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1. Introduction 
Three issues have been prominent in policy discussions of the problems facing firms in 
developing countries. One has been that technology differences may be important in 
explaining factor choices across firms of differing size, Pack (1976, 1982). Small firms have 
come to be identified with more labour intensive technologies so that promoting small scale 
enterprises is seen as a means of creating jobs. A second issue has been that firms in 
developing countries lack the technical capacity to perform well. “Without an increase in 
proficiency, the responsiveness of output to even the best designed structural adjustment 
program is likely to be limited. Prices are one-half of a scissor, the other being technical 
skill”, Pack (1993, p. 1). The third has been that larger firms are more capital intensive than 
smaller ones and that such factor choices are inappropriate for the factor endowment of poor 
countries. A comprehensive discussion of these issues in the context of Indian industrial 
policy can be found in Little, Mazumdar and Page (1987).  

While much of the analysis of efficiency and size has used macro or sectoral data there 
are now numerous studies based on plant-level data sets, Pitt and Lee (1981), Martin and Page 
(1983), Corbo and de Melo (1986), Chen and Tang (1987), Tybout (1991), Tybout and 
Westbrook (1995) Clerides, Lach and Tybout (1998), and Lundvall and Battese (2000). Two 
of these studies use data for sub-Saharan Africa where it has been argued that the problems of 
technical inefficiency are likely to be most important. In this paper we propose to investigate 
these issues of technology choice, the importance of skills, both observed and unobserved, 
and the relative importance of technical and allocative inefficiency, drawing on a seven year 
panel of plant-level data from Ghana’s manufacturing sector.  
 A wide range of technology choices is made across firms of differing size in our 
sample. We propose to investigate four of the possible explanations for this finding suggested 
by Little, Mazumdar and Page (1987). The first is that factor prices vary depending on the 
size of the firm, the second is non-homothetic technology, the third is that firms in different 
sectors, or of differing size, or age, may operate with different levels of technology and the 
fourth is that firms may not pursue the objective of maximising profits. The existence of panel 
data enables us to extend work in this area for sub-Saharan Africa in several respects. The 
ability to estimate a production function with fixed effects ensures that skills which are 
unobserved, but time-invariant, do not bias the parameter estimates. We can then ask if these 
unobserved aspects of the technology, measured through the fixed effects, do depend on 
ownership or firm age two factors which have been widely argued to measure access to better 
managerial skills and the importance of firm learning. Thus in measuring technical 
inefficiency the existence of panel data means that we do not need to assume, as in the case 
with cross-section data, a distribution for the residual to identify the component of 
inefficiency.  

Our data contains measures of the human capital in the firm. We can therefore address 
directly the Pack contention that such skills play an important role in the efficiency with 
which firms perform. We also propose to assess the potential importance of allocative 
inefficiency across firms of differing size. The contention that large firms use too capital 
intensive a technology is essentially an argument that factor market distortions prevent large 
firms responding to the same factor prices as smaller firms. The finding of a correlation 
between factor choices and firm size may, of course, reflect differences in underlying 
technology related to firm size or sector, not differences in technology choice based on 
different prices. Distinguishing between these alternative hypotheses is one of our objectives.  

The relationship between technology and efficiency measures is discussed in the next 
section. In Section 3 we set out the production function and in Section 4 provide an overview 
of the data. The results of estimating both value-added and gross output production functions 
are presented in Section 5. Their implications for technology choice and skills are discussed 
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in Section 6. In Sections 7 and 8 the importance of technical and allocative efficiency is 
investigated. A final section concludes.  
   
2. Technology, Factor Choice and Efficiency 
The analysis in this paper will be based on standard production theory, assuming that the 
relationship between inputs and output can be approximated by a production function that is 
known to the firm. We write the production function in general notation as 

( )ititit ZFAY =            (1) 
where Yit is the level of output, Ait is total factor productivity (TFP) and Zit is an n order vector 
of inputs, where we assume that ++ ℜ→ℜnF :  is continuous, strictly increasing and quasi-
concave.1 The latter two assumptions are readily testable and we shall come back to this in the 
empirical analysis.  
 
Technology and Factor Choice 
Factor demand is intimately linked to the firm’s technology and factor prices. Empirical 
studies based on firm-level data, both from developed and developing countries, typically 
report substantial variation in factor intensities across firms which thus suggests that there is 
significant heterogeneity in technology and/or factor prices across firms. 
 The first two of the explanations offered by Little, Mazumdar and Page (1987) are 
illustrated in Figure 1, where we consider the case of two inputs, capital (K) and labour (L). In 
the top panel of the figure we keep technology constant and let the relative price of capital 
decrease with size, so factor prices vary with firm size and large firms choose more capital per 
employee than small ones. The bottom panel illustrates the second explanation, with constant 
factor prices but with non-homothetic technology so that the marginal rate of technical 
substitution decreases in (absolute) size for a given capital-labour ratio. Again large firms 
have higher capital-labour ratios, but in this case this is caused by the nature of the technology 
rather than by heterogeneous factor prices. The third explanation, heterogeneous technology, 
can be thought of as one aspect of a general measurement problem. Like most authors we 
measure the physical capital stock in (real) monetary units, so that different vintages of capital 
yielding differences in productivity should be reflected in differences in the value of the 
capital. Imperfect valuation of different vintages, not unlikely in practice, would therefore 
introduce measurement errors in the observed capital stock. The fourth potential explanation, 
that firms do not maximise profits, is accommodated in the analysis provided that deviations 
from profit maximisation can be modelled by means of a random term.  
 
Technical Efficiency 
Equation (1) represents the ‘frontier’, or ‘best practice’, production function in that it defines 
the maximum output attainable for firm i at time t, given the technology A(it) and the input 
set Z(it). Firms that use A(it) and Z(it) inefficiently, however, will not achieve their maximum 
potential output. The ratio between actual and potential output is conventionally defined as 
the level of technical inefficiency, where firms that use A(it) and Z(it) efficiently will have an 
inefficiency score of unity, and inefficient firms will have scores in the (0, 1) interval.2 There 
has been a continuing development of methods over the past 50 years to compute inefficiency 
scores, with the two principal methods being stochastic frontiers, which is based on 
                                                 

1 These are standard assumptions: continuity ensures that small changes in the vector of inputs lead to 
small changes in output; F[ ] being strictly increasing ensures that employing strictly more of every input yields 
strictly more output; and quasi-concavity implies that the isoquants are convex towards the origin (see e.g. Jehle 
and Reny, 1998, p. 220). 

