R7541 ‘Assessing the potential for short duration legumes in South Asian rice fallows’.

Executive Summary

Rice is the most extensively grown crop in South Asia (Bangladesh, India, Nepal, and Pakistan; Sri Lanka is not included in this study), occupying nearly 50 million ha. Much of it is grown in the kharif (rainy) season. A substantial part of this area remains fallow during the rabi (postrainy) season because of several limitations, the prime one being limited availability of soil moisture. Precise estimates of such rice-fallows and their spatial distribution are not available. Since rice is grown on some of the most productive lands of this region, there is substantial scope to increase cropping intensity by introducing a second crop during the rabi season. This project has quantified rice-fallows in South Asia by using satellite image analysis and has documented their spatial distribution. Using geographical information system (GIS) tools, we have overlaid the spatial distribution of the rice-fallows on to the available climatic and soil information data to identify possible strategies to utilize these lands for suitable short-season crops.

Satellite image analysis estimated that rice-area during 1999 kharif season was about 50.4 million ha (Table 1). Rice-fallows during the 1999/2000 rabi season were estimated at 14.29 million ha. This amounts to nearly 30% of the rice-growing area. These rice-fallows offer a huge potential niche for legume production in this region. Nearly 82% of the rice-fallows are located in the Indian states of Bihar, Madhya Pradesh, West Bengal, Orissa, and Assam. The GIS analysis of these fallow lands has indicated that they represent diverse soil types and climatic conditions; thus a variety of both warm season legumes (such as soybean, mung bean, black gram, pigeonpea, groundnut) and cool season legumes (such as chickpea, lentil, khesari [lathyrus], faba bean, pea) can be grown in this region. Available soil water-holding capacity (1 m soil profile) for most of these lands ranges from 150 mm to 200 mm. If it is assumed that the soils in these lands are fully saturated during most of the rice growing season, the residual moisture left in the soil at the time of rice-harvest may be sufficient to raise a short-season legume crop. A number of abiotic (soil acidity, salinity, alkalinity, and terminal drought), biotic (diseases and insect pests), and socioeconomic (social unrest, lack of awareness among farmers of legume technologies, and lack of effective policy initiatives to promote legumes, etc.) constraints contribute to the lack of cropping during this period in this region. These will have to be addressed by appropriate research and policy initiatives in addition to developing suitable legume varieties that have targeted adaptation to these rice-fallows.
Table 1. Estimates of rice areas during the 1999 *kharif* season, and rice-fallows during the *rabi* season of 1999/2000 based on satellite image analysis.

<table>
<thead>
<tr>
<th>Country</th>
<th>Kharif-rice area (million ha)</th>
<th>Rabi fallow (million ha)</th>
<th>Rabi-fallow as % of rice area</th>
<th>% total rice-fallow in South Asia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nepal</td>
<td>1.45</td>
<td>0.39</td>
<td>26.9</td>
<td>2.7</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>6.36</td>
<td>2.11</td>
<td>33.2</td>
<td>14.8</td>
</tr>
<tr>
<td>Pakistan</td>
<td>2.45</td>
<td>0.14</td>
<td>5.7</td>
<td>1.0</td>
</tr>
<tr>
<td>India</td>
<td>40.18</td>
<td>11.65</td>
<td>29.0</td>
<td>81.5</td>
</tr>
<tr>
<td>Total</td>
<td>50.44</td>
<td>14.29</td>
<td>28.3</td>
<td></td>
</tr>
</tbody>
</table>

A review of existing technologies indicates that it is possible to productively cultivate legumes in most of these identified rice-fallows. An economic analysis has shown that growing legumes in rice-fallows is profitable for the farmers with a benefit-cost ratio exceeding 3.0 for many legumes. Also, utilizing rice-fallows for legume production could result in the generation of 584 million person-days employment for South Asia (66.7 in Bangladesh, 503 in India, 10.2 in Nepal, and 3.6 in Pakistan; values are in million person-days). Thus, introducing legumes into these rice-fallows will have a multi-faceted impact on the economy through employment generation, poverty alleviation, food security, quality of nutrition to humans and animals, and contribution to the sustainability of these production systems in South Asia.

