changes and the changing prevalence of disease in domestic animal hosts.  This would 
be helped if we could be certain that the tsetse populations as sampled by the trapping 
systems are responsible for all the disease transmission  that is occurring locally.  
Averaging tsetse catches across several trap systems reduces the noise in the trap data 
but may give an inaccurate picture of the fly challenge to local cattle. 
 
2)  to integrate high- and low-resolution satellite data for the study sites. 
 
This study has shown how different sorts of data, with different spectral, spatial and 
temporal resolutions may be brought together to provide a unique, multi-variate 
picture of epidemiological landscapes (Sections 2 and 4).  The AVHRR sensor 
continues to provide the best source of information about seasonality over very large 
areas, and the processed images may be clustered to identify characteristic ecozones, 
related to vegetation type or cover. High spatial resolution data from Landsat or SPOT 
may be incorporated via wavelet methods, to refine the spatial details of the seasonal 
maps (Section 4) 
 
Future work could profitably anticipate the arrival of MODIS/TERRA data that will 
have an ideal spatial resolution for areal studies and sufficient spectral and temporal 
resolution to continue to provide the vital information on habitat seasonality that is the 
most useful feature of the current AVHRR data. 
 
3)  to relate the biological models of Step 1 and the statistical models of Step 2. 
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Our statistical and biological approaches are unified by a common set of satellite data 
that both describes and helps to explain the tsetse and disease data.  An example 
showing the potential of linking the statistical and biologicla approaches is shown in 
Fig. 6.1, which is a processed satellite image of part of southern Ethiopia that is being 
considered for a SIT tsetse project by the International Atomic Energy Agency. 
 
The underlying image in Fig. 6.1 is a false-colour coded result of unsupervised 
classification of Fourier processed 1km AVHRR data.  The different colour swaths 
represent different vegetation types, and it is easy to see from the river overlays how 
these are probably determined by local topography and water availability.  Thus this 
purely statistical exercise begins to make sense biologically.  The satellite image may 
be interrogated to determine the differences between the mean conditions within each 
vegetation type. 
 
The cross-hatched black overlays in Fig. 6.1 show the local distribution of tsetse (G. 
pallidipes).  These overlays occur on several different vegetation types in the 
classified image.  The vegetation patches are much more widespread than are the 
tsetse patches:  this  suggests that the tsetse maps might be inaccurate in this area (as 
has long been suspected).  The conclusion follows that the existing fly maps should 
not be used as the sole guide to choosing areas for tsetse fly suppression.  More 
importantly the maps also suggest the routes along which flies might move, to 

B

B Arba Minch

A

B
A

Shashamene
Sodo

A

Fig. 6.1.  Unsupervised classification of Fourier processed 1km AVHRR data for Southern Ethiopia (Lake 
Turkana at bottom left) showing how the distribution of major vegetation types is apparently determined 
by topology and water availability.  The black overlay shows the local distribution of G. pallidipes as 
recorded by Ford & Katondo.  This map suggests the local distribution of this species is poorly understood, 
and that none of the fly blocks (except possibly B) is isolated from any of the others - a result with 
important implications for fly suppression or local eradication schemes.
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threaten a suppression area or re-invade an eradication area (i.e. areas coloured the 
same as those where the flies are known to occur). 
 

With minimal but regular trap catch data from several sites within this region it 
would be possible to produce biological models, to generate a density surfgace similar 
to that of The Gambia (Fig. 5.4).  Such models could indicate the local demographic 
vigour of the fly population, and therefore the ease with which it could be suppressed 
by any appropriate control measure.  Accurate fly models could also generate a 
challenge map for the region, and this could be an input into an economic assessment 
of the value of the suppression scheme. 
 

During the course of TALA 2 our existing collaboration with Guy Hendrickx in 
Togo continued.  The Togo project now provides us with both fly and disease data to 
test this approach in West Africa, and this is the subject of on-going research. 
 
4) to model representative data sets using satellite imagery and to define the minimum 
field data necessary for acceptable accuracy. 
 
The generic models of Section 5 have shown how this can be done.  There is no 
particular need for more types of fly data but, as emphasised above, it is important to 
ensure that the fly data apply to the cattle disease data that are often collected by 
different teams of people working at different times and often in different places from 
the tsetse personnel. 
 
Models could be much improved by gathering more information from the infected 
animals, including age-prevalence data of the sort modelled in Fig. 5.5 (i.e. age 
prevalence of both infection and immunity):  even ball-park figures would be better 
than nothing at all. 
 
5)  to verify the approach by using independent fly and disease data sets. 
 
The current modelling has shown that extrapolation from sites of intensive studies 
may create problems when predictions are made for areas that are climatically very 
different.  It is here that the wide-area approach of the statistical models could 
contribute to refining the biological models. 
 
Data from both The Gambian and Togo series of sites that sampled a wide range of 
the environmental conditions within each country are the basis for development of 
this approach.  For various reasons we were not able to obtain Gambian data from 
more than two of the study sites (Bansang and Missira) until very near the end of this 
project. 
 
6)  to use the models to define optimal disease control strategies. 
 