2 Modern efficiency measurement begins with Farrell (1957).  
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econometric methods, and data envelopment analysis (DEA), relying on mathematical 
programming. While DEA is attractive in that it does not require any parametric assumptions 
or assumptions about the functional relationship between inputs and output, a significant 
disadvantage of this procedure is that the computed inefficiency scores are very sensitive to 
measurement errors, either in output or the input variables. Therefore, in our view, DEA is not 
very well suited to survey data sets and will not be used in this paper.3 Stochastic frontiers 
accommodate statistical noise in the dependent variable by means of introducing a residual, 
while typically treating inefficiency as a random parameter. A general class of such models, 
which specialises to several in the literature, is presented in Battese and Coelli (1992), another 
general form is that proposed by Battese and Coelli (1993). One unattractive feature of these 
random effects models is that the inefficiency term typically is assumed to be uncorrelated 
with the explanatory variables in the frontier production function. If the inefficiency terms are 
in fact correlated with firm attributes, the estimated parameters and the inefficiency scores 
from such models will be biased (Tybout, 1992).  
 Given that both the inefficiency term and the residual are unobservable, there are 
substantive identification issues that need to be addressed. With cross-section data it is not 
possible to separate the residual from inefficiency without making parametric assumptions 
about the distribution of the residual and the inefficiency term, which is unattractive.4 If panel 
data is available, and if it is reasonable to assume that inefficiency is approximately constant 
over the time-span during which the firm is observed, then we can model inefficiency as a 
time invariant firm specific effect. This is the route we will take in this paper. Contrary to 
most papers in the area we shall make no assumptions about the distribution of inefficiency, 
and we shall also allow the inefficiency term to be freely correlated with the arguments of the 
production function. Defining the inefficiency term as ( )ii uU −= exp  and the residual as εit we 
rewrite the production function as  

( ) iteUZFAY iititit
ε⋅⋅= .          (2) 

In the empirical analysis we will allow for correlation between εit and the arguments of F, 
caused by, for instance, measurement errors of the kind discussed above. We will return to 
this issue below. 
 
Allocative Efficiency 
The second dimension of efficiency with which we are concerned is that of allocative 
efficiency. In production theory, allocative efficiency conventionally reflects the ability of the 
firm to use optimal factor combinations, given their respective prices. That is, in the context 
of the graphs in Figure 1, the firm would be allocatively inefficient if it were to choose a point 
on the isoquant at which the isocost line is not tangential. Failure to maximise profits, as 
discussed above, will therefore manifest itself as allocative inefficiency. A related but distinct 
form of allocative efficiency occurs when as a result of price distortions, which may be due, 
for example, to non-competitive factor markets, differential taxation on firms of differing size 
or the payment of efficiency wages, firms of differing size select different factor 

                                                 
3 Lundvall (1999) uses both DEA and stochastic frontiers on Kenyan survey data, and reports an 

average inefficiency score of 0.38 based on DEA and 0.77 based on a stochastic frontier. The substantially lower 
score yielded by DEA is consistent with presence of measurement errors in the dependent variable. 

4 Even if one is prepared to make such distributional assumptions, measuring technical inefficiency with 
cross-section data is difficult. As all inputs determining output which are omitted from the production function 
will give rise to the appearance of technical inefficiency clearly measured technical inefficiency may simply 
reflect how imperfect are the measures of inputs rather than how poorly managers transform inputs into outputs, 
Tybout (1992).  
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combinations.5 We have already referred to the view common in the development literature 
that larger firms are more capital intensive than smaller ones and that such factor choices are 
inappropriate for the factor endowment of poor countries. This definition of allocative 
inefficiency is thus intimately linked to the first explanation offered by Little, Mazumdar and 
Page (1987) as to why factor ratios may vary across firms.  
 We propose to investigate the potential importance of such allocative inefficiency by 
examining how large are the differences in technology choice that can be attributed to 
differences in factor prices. Our data enables us to provide an estimate of the cost reduction 
possible if factor price distortions could be removed.  
 
3 The Production Function 
In order to translate (2) into an expression suitable for econometric analysis, we need to adopt 
an explicit functional form of the production function F which provides a reasonably close 
approximation of the real technology. One flexible form which has been used extensively in 
studies estimating cost and production functions is the second-order transcendental 
logarithmic (‘translog’) production function (Christensen et al, 1971; Berndt and Christensen, 
1972), which we write as  

∑ ∑∑ +=
k m mitkitkmj jitjit XXXY lnln21lnln ββ ,  srrs ββ =  for all s, r,  (3) 

where Xj is the j:th input in the production process, j=1,2,…, J, and β denotes parameters to be 
estimated. The translog specification is attractive because it nests or approximates a number 
of popular models in the literature, and for our purposes it is especially useful because output 
and substitution elasticities are allowed to vary with the levels of the inputs, hence 
homotheticity is not imposed.6 The following shows three key parameter restrictions on (3) 
which we shall test for in the empirical analysis: 

0=∑k kmβ   ( m = 1,2,…,J )   (homotheticity);   
  (4a) 

0=∑k kmβ  ( m = 1,2,…,J ),         (4b) 

1=∑k kβ       (constant returns to scale); 
0=kmβ   ( k = 1,2,…,J ; m = 1,2,…,J) (Cobb-Douglas form).    (4c) 
In our empirical analysis we will use two definitions of the dependent variable in the 

production function, namely gross output and value-added. Value-added production functions 
appear to be more common in the literature, however research by Basu and Fernald (1995) 
shows that adopting a value-added production function can yield misleading results if there is 
imperfect competition or increasing returns to scale. We will therefore present results for both 
value-added and gross output production functions in the results below. In the output 
production function we use four inputs: labour, denoted L, physical capital, K, raw material 
inputs, M, and indirect inputs, I. Because value-added is defined as output minus costs for raw 
material and indirect inputs, we use only labour and capital as inputs in the value-added 
specification.  