Background

From the mid-1990s, ICRISAT has been implementing a project, funded by the Asian Development Bank (ADB) from May 1997, on “legume technologies for rice and wheat cropping systems for South and South-East Asia”. Part of the project activities has involved assessment of constraints and opportunities for legumes in rotation with rice (Johansen *et al.*, 2000). This has involved use of GIS to map legume distribution and productivity in relation to edaphic and climatic factors, and abiotic and biotic constraints. The project has been studying components of technology that would enhance legume production after rice (DFID/KRIBHCO, 1998; Harris *et al.*, 1999; Awadhwal *et al.*, submitted) and evaluating technology packages in farmers’ fields (Musa *et al.*, 1999; Pande, 1999). Particular success has been obtained in expanding the area of chickpea cultivation after rice in the High Barind Tract of Bangladesh (Kumar *et al.*, 1994; Musa *et al.*, 1998). It is considered that the success with chickpea obtained here can be extended to legumes cultivation in rice fallsows elsewhere throughout South Asia. However, to define extrapolation domains, more precise estimation is needed of actual area of rice fallsows in the region and characteristics of such areas to assess potential for legume cultivation. Although the study of Johansen *et al.* (in press) has produced GIS maps of crop distribution in the Indo-Gangetic Plain, GIS and remote sensing technology needs to be combined to establish potential rice fallow areas.
Project Purpose

Methods to optimize cropping systems by agronomic means developed and tested (PSP Programme Output 4).

Despite the ever-increasing demands for food production in South Asia there are vast areas of fallow lands following cultivation of rainfed rice, and even following irrigated rice when there is insufficient irrigation water for year-round cropping. After harvest of rice, there is often adequate stored soil moisture, along with any subsequent rainfall, to support a following crop, of at least short duration. For example, grain legumes like *Lathyrus*, chickpea and lentil are grown after rice in north-eastern India, in the Terai of Nepal and in Bangladesh. However, yields are often low and large areas with potential for cultivating a post-rice crop are left fallow. The main reasons for this are the suite of agronomic difficulties in establishing and growing a crop in paddy soils, where a hard plough-pan is deliberately created to retain water for rice culture. However, there are now proven technologies available (e.g., short-duration varieties of legumes, seed treatments, mechanization, etc.) that would make it feasible and profitable to grow post-rice crops over a much larger area than is now the case. Successful demonstration and extension of these technologies would open the way for greater income generation by the generally economically disadvantaged rice cultivators of South Asia, who are locked into the necessity of annual rice cropping but with few options for enterprise diversification.

A first step in mobilizing technologies for post-rice cultivation is compilation of an inventory of rice fallow lands with potential for post-rice (unirrigated) cultivation and of the technologies that could be deployed. Presently, there are only approximate estimates of area of rice fallows across South Asia. This project is therefore aimed at better and updated quantification of rice fallow lands and classification of their potential and constraints for post-rice legume cultivation.

Research Activities

Planned activities (*in italics*) are followed by a description of the actual activities undertaken.

1. **Survey literature and assemble database**

 Following a standard library search relevant people in the target countries were contacted and current information on areas of rice fallows was assembled and analysed. Many of the relevant GIS maps of climatic and edaphic factors had already been produced but needed assembly for use in assessing the potential of fallow lands, as did areas and yields of rice crops and crops grown in rotation with rice that were also available in GIS form.