As the original project document explained. the word ‘optimal’ has ecological, 
biological, sociological and economic dimensions, and they are rarely coincident.  
What is optimal biologically may be (and usually is) sub-optimal economically.  It is 
therefore important to establish along how many dimensions, and using what criteria, 
the optimal strategies need to be defined. 
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It is now possible to define the local environmental constraints of flies and disease 
both statistically and biologically, and to investigate the efficacy of intervention 
methods with specified levels of disease transmission suppression (e.g. via fly control, 
or prophylactic/curative drugs). 
 
It is now also possible to investigate in a rather general way, the economic benefits of 
disease suppression through use of the FAO PAATIS software developed by ERGO 
and based on a number of ERGO/TALA consultancy Reports to FAO (Rogers and 
Wint, 1996; Wint et al., 1997).  It is hoped that future modelling developments will be 
able to refine this approach. 
 
It seems to the writer that the integration of satellite data, models and mapping and 
prediction capabilities is ideal to address the current poverty-focus of DFID.  Poverty 
is an n-dimensional constraint on development, many of the dimensions depending on 
environmental factors that may be investigated using the techniques developed within 
TALA 2. 
 
7)  to disseminate the results and run a Training Workshop for middle/advanced level 
personnel (workshop dependent upon additional funds).  
 
A short work-shop was held by the PI in Addis Abeba in spring 1998, and involved all 
the regional planning officers of the new Government of Ethiopia.  The focus of the 
work-shop was to explain how satellite data and GIS could contribute to an ambitious 
Ethiopian scheme to map poverty country-wide.   
 
The work-shop identified four main categories contributing to poverty (political, 
educational, agricultural and structural) and suggested about 30 indicators that could 
be recorded during the data collection phase.  The Government of Ethiopia has 
committed more funds to this project than to any other equivalent Ministry, an 
indication of the importance it attaches to identifying the many different local reasons 
for poverty.  
   
The regional representatives at the meeting were very enthusiastic about the potential 
of both RS and GIS techniques in helping to make sense of the poverty and health 
data that are to be collected nation-wide.  The present PI subsequently submitted 
proposals to both DFID and the Burroughs Wellcome infectious diseases initiative to 
use satellite data to investigate the disease and poverty burdens in Africa, 
concentrating initially on Ethiopia.  Unfortunately these were not supported and so the 
current TALA work in this area comes to an end. 
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APPENDIX 

 A simple model for trypanosome transmission. 
 
Changes in the proportions of the vertebrate hosts that are susceptible (s) infected but not yet 
infectious (f), infectious (x) and recovered, immune (i) are described by the following set of 
equations, 
 

                                    s - wi+tN+ sabmx' -=
dt
ds

µ  

 

                                     f -  vf- s'abmx=
dt
df

µ  

                                                                                                                                      ..7 

                                    x -rx  - vf=
dt
dx

µ  

 
and 

                                      i -  wi- rx=
dt
di

µ  

 
where a is the biting rate of vectors on hosts,  
b is the transmission coefficient from vector to vertebrate,  
m is the ratio of vectors to hosts (= M/N),  
x' is the proportion of infected vectors, 
t is the birth rate of the hosts, 
N is host population size (the present equations describe proportions, so that N=s + f + x + i = 
1), 
w is the rate of loss of immunity, returning immune animals to the susceptible category, s, 
µ is the host's natural death rate, 
v is the incubation rate of the disease in the vertebrate hosts, 
and r is the rate of recovery of the vertebrates from infection. 
  
The equivalent equations for the vectors, continuing to use prime to indicate vector 
parameters and variables analagous to those of the hosts, are as follows: 
 

                                            s'' - Mt'+ acxs' -=
dt

'ds
µ  

 

                                            f'' - f' v'- 'acxs=
dt

'df
µ                                                         ..8 

 

                                           x'' - 'f'v=
dt

'dx
µ  

 
where, in addition, 
c is the transmission coefficient from vertebrate to vector, 
t' is the birth rate of the tsetse population, 
M is the tsetse population size (as in the case of the hosts, M=s' + f' + x' = 1), 
and µ' is the tsetse mortality rate ( = t' at equilibium). 
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Vector mortality rate appears explicitly in these equations since it is assumed that fly 
infections can only be lost when infected flies die.  These losses are balanced by births, which 
introduce new, susceptible flies into s'.  In the case of the vertebrate hosts, animals which lose 
their immunity re-cycle into the susceptible category. 
 
The sum of each set of equations, for both hosts and vectors, is zero, indicating that although 
each subpopulation (susceptible, infected etc.) may change over time there is no net change in 
the summed proportions, which must always be equal to 1.0. 
 
The above equations, which apply to the simple situation of a single-vector, single-host 
disease may be applied to the African trypanosomiases assuming all other hosts fed upon by 
flies are negligeable sources of infection compared to the modelled hosts.  The equations are 
therefore simplified versions of those that have been written for the African trypanosomiases 
(Rogers, 1988) and may be taken to apply to the situation of trypanosomiasis in domestic 
animals in areas with few alternative hosts; this simplification allows us to model disease 
transmission quickly, and to estimate the need for more complex transmission models in field 
situations.  Human sleeping sickness involving domestic and wild reservoir hosts will not be 
satisfactorily modelled in this simple way. 
 
In making the output of the tsetse population model one of the inputs into the disease 
transmission model additional scaling parameters are required to relate the tsetse numbers to 
the vertebrate host numbers.  Since the vector-host ratio (m) always and only appears in the 
above equations with the transmission coefficient b, estimates of these two quantities will 
vary together so that their product remains the same. 
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