                                                 
5 In particular, notice that allocative inefficiency defined like this is not the result of optimisation errors 

made by the firm. 
6 The cost of such flexibility is that it is necessary to test for monotonicity and quasi-concavity at each 

data point. It is a common result in the empirical literature to find that not all observations comply with these 
conditions. Typically in such cases the production function is nevertheless considered well-behaved ‘…if the 
conditions are met for a sufficient number of the observed levels of inputs and outputs…’ (Little, Mazumdar and 
Page, 1987, p. 162).  
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To allow explicitly for the role of human capital in the production process, we follow 
Hall and Jones (1999) and Bils and Klenow (2000) and augment the logarithmic production 
function (3) with αhit, where α is a parameter vector to be estimated and hit is a human capital 
vector consisting of average level of education, tenure, age of employees in the firm, and age 
squared. We expect positive coefficients on education and tenure, and an inverse u-shaped 
effect of age. Finally, we add a vector of time dummies, D, measuring common shocks to the 
firms over time, with the associated vector of coefficients, δ. Hence we arrive at the following 
empirical specification: 

ittiitk m mitkitkmj jitjit DhXXXY εδµαββ +⋅++++= ∑ ∑∑ lnln21lnln .   (5) 

In estimating (5) we need to deal with the fact that the explanatory variables are likely 
to be correlated both with the equation error and with the firm specific effect. For instance, 
the regressors will be correlated with the equation error if managers alter their inputs in 
response to contemporaneous shocks to output. Failure to allow for such simultaneity is 
expected to yield an upward bias in the estimated coefficients. It is also likely that explanatory 
variables are measured with error, as discussed above, which, if ignored, is expected to cause 
a downward bias in the estimated coefficients. To address these problems we will use an 
instrumental variables approach, where we exploit the panel dimension of the data and use 
lagged values of the explanatory variables as instruments.7 As this approach rules out using 
the within transformation to wipe out the firm effects (see e.g. Griliches and Hausman, 1986), 
we will take first differences. However, recent research has shown that lagged levels will be 
weak instruments for contemporaneous differences when data are highly persistent, 
potentially giving rise to finite sample bias and poor precision of the estimates (Blundell and 
Bond, 1998).8 Therefore we follow Blundell and Bond and combine the differenced equation 
with a levels equation to form a system generalised method of moments (GMM) estimator, 
which uses lagged levels as instruments for contemporaneous differences and lagged 
differences as instruments for contemporaneous levels.9 Naturally, the legitimacy of this 
procedure hinges on the instruments being valid, which will be tested for. We provide a brief 
discussion of the system GMM estimator in Appendix 1. 
 
 
4  Data  
This study uses panel data on manufacturing firms in Ghana, collected in face-to-face 
interviews with the firms’ management during five survey rounds in the 1990s. The data is 
annual and covers the 1991 to 1997 period. At the same time as the firms were surveyed a 
sample of workers and apprentices was chosen from each firm designed to cover the full 
range of personnel employed by the firms. The objective was to have up to 10 workers and 10 
apprentices from each firm where firm size allowed. As a result of this survey design it is 
possible to use the responses from workers in the firm to create firm-level averages of worker 
                                                 

7 Clearly, this is one important benefit of panel data. In the case where the researcher has cross-section 
data only, purging explanatory variables from simultaneity typically requires extraneous information of the kind 
often unavailable in practice. 

8 In highly persistent time series, lagged levels will be poor instruments for contemporaneous 
differences but lagged differences may still be good instruments for contemporaneous levels. For instance if X 
follows a random walk, Xt = Xt-1 + εt, implying ∆Xt = εt, then Xt-1 will be uncorrelated with ∆Xt, but ∆Xt will 
nevertheless be correlated with Xt. Blundell and Bond (1998) present results from a Monte Carlo experiment 
indicating that the system GMM estimator performs substantially better than the standard differenced GMM 
when the data are highly persistent. 

9 Recent papers following this approach are Blundell and Bond (2000), Blundell, Bond and Windmeijer 
(2000) and Windmeijer (2000). 
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characteristics. During the course of the surveys a sub-set of 143 firms have provided data on 
the components of value-added and sufficient information that the capital stock, employment 
and the human capital stock of the firm could be calculated for at least three consecutive 
years.10 In the regression we lag the physical capital stock by one year so the maximum 
period over which we can observe the firms is six years. The resulting unbalanced panel 
contains 656 observations. The three major additions to the primary data are the derivation of 
physical stocks from investment flows, the calculation of firm-level human capital stocks 
based on worker information and the construction of firm specific price indices for outputs 
and material inputs. These prices, which differ for outputs and inputs, are used to deflate all 
output and inputs into constant price (1991) domestic currency prices. All references in the 
text and tables refer to these deflated values for output, input and physical capital stock. The 
average size of firm, measured by employment across the seven rounds of the data, is 67 
employees and the standard deviation is 113, so the range of enterprises covered by the survey 
is very large. Firms range in size from 2 to 841 employees.  

Table 1 presents descriptive statistics for the key variables in our empirical analysis. 
Four size categories are identified: the micro which is firms with less than 6 employees, small 
those with from 6 to 30, medium those with from 31 to 99, and large those with 100, or more, 
employees. The upper panel of the table (under the heading ‘Conditional Means’) shows 
mean values for the monetary and human capital variables, purged of sectoral and time effects 
as explained in the notes to the table. We purge the variables from time effects to ensure that 
the results are not driven by changes in the sample composition during the course of the 
surveys. The fact, shown in Table 1, that the capital labour ratio differs substantially across 
firm of differing size when the data is purged of sectoral effects is important for establishing 
that it is not differences in technology related to sector which explains the dispersion. For all 
the variables shown in the upper part of the table the mean values increase monotonically 
over the size range, indicating that large firms have higher labour productivity and capital 
intensity, and more skilled workers. For the log of output, value-added and capital, per 
employee, the increases are substantial, corresponding to about 150 per cent, 230 per cent and 
900 per cent, respectively, in levels. These descriptive statistics confirm that a wide range of 
technology choices are made by firms in our sample. In the following sections we propose to 
investigate the reasons for these choices.  
 
5 Estimates of Value-added and Gross Output Production Functions 
In addressing the issue of technology and productivity, two issues are central to our 
investigation: whether technology is non-homothetic and how human capital impacts on 
productivity performance. In Table 2 we report various production function results, based on 
OLS and the within estimator. We begin by looking at the left part of the table, where we 
model value-added.  

The OLS results for the translog model, Column [1], clearly suggest that the data 
complies very well with the regularity conditions, as both quasi-concavity and monotonicity 
is fulfilled at each observation.11 There is no strong evidence of non-homotheticity or variable 
                                                 

10 To obtain a measure of the human capital stock available to the firm it was necessary to merge the 
worker with firm level information. In aggregating from the worker to the firm level we used weights to ensure 
that we can move from individual data to firm based averages. To do this we weighted the human capital 
variables by the proportion of workers in a given occupational class within the firm. Eight common occupational 
groups across the rounds of the survey were identified. These occupational categories for the worker level data 
are matched with the occupational categories given in the firm level data. A data appendix explaining the details 
of this procedure is available on request from the authors. 