2. **Use satellite imagery to estimate rice fallow areas**

 Satellite remote sensing is now considered as an appropriate tool for deriving information in spatial and temporal domains by providing multi-spectral reflectance data at regular intervals in a synoptic mode. Also, satellite data are amenable to geo-referencing, thus making it compatible with analysis by GIS. The rice acreage and production at district, state, and national levels are being routinely generated with the techniques developed and tested under the Crop Acreage and Production Estimation (CAPE) project using single date Linear Imaging Self Scanning Sensor (LISS-I/II) data of Indian Remote Sensing Satellites (IRS 1A/1B) (Parihar *et al.* 1990).

 The second generation Indian Remote Sensing Satellites (IRS-1C & 1D) have three sensors on-board, viz., the Panchromatic Camera (PAN), the LISS-III, and the Wide Field Sensor (WiFS). The PAN data are of high resolution at 5.8 m in a single spectral band of 520 to 750 nm, and is mainly useful in micro-level planning, e.g., for infrastructure development. The LISS-III provides reflectance data in green, red, and near-infrared bands at 23.5 m spatial resolution and at 24 days re-visit, covering a swath of about 141 km. These data are found to be useful for identification of cash crops such as chillies (*Capsicum annuum* L.), tobacco (*Nicotiana tabacum* L.) etc. grown in small land holdings and for improved discrimination between different crops grown in multiple crop situations (Krishna Rao *et al.* 1997).
The WiFS sensor provides reflectance data in red and near-infrared bands at 188 m spatial resolution and at 5 days re-visit, covering a swath of about 812 km, and is useful in deriving regional level crop information. High frequency of the availability of the WiFS data due to the short re-visit period also facilitates the monitoring of crops (Kasturirangan et al. 1996). WiFS data was found to be suitable for deriving regional information on the spatial distribution of rabi rice crops grown in the Godavari delta of East and West Godavari districts and pulse crops cultivated in the kharif rice-fallow fields of the Krishna delta of Krishna and Guntur districts of Andhra Pradesh, India (Navalgund et al. 1996). National level wheat (Triticum aestivum L.) production forecasts using multi-date WiFS data are operational under the Forecasting Agricultural Output using Space, Agrometeorology and Land-based Observations (FASAL) project (SAC 1999). Also, the procedures were developed and are operational to estimate rice cropped area using microwave data from RADARSAT (Chakraborty et al. 1997) under FASAL to overcome the problem of non-availability of cloud-free optical satellite data during the kharif season.

In the present study, WiFS data of the 1999 kharif and the rabi 1999/2000 seasons were used to derive the regional level information on the spatial distribution of the kharif rice and rabi rice-fallow lands in the South Asian countries of Bangladesh, India, Nepal and Pakistan.

The reflectance spectra of plant canopies are a combination of the reflectance spectra of the plants and of the underlying soil (Guyot 1990). When a plant canopy grows, the soil contribution progressively decreases. Thus, during the active vegetative growth phase, the visible and middle infrared reflectance decreases and the near infrared reflectance increases. During senescence, the reverse phenomenon occurs. Maximum reflectance from the vegetation is sensed when the crop canopy fully covers the ground, which coincides mostly with the beginning of the reproductive phase. Hence, in this study, satellite data corresponding to this stage were selected to discriminate the rice crop in the kharif season.

After the harvest of kharif rice, the land will be either left fallow or cultivated with a suitable crop in the following rabi season. The time gap between the harvest of the kharif rice and the cultivation of the rabi crop depends upon the suitability of the prevailing weather, availability of water, etc. Satellite data of the period soon after the harvest of kharif rice crop will depict large area under fallsows though these lands are sown with rabi crop because of poor manifestation on the image leading to an over-estimation of the fallow lands. In order to properly estimate the post-kharif rice-fallows, the satellite data of rabi period was selected based upon the prevailing cropping pattern of the region, and coinciding with the likely maximum vegetative stage of the dominant crop when the crop is manifested clearly and discernable on the satellite data.