11 Monotonicity requires that each input has a positive marginal product, and quasi-concavity requires 
that the bordered Hessian matrix of first and second partial derivatives of the production function are negative 
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returns to scale, and the Cobb-Douglas specification can easily be accepted given the translog 
functional form. Column [3] reports OLS results for the Cobb-Douglas specification, and the 
results are very similar to those obtained from the translog model. The estimated coefficient 
on employment is 0.89, and that on physical capital is 0.18, and both are significant at the 1 
per cent level. The human capital coefficients all have the anticipated signs, however only the 
age effect, which is a quadratic, is significant.  

These OLS results will be biased if, which seems likely, the explanatory variables are 
correlated with the unobserved firm specific effects. When we introduce controls for firm 
fixed effects, however, the production function disintegrates, Columns [2] and [4]. 
Implausibly, physical capital now appears to have a negative, although insignificant, effect on 
value-added, and monotonicity is violated at each observation. The standard explanation why 
controlling for fixed effects in the production function tends to give unsatisfactory results is 
that the differencing procedure exacerbates the bias caused by measurement errors in the 
explanatory variables, Griliches and Mairesse (1997).12 To address this issue we will utilise 
the panel nature of the data to search for valid instruments. We will come back to this shortly. 

We now turn to the right-hand part of the table, where we model gross output. Column 
[5] reports OLS results for the translog model. Again we cannot reject homotheticity and 
there is no evidence for variable returns to scale, however it now seems we should decisively 
reject the simpler Cobb-Douglas model in favour of the translog specification. Only 44 per 
cent of the observations fulfil quasi-concavity and 69 per cent comply with monotonicity, 
which is not satisfactory. Introducing controls for fixed effects, Column [6], only makes 
matters worse in this respect, presumably for the reasons discussed above. Estimating the 
Cobb-Douglas model using OLS, Column [7], gives positive and significant coefficients on 
all inputs. We can compare the point estimates to those obtained in the value-added model [3] 
if we assume that the cost of raw materials and indirect inputs is a constant fraction of output. 
Under this assumption, the coefficient on employment of 0.14 in the output model translates 
into 0.82 in a value-added equation, while the capital coefficient of 0.03 corresponds to 0.18 
in a value-added equation. Hence there is no evidence that the two models give radically 
different results. As for the human capital variables, we now obtain a significant but small 
coefficient on education, and a significant inverse u-shaped age effect.  

None of the models reported in Table 2 will yield consistent results in the presence of 
endogeneity and measurement errors, so we need to probe the data further before we can draw 
conclusions about the properties of the production function. In Table 3 we report system 
GMM results controlling for fixed effects and using lags of explanatory variables in levels as 
instruments for contemporaneous differences, and lags of the explanatory variables expressed 
in first differences as instruments for contemporaneous levels. All results in this table are two-
step GMM estimates, where the t-statistics are based on robust, finite sample corrected 
standard errors (see Windmeijer, 2000).13 Column [1] summarises the translog results for the 

                                                                                                                                                         
semi-definite. In the translog specification the marginal products and the partial derivatives depend both on the 
values of the inputs and on the estimated parameters, and we therefore need to investigate if monotonicity and 
quasi-concavity holds at each data point.  

12 If the sample is ‘large’ and the regression has only one regressor, measurement errors alone cannot be 
the reason why differencing changes the sign of the estimated coefficient (see Deaton, 1997, p. 109). This simple 
rule does not hold, however, if there are several explanatory variables or the sample size is finite.  

13 It is well known that the asymptotic standard errors in two-step GMM estimators can be severely 
downward biased in finite samples (e.g. Arellano and Bond, 1991). As a consequence, researchers often draw 
inference based on one-step GMM estimators, which are less efficient than the two-step estimators. However, 
Windmeijer (2000) shows how the asymptotic two-step standard errors can be corrected when the sample size is 
finite. Monte Carlo evidence reported by Bond and Windmeijer (2001) indicates that this procedure yields a 
much more reliable basis for inference than relying on the asymptotic standard errors. 
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value-added specification, and because we can easily accept the Cobb-Douglas model within 
the translog framework, we focus on the Cobb-Douglas results reported in Column [2]. The 
results appear to be reasonable. The estimated employment coefficient is 0.73, that on capital 
is 0.31, and both coefficients are significant at the 1 per cent level. There is no evidence of 
variable returns to scale, or, by implication of the Cobb-Douglas specification, non-
homotheticity. Among the human capital variables only age has a significant impact on 
productivity. The point estimates on the age terms indicates an inverse u-shaped effect of 
workers’ age on productivity, which peaks approximately at the age of 32.  

Column [3] in Table 3 reports system GMM estimates of the output translog 
production function. Like for all other models previously reported, there is no evidence for 
non-homotheticity or variable returns to scale. Further, in contrast to the OLS and within 
models reported in Table 2 for the output specification, we can now comfortably accept the 
Cobb-Douglas specification, reported in Column [4], as a result of using instrumental variable 
techniques. We consequently focus on the results in Column [4]. The estimated coefficient on 
employment is equal to 0.17, and significant at the 1 per cent level, which can be compared 
with 0.14 in the OLS model and 0.10 in the within specification. More dramatically, the 
estimated capital coefficient is 0.09, hence substantially higher than in the OLS (0.03) and 
within (-0.06) specifications, and significant at the 5 per cent level. The input elasticities sum 
to 1.00, i.e. constant returns to scale. The coefficient on tenure is now significant at the 10 per 
cent level, although its magnitude is very small. As in all other models, we obtain a quadratic 
age effect, indicating that productivity increases with the average age of the workforce up 
until the age of 32 years, and then decreases. The education coefficient is insignificant.  
 
6 Technology and Skills 
In summary the Cobb-Douglas models in Table 3 appear to be very well specified. The 
Sargan-Hansen tests indicate that the instruments are valid, and the fact that the capital 
coefficient is higher than in the OLS and within specifications is consistent with this variable 
being measured with error. For all estimators we can easily accept the hypothesis that 
technology is homothetic. The ease with which firms can substitute one input for another does 
not vary with firm size thus suggesting that technology is not the reason why we observe 
differing factor intensities over the size range. There is no evidence for variable returns to 
scale, except in some of the within regressions which we believe to be biased downwards for 
reasons already discussed. 
 The OLS results suggest that education of the workforce may have a significant 
impact on productivity, which squares with previous studies based on the early waves of the 
Ghana data (Jones, 2001; Bigsten et al, 2000). However, our results show that this effect 
vanishes once controls for firm fixed effects and endogeneity are introduced. We have also 
tested for complementarity between physical capital and human capital, but in no case did we 
find a significant coefficient on any of the relevant interaction terms. We have attempted to 
address the possibility that firms may operate with different levels of technology by using 
econometric methods that yield consistent results in the presence of what is essentially a 
measurement problem. By including controls for workers’ education, age and tenure, we have 
also acknowledged that differences in human capital may map into productivity differences. 
We find that measured skills are not an important determinant of productivity.  
 
7 Technical Inefficiency 
In reviewing studies which measure the dispersion of productivity in developing countries, 
Tybout (2000, p. 25) argues that “they are not very informative. Most of them are based on 
outdated methodologies. With a few exceptions they rely on cross-sectional data, and hence 
must infer efficiency dispersion from the skewness of the production function residuals. 
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Further, because they measure output as real revenue, they misattribute cross-plant mark-up 
differences to productivity dispersion. Finally, for lack of data, they typically attribute high 
productivity with superior performance, ignoring many of the costs that firms incur to 
enhance their technical efficiency”. Our analysis has addressed each of these concerns. We 
have used recently developed econometric techniques that enable us to control for 
simultaneity (e.g. in the form of measurement errors in inputs or feedback from output to 
factor choices) and unobserved heterogeneity (in the form of firm fixed effects, freely 
correlated with the inputs). We have used panel rather than cross-section data and we have 
used firm-level information on input and output prices to construct firm specific deflators. 
Finally, we have used detailed data on human capital to directly measure skills. What are the 
implications of these procedures for measures of technical efficiency?   

We estimate the fixed effects based on the output production function reported in 
Column [4], Table 3, and use these as our measures of technical inefficiency.14 To be able to 
compare the dispersion of technical inefficiency with previous studies, we normalize so that 
the efficiency index, tei, is bounded in the (0 ,1] interval: )ˆˆ( max ietei

µµ −−= , where maxµ̂ is the 
sample maximum of the estimated fixed effects, and iµ̂  is the estimated fixed effect for firm i. 
Hence an efficiency score equal to 1 indicates efficiency or ‘frontier’ technology, and scores 
less than 1 indicate inefficiency. Figure 2 shows the distribution of this efficiency index. The 
sample mean of this fairly skewed distribution is 0.53. However, as can be seen from the 
graph, the fairly low average inefficiency score is partly caused by a few outliers, and 
eliminating the five largest fixed effects from the sample would increase the average 
inefficiency score to 0.60. 

Tybout (2000, Tables 2 and 3) provides an extensive summary of inefficiency studies 
for developing countries with a comparison, from Caves et al. (1992), of efficiency measures 
from Australia, Japan, Korea, UK and US. The latter report country averages of the efficiency 
index ranging between 0.67 and 0.70. As Tybout notes there is little evidence that the 
dispersion of efficiency in developing countries is very different from that in developed. The 
average across all the studies cited for developing countries is 0.6, identical to the finding 
above and only slightly below that for OECD countries.  
 In Table 4 we regress the fixed effects estimates on time invariant variables, to see if 
we can detect any systematic variation in efficiency across sectors, ownership structures, 
locations and other firm characteristics. Few of the regressors have strong explanatory power. 
With the metal sector as the omitted category, we find inefficiency to be about 24 percentage 
points lower in the wood sector, 11 percentage points lower in the food sector and 13 
percentage points higher in the textiles sector. These effects are individually significant at the 
10 per cent level or better, and all the sector dummies are jointly significant at the 1 per cent 
level. Neither firm age nor ownership are associated with significant efficiency differentials. 
The R-squared from the regression indicates that our regressors manage to explain only 16 per 
cent of the variation in the fixed effects.  
 
8 Allocative Inefficiency  
In the last section we showed that the dispersion of output in the Ghanaian firms differed little 
from those observed in other economies. There is no empirical support for the notion that 
these firms are atypically technically inefficient. We have also showed that the technology is 
homothetic so it is not differences in technology which explain differences in factor choice 
with firm size. We know from Table 1 that the capital labour ratio does increase with size. In 

                                                 
14 We obtain estimates of the fixed effects by regressing the levels residuals on firm dummies, where 

the resulting coefficients on the firm dummies are the estimated fixed effects.  
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this section we explore the potential size of allocative inefficiency if these differences do 
reflect differences in factor prices. Söderbom and Teal (2001) use this data to argue that 
evidence from earnings function are consistent with such an hypothesis.  
 Figure 3 shows the relationship between the capital labour ratio and firm size by 
means of the results from a Nadaraya-Watson kernel regression of the form ln(K/L) = f ( ln L ) 
+ error, where the dependent variable has been purged of time and sectoral effects (see notes 
to Table 1). Using a nonparametric approach in this context is attractive as it puts little 
restriction on the shape of the function f (.). The figure shows the estimated regression line 
and pointwise 95% confidence intervals, obtained through bootstrapping. While the 
regression as expected shows that the capital labour ratio increases with size, the pattern 
appears to be non-linear. The positive correlation between size and capital intensity is 
strongest for firms between 10 and 200 employees, outside this range the regression function 
is relatively flat and the confidence interval wide. Within the (10, 200) range, the average 
slope of the regression line is about unity, indicating that a 1 per cent increase in the labour 
force is associated with a 1 per cent increase in the capital labour ratio. 
 Based on this regression we use the predicted values of ln(K/L), and calculate the 
implied capital stock values for given levels of employment. This yields the expansion path of 
factor combinations. We plot this in Figure 4 along with isoquants based on a Cobb-Douglas 
value-added production function with a capital coefficient of 0.3 and a labour coefficient of 
0.7, thus very similar to the regression reported in Column [2], Table 3. Clearly the expansion 
path bends off sharply towards the capital axis, and because technology is homothetic we 
know that the slope of the isoquants will be steeper for higher capital labour ratios. The figure 
shows that firms with 200 employees have on average 6 times higher relative labour to capital 
costs than firms with 21 employees. In their analysis of the wages in the Ghanaian 
manufacturing sector Söderbom and Teal (2001) report that the earnings-size elasticity is 
about 0.20, which would predict 80 per cent higher labour costs in firms with 200 employees 
than in firms with 10 employees.15 This would imply that the capital prices differ between the 
two size categories by a factor of between 3 to 4 times.  It will be noted that differences in 
capital costs across firms of differing size are far larger than labour costs.  
 While the cost of capital to the firms cannot be directly observed we can infer it from 
the production function and the assumption that the marginal product of capital is equal to the 
firm specific cost of capital. From Table 3 Column [4] we note that the marginal product of 
capital =0.09x(Y/K). From Table 1 we note that [using ln(Y/K) =ln(Y/L)-ln(K/L)] Y/K for a 
large firm is 0.96 and for a micro firm is 4.2, numbers which imply a rise in the cost of capital 
from small to large firms of about 4 times, from 10 to 38 per cent.  
 Figure 4 shows the enormous dispersion of factor choice which these differences in 
factor prices imply. If the large firm (ie one with 200 employees) output were produced using 
small firm (ie one with 20 employees) factor proportions the amount of labour would be 70 
per cent higher while the capital required would be less than a third that actually used. What 
are the implications of these differences for cost reduction if it were possible for large firms to 
face the labour costs of small firms or, equivalently, for small firms to face the capital costs of 
large firms? The implication of our findings is that unit costs would fall by about 30 per cent. 
The capital labour ratio that would result would be approximately half that of the large firm 
but some 4 times higher than that currently chosen by small firms.16 The extent of the welfare 
                                                 