Agronomic information is essential and is utilized in the selection of satellite datasets to identify and best discriminate the rice crop from other agricultural land covers. The crop calendar, which provides information on the staggering in the transplantation operations of the paddy crop across the study area, was utilized in the selection of the appropriate satellite data. Efforts were also made to have a uniform database across the study area so as to obtain the standardized estimates as well as to optimize the number of satellite datasets required for the investigation. In case of administrative regions (e.g., state in India) occupying large width, greater than the WiFS swath of 812 km, multiple (2 to 3) satellite datasets within a season were used. Subsets of the satellite data, to the extent of the administrative region coverage, were extracted and the analysis was carried out at individual administrative region level. The corresponding datasets were mosaicked and the administrative boundaries were overlaid.

In general, IRS-WiFS data corresponding to the peak biomass stage of rice during the kharif 1999 season (October to November) and the data of the rabi 1999/2000 (January to March) were used. The state-specific crop calendar information was utilized in this step considering the variations of rice cropping period within the kharif rice season across regions. This was also essential, as the post-kharif season would also vary as influenced by the actual rice-growing period during the kharif season.
In Bangladesh, use of several images, from early February to March were required to differentiate lands remaining fallow throughout the winter. Some *rabi* crops, such as mustard and lentil were harvested during February and thus their vegetative signatures can only be obtained in early February. In some areas *boro* rice is planted during February and thus its signatures can only be obtained in March. Hence, satellite data of March acquisition was considered optimal and used for analysis in deriving the post-*kharif* rice-fallows. Therefore, rice-fallows were calculated by subtracting areas shown as cropped in February but fallow in March from the area shown as fallow in March.

Survey of India - generated toposheets on 1:1000000 scale were used in the study, which were geo-referenced to polyconic Everest projection and subsequently used for geometric correction of the satellite datasets. The first date satellite data of *kharif* or *rabi* seasons were registered with these projected toposheets using an affine transformation technique followed by re-sampling to obtain the geo-referenced image, which was subsequently considered as the master image. In this step, adequate number of well-distributed ground control points (GCPs) were identified and used to minimize the errors in registration of the datasets. The satellite data of the subsequent dates were co-registered with this master image. ERDAS - IMAGINE 8.0v (ERDAS 1999) was used in geo-referencing of the data. Polyconic projection was applied uniformly to all the datasets with girticular (latitude/longitude) information in degrees. Common central meridian points and origins were used in developing models for geo-referencing of wider regions, which were not covered in a single swath of WiFS; this enabled efficient geo-referencing while mosaicing and facilitated easier import into GIS via Arc-Info software.

The administrative boundaries of the countries were overlaid on the satellite data to generate country level information and to develop the output products. In case of India, state-wise boundaries were overlaid. Forest masks were also generated and were excluded in the classification of satellite data.

3. *Ground truth visits to selected areas*

In order to calibrate spectral pattern and ground surface characteristics particularly for target rice-based cropping systems, it was necessary to visit certain locations in some countries for visual observations, discussion with local persons with intimate knowledge of cropping patterns and to examine recent local crop statistics. Some ground truthing was also required to validate conclusions drawn from remote sensing studies.

Ground information is essential, right from the selection of the data to the verification of the results at various intermediate steps such as defining the training areas, generation of spectral signatures and testing the separability and classification of the satellite data. Since the analysis was carried out corresponding to the postharvest period of these crops, real time ground truth was not used in this project. Hence, ground information as available in the form of published literature was used to derive the information on the growing period and distribution of crops in India.

Ground information for Pakistan and Bangladesh was provided by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) for use in the analysis. In case of Nepal, the ground information of Uttar Pradesh and Bihar states of India was extrapolated because of the spatial contiguity of these two regions.

The classified outputs of *kharif* 1999 showing the cropped areas and the rice-fallows of *rabi* 1999/2000 of Bangladesh were provided to ICRISAT for verification of the cropping pattern. The feedback enabled the labelling of different crop classes properly and it was possible to discriminate early and late transplanted rice crops due to their characteristic variations in the spectral reflectance patterns.
The kharif rice area estimates using RADARSAT data and those of wheat area using WiFS data of the national level rice and wheat production estimation projects under the ongoing FASAL project were also used in verifying the classification results for the estimation of kharif rice and the wheat area in the following rabi season.