15 Söderbom and Teal (2001) control for human capital and fixed effects in their estimation of an earnings 
function which gives the 0.2 point estimate on the log of employment 
 
16 These figures can be simply derived from the Cobb-Douglas production function set out in the notes to Figure 
4 and the implied unit cost equation which is 3.07.0 )3.07.0)(()7.03.0)(( ⋅+⋅ wrwrwr , where r is the rental 
price of capital and w is the wage rate. We normalise the price at 60 and assume labour costs for small firms of 



 11 

gain from this cost fall would depend on the shape of the demand function. However, that 
both substantial cost reductions, and a far more efficient use of capital, is possible than is 
currently the case is the clear implication of our findings.  
 
9 Summary and conclusions 
The view that firms in Africa are inefficient has been widespread. In this paper we have used 
panel data to investigate both technical and allocative inefficiency. We have shown that a very 
simple functional form, the Cobb-Douglas, adequately represents the technology choices 
made by firms where firm size ranges from less than 5 to over 200. The implication of the 
acceptance of the Cobb-Douglas function form is that the technology is homothetic so that 
differences if factor choices over firms of differing size is not a reflection of differences in 
technology. We have shown that the dispersion in technical efficiency over firms in our 
sample is similar to that found in other countries. There is no evidence that firms in Africa are 
particularly inefficient in this sense. We have also investigated the possible roles of both 
observable human capital, and the unobserved skills as proxied by the fixed effects, as 
determinants of efficiency. Observable skills are not quantitatively important as determinants 
of productivity. We have investigated if either ownership, or firm age, are correlated with the 
unobserved components of skills, as measured by the fixed effect. Neither significantly affects 
this measure of the efficiency with which firms operate. In contrast we have found evidence 
that there is substantial allocative inefficiency. Large firms facing higher relative labour costs 
than smaller firms use a much more capital intensive technology and operate with costs 30 per 
cent higher than those which would occur if factor prices were common across firms of 
differing size. While that might be the case has been part of the folk wisdom of development 
economics for a very long time our data has enabled us to document the size of this effect.  
 
 

                                                                                                                                                         
30 and for large firms of 54, while capital costs respectively are 10 and 38 per cent. The capital labour ratio for 
small firms is 0.3 and for large is 2.3 [see Figure 4]. Unit cost is 60 by normalisation for both technologies. 
Using large firm capital costs and small firms labour costs the unit cost is 40 and the capital labour ratio is 1.3. 
Clearly these figures are intended to be indicative of orders of magnitude and are not to be interpreted as exact.  
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TABLE 1 
SUMMARY STATISTICS 

      
 [1] Micro [2] Small [3] Medium  [4] Large [5] All 

      
CONDITIONAL MEANS*      

Log Output per Employee 13.75 13.91 14.08 14.68 14.08 
 (0.12) (0.06) (0.07) (0.10) (0.04) 

Log Value-Added per Employee 12.48 12.67 12.92 13.68 12.90 
 (0.15) (0.07) (0.09) (0.12) (0.05) 

Log Capital per Employee 12.39 12.48 13.73 14.72 13.22 
 (0.19) (0.09) (0.12) (0.16) (0.06) 

Ratio of Value-Added to Output 0.34 0.36 0.38 0.39 0.37 
 (0.02) (0.01) (0.01) (0.02) (0.01) 

Average Education in Years 9.58 9.81 10.28 11.27 10.18 
 (0.27) (0.13) (0.16) (0.22) (0.09) 

Average Age in Years 26.52 28.69 33.43 35.55 31.02 
 (0.78) (0.38) (0.47) (0.64) (0.26) 

Average Tenure in Years 3.38 4.22 6.90 7.21 5.42 
 (0.48) (0.24) (0.29) (0.39) (0.16) 

UNCONDITIONAL MEANS      

Firm Age (years) 15.17 14.45 19.28 22.87 17.39 
      

Any Foreign Ownership 
(proportion) 

0.14 0.07 0.23 0.59 0.22 

Any State Ownership (proportion) 0.00 0.02 0.09 0.06 0.05 

Industry (proportions)      

Food and Bakery 0.32 0.22 0.18 0.25 0.22 

Wood 0.00 0.03 0.06 0.29 0.08 

Furniture 0.13 0.28 0.27 0.20 0.25 

Textiles and Garments 0.33 0.16 0.20 0.00 0.16 

Metal and Machinery 0.22 0.31 0.28 0.25 0.28 

Location (proportions)      

Accra (capital city) 0.32 0.60 0.63 0.55 0.57 

Cape 0.06 0.02 0.03 0.03 0.03 

Kumasi  0.49 0.35 0.28 0.13 0.30 

Takoradi 0.14 0.03 0.06 0.29 0.10 

      
Number of Observations 72 292 193 119 677 

Number of Firms 15 61 40 27 143 
      
Note: The size of the firm is its total number of employees when first observed in the sample, where a micro firm 
has less than six employees, a small firm has from 6 to 29, a medium firm has from 30 to 99, while a large firm 
has 100, or more, employees. The figures in ( ) are standard errors. All monetary variables have been deflated 
using firm-level price indices. 

Table notes continue on the next page 
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Table notes, continued 

* These numbers are means that have been purged from time and sectoral effects. The numbers reported in 
Columns [1]-[4] are predictions from regressions of the variables on sector, time and the size dummies, where the 
predictions are based on sample means for the sector and time dummies. The numbers reported in the fifth column 
are predictions from regressions of the variables on sector and time dummies and the level of employment, where 
we use sample means for the sector, time and employment to compute the predictions.  
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TABLE 2: OLS AND WITHIN ESTIMATES OF PRODUCTION FUNCTION PARAMETERS 

 Dependent variable: log Value-Added  Dependent variable: log Output 

 Translog Cobb-Douglas  Translog Cobb-Douglas 

 [1] OLS [2] Within [3] OLS [4] Within  [5] OLS [6] Within [7] OLS [8] Within 

MARGINAL EFFECTS(1)          

log Employment  0.84 0.30 0.89 0.34  0.10 0.03 0.14 0.08 
 (8.79)** (1.31) (9.74)** (1.59)  (3.33)** (0.46) (3.78)** (1.18) 

log Capital  0.20 -0.25 0.18 -0.22  0.02 -0.06 0.03 -0.06 
 (3.57)** (0.65) (3.43)** (0.59)  (1.68)+ (0.46) (2.12)* (0.53) 

log Raw Materials      0.72 0.69 0.71 0.65 
      (37.49)** (22.78)** (29.12)** (17.12)** 

log Indirect Costs      0.15 0.11 0.12 0.10 
      (8.07)** (4.51)** (5.19)** (3.47)** 
HUMAN CAPITAL COEFFICIENTS          

Education  0.04 0.02 0.04 0.02  0.01 0.00 0.01 0.00 
 (1.63) (0.57) (1.59) (0.53)  (2.53)* (0.35) (2.11)* (0.35) 

Age  0.13 0.21 0.13 0.20  0.05 0.07 0.04 0.08 
 (2.19)* (3.08)** (2.04)* (3.09)**  (3.04)** (2.59)** (2.53)* (3.01)** 

Age2 / 100  -0.20 -0.33 -0.19 -0.33  -0.07 -0.11 -0.06 -0.13 
 (2.26)* (3.46)** (2.09)* (3.49)**  (2.96)** (2.82)** (2.58)** (3.33)** 

Tenure  0.03 0.05 0.03 0.05  0.004 0.01 0.01 0.02 
 (1.70)+ (2.46)* (1.43) (2.56)*  (1.08) (2.55)* (1.35) (3.47)** 
DIAGNOSTICS & TESTS          

R2 0.74 0.10 0.74 0.09  0.98 0.82 0.97 0.80 

Quasi-concavity (proportion) 1.00 0.61    0.44 0.04   

Monotonicity (proportion) 1.00 0.00    0.69 0.04   

Homotheticity(2) (p-value) 0.30 0.64    0.25 0.68   

Homotheticity and CRS(3) (p-value)  0.36 0.21 0.39 0.04  0.31 0.49 0.86 0.06 

Cobb-Douglas (p-value) (4) 0.49 0.82    0.00 0.00   

Table notes on the next page
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Note: Time dummies are included in all regressions. The OLS regressions include controls for the age 
of the firm, industry, ownership structure and location. The numbers in ( ) are t-statistics based on 
standard errors robust to heteroskedasticity. Significance at the 1 per cent, 5 per cent and 10 per cent 
level is indicated by *, ** and + respectively.  
(1) For the translog specification the marginal effects is a function of the inputs, and have therefore 
been evaluated at the sample means. For the Cobb-Douglas specification, the marginal effects are 
equal to the estimated coefficients. 
(2) H0: 0=∑k kmβ , m = 1,2,…,J  (see eq. [3]). 

(3) For translog specifications, H0: 0=∑k kmβ , m = 1,2,…,J , and 1=∑k kβ . For Cobb-Douglas 

specifications, H0: 1=∑k kβ   (see eq. [3]). 

 
(4) H0: 0=kmβ , k = 1,2,…,J ; m = 1,2,…,J  (see eq. [3]).  
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TABLE 3  

SYSTEM GMM ESTIMATES OF PRODUCTION FUNCTION PARAMETERS 

     
 Dependent variable:  

log Value-Added(a)   
Dependent variable:  

log Output(b) 
 [1]  

Translog 
[2]  

Cobb-Douglas 
[3]  

Translog 
[4]  

Cobb-Douglas 

MARGINAL EFFECTS(1)     
log Employment  0.88 0.73 0.10 0.17 
 (4.20)** (3.25)** (0.93) (2.37)* 

log Capital  0.25 0.31 0.08 0.09 
 (2.49)* (3.58)** (1.61) (2.06)* 

log Raw Materials   0.68 0.68 
   (12.58)** (14.02)** 

log Indirect Costs   0.13 0.06 
   (2.35)* (1.14) 
HUMAN CAPITAL COEFFICIENTS     
Education  -0.01 -0.003 0.01 0.006 
 (0.82) (0.07) (0.65) (0.35) 

Age  0.24 0.26 0.04 0.07 
 (2.40)* (3.11)** (1.42) (2.61)** 

Age2 / 100  -0.38 -0.41 -0.08 -0.11 
 (2.60)** (3.35)** (2.07)* (2.88)** 

Tenure  0.04 0.05 0.01 0.02 
 (0.76) (1.25) (1.48) (1.89)+ 
DIAGNOSTICS & TESTS     
Quasi-concavity (proportion) 0.52  0.44  

Monotonicity (proportion) 0.87  0.59  

Homotheticity(2) (p-value) 0.63  0.46  

Constant returns to scale(2) (p-value)  0.74 0.85 0.59 0.92 

Cobb-Douglas (p-value) (2) 0.66  0.37  

m1 (p-value) (3) 0.00 0.00 0.01 0.00 

m2 (p-value) (4) 1.00 0.93 0.81 0.15 

Sargan-Hansen (p-value) (5) 0.57 0.79 0.42 0.39 

Note: Time dummies are included in all regressions. The numbers in ( ) are t-statistics. Significance at the 1 per 
cent, 5 per cent and 10 per cent level is indicated by *, ** and + respectively. Hypothesis tests are based on 
robust, finite sample corrected standard errors (see footnote 13) calculated using the method proposed by 
Windmeijer (2000). 
a) The instrument set for the differenced equation consists of the levels of employment, physical and human 
capital, in periods t-2 and t-3. The instrument set for the levels equation consists of employment, physical and 
human capital, differenced, in period t-1, a constant and year dummies.  
b) The instrument set for the differenced equation consists of the levels of employment, raw material, indirect 
costs and physical and human capital, in periods t-2 and t-3. The instrument set for the levels equation consists 
of employment, raw material, indirect costs and physical and human capital, differenced, in period t-1, a constant 
and year dummies.  

Table notes continue on the next page 
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Table notes, continued 

 (1) For the translog specification the marginal effects is a function of the inputs, and have therefore 
been evaluated at the sample means. For the Cobb-Douglas specification, the marginal effects are 
equal to the estimated coefficients. 
(2) See Table 2. 
(3) Tests the null hypothesis that the differenced residuals in periods t and t-1 are uncorrelated. 
(4) Tests the null hypothesis that the differenced residuals in periods t and t-2 are uncorrelated. 
(5) Tests for the instrument validity. 
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TABLE 4  
CORRELATES WITH THE FIXED EFFECTS IN THE PRODUCTION FUNCTION 

   
 Fixed Effects from Column [4], Table 3 

 Coefficient t-value 
SECTORS(a)   

Food 0.108 1.89+ 
Textiles or Garments  -0.126 1.83+ 
Wood 0.242 2.43* 
Furniture -0.084 1.31 

LOCATION(b)   
Accra (Capital City) 0.072 1.02 
Kumasi 0.022 0.29 
Cape Coast -0.056 0.44 

OTHER COMPANY CHARACTERISTICS   
Firm Age/100 0.055 0.29 
Any Foreign Ownership -0.011 0.21 
Ghanaian State Ownership 0.032 0.34 

   
R2 0.16  
F-test slope coefficients  3.03** 
   
Number of firms  143  
   

  
Note: The dependent variable is the estimated fixed effect from Column [4], Table 3. The 
estimation method is OLS. t-values are based on robust standard errors. Significance at 
the 10 per cent and 5 per cent level is indicated by + and *, respectively.  
(a) Omitted category: Metal. 
(b) Omitted category: Takoradi. 

 



21 

 

 
FIGURE 1 

TECHNOLOGY AND FACTOR PRICES 
 
 

A. Homothetic Technology, Variable Factor Price Ratio 

 
 

B. Non-Homothetic Technology, Constant Factor Price Ratio 
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FIGURE 2 

THE DISTRIBUTION OF TECHNICAL EFFICIENCY 
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Note: Technical efficiency is defined as )ˆˆ( max ietei

µµ −−= , where maxµ̂ is the sample maximum of the estimated 
fixed effects, and iµ̂  is the estimated fixed effect for firm i. This is interpretable as a measure of the dispersion 
across firms of productivity, conditional on inputs and human capital. The estimated mean of technical efficiency 
is 0.53 and the estimated standard deviation is 0.15. The fixed effects estimates are based on the regression in 
Column [4], Table 3. 
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FIGURE 3  

NON-PARAMETRIC REGRESSION: ln(K/L) = f ( ln L ) + error 
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Note:  
The kernel is Epanechnikov and the bandwidth is equal to 1.27. The thin lines indicate pointwise 95% 

confidence intervals, calculated from 800 bootstrapped replications. To take the panel nature of the data 
into account we bootstrapped from the firms rather than from the observations, which is a similar 
procedure to that used by Deaton (1997, pp 216-218) for clustered data. 
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FIGURE 4 
TECHNOLOGY, FACTOR PRICES AND FACTOR CHOICE IN GHANAIAN MANUFACTURING 
 

 

 
A: K = 478 million Cedis; L = 207; K/L = 2.3 million Cedis. 
B: K = 132 million Cedis; L = 358; K/L = 0.4 million Cedis.  
 
 
Notes: The underlying production function is ln Y = ln A + 0.3 ln K + 0.7 ln L, where A is a constant. Y1, Y2 
and Y3 depict three isoquants under this technology, with Y2 = 5Y1 and Y3 = 10Y1. The solid line starting in 
the origin is the empirical expansion path, derived from the non-parametric regression shown in Figure 3. 
The dashed line starting in the origin is a hypothetical expansion path for relative factor prices constant at 
the level observed for a firm with 18 employees.  
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Appendix 1: The system GMM estimator 
 
This appendix provides a brief description of the system GMM estimator. For more details see Blundell and 
Bond (1998). 
 
Consider 
(A1)  itiitit xy εµβ ++′= ,   t = 1,2,…,T, 
where i and t are firm and time indices, yit is the dependent variable, xit is a row vector of order k of explanatory 
variables possibly including lags of the dependent variable, β is a column vector of parameters of order k, µi is a 
fixed effect potentially correlated with xit and εit is a residual potentially correlated with xit. To eliminate the 
fixed effect we take first differences: 
(A2)  ititit xy εβ ∆+′∆=∆ ,   t = 2,3,…,T. 
If itx∆  is correlated with the differenced residual, the standard OLS estimator will be biased and inconsistent. 
However, assume that there exists a set of instruments that enable us to form a vector of moment conditions of 
order q, defined as  
(A3)  ( ) 0=∆′ ititzE ε .  
Provided q≥k , we can obtain a consistent GMM estimator of β by minimising the quadratic 

(A4)  ( ) ( ) ( )GMMNGMMGMM gWgJ βββ ˆˆˆ 1−′
= , 

where ( )⋅g  is the sum over the sample moment conditions of the form in (A3) and 1−
NW  is a weight matrix 

(Hansen, 1982). A common procedure is to use lags of xit as instruments for the differenced equation (A2), and 
because more instruments become available for higher t, we can form a matrix of instrument as  
 

  xi1 0 0 … 0 … 0  t = 1 + l 
(A5) zi  = 0 xi1 xi2 … 0 … 0  t = 2 + l 
  . . . … . … .   
  0 0 0 … xi1 … xi,T-l  t = T 

 
where l is the lag length in use. The resulting differenced GMM estimator often performs poorly in practice due 
to the problem of weak instruments. Blundell and Bond (1998) proposed combining the differenced equation 
(A2) with the levels equation (A1), for which lagged differences of the explanatory variables may serve as valid 
instruments. The vector of moment conditions is then defined as 
(A6)  ( ) 0 =+ uzi

'E , 
where 

(A7)  







=

i

i

ε
∆ε

ui   

and 

  zi 0 0 … 0   
(A8) =+

iz  0 ∆xi1 0 … 0  t = 1 + l 

  0 0 ∆xi2 … 0   
  . . . … .   
  0 0 0 … ∆xi,T-l  t = T 

 
The system GMM estimates are then obtained by minimising (A4). 
 