4. GIS mapping of total and potential fallow areas
Remote sensing output on spatial distribution was converted to GIS format for overlaying with other GIS-based data on crops, soils and climate. Total rice fallow areas was first estimated and then an assessment made of potential for legume cultivation in these fallow areas.

The GIS was used to create simple overlays of pedo-climatic variables along with the rice-fallow data generated from remote sensing satellite. The rice-fallow data were vectorized and used as a layer for overlay. ArcView software from ESRI (Environmental Systems Research Institute, California, USA) was used to make the overlays. The pedo-climatic variables were obtained from different sources: soils from the Digital Soil Map of the World (DSMW, FAO 1996); climatic variables as gridded surfaces from the International Water Management Institute (IWMI). A soil water balance model (WATBAL - Keig and McAlpine 1974) was used to estimate the available soil water spatially (2.5 arc minutes = 4.5 km approximately) and temporally (monthly) using the above pedo-climatic datasets. The program coded in Fortran, used in running the water balance model, was developed by P Jones of CIAT who patterned it after the Basic-Plus example of Reddy (1979). The program was modified to suit the available data. The input data for the WATBAL model are the precipitation, potential evapotranspiration (PE) as gridded interpolated surfaces from point data. The interpolated climatic surfaces are available at monthly temporal resolution. The maximum soil water-holding capacity (SWHC) is extracted from the Digital Soil Map of the World and its derived soil properties (FAO 1996). The SWHC is the upper bound of the moisture storage capacity class with highest percent value under the mapping unit. These raster surfaces, which are a matrix of grided cell values, were converted to ASCII format for the purpose of faster processing and used as inputs to the model. The model estimates the available soil water at each precipitation during the month minus the soil water loss as actual evapotranspiration (AE) during the month. The AE during the month is calculated as the ratio of AE/PE multiplied by PE. The ratio of AE/PE was taken as equal to 1.0 for soil moisture percentages from 100% down to X% and decreases linearly to 0 thereafter, where X is calculated from a square root function, 3+3.868*(SQRT(SWHC)), that fits the three values of X supplied by Reddy (1979)-30, 50, 70 for soil holding capacities of 50, 150, 300 mm, respectively. The outputs in the ASCII format, are again converted into raster surfaces using ArcInfo GIS. This averaging process was intended only to give an overall impression at a national level of spatial and temporal variations in soil water availability parameters. It would not necessarily be sufficiently rigorous to accurately simulate soil water status at a given point in space and time.

5. Compile report and assemble website

The output is also presented as a website cross-referenced for maximum visibility and accessibility and may be found at:

www2.icrisat.org/text/research/nrmp/dfid/text/home5.asp
The following short article was also produced.

Outputs
This report is submitted in conjunction with the book mentioned above which contains all the planned outputs. Below is a brief summary of the contracted outputs and their OVIs.

1. Enhanced knowledge of the extent and distribution of land left fallow after the harvest of rainfed rice in S. Asia.
 • GIS database of all major rice-fallow areas in S. Asia.

2. Informed estimates of amount and distribution of fallow land suitable for growing short-duration legumes after rice in S. Asia.
 • Typology of rice-fallow systems based on climate and physical factors (e.g. temperature, rainfall, soil type and water balance estimates, disease index) and socioeconomic factors (seed and input supply, markets, prices, labour issues etc.).

3. Prioritised recommendations for action to promote legumes in rice-fallows in each of the four S. Asian countries.
 • One report for each country, with recommendations for follow-up action required to promote use of legumes on fallow lands. To include likely costs and benefits for increased use of legumes.

Contribution of Outputs
The conclusions of this study identify an enormous opportunity to improve the livelihoods of poor people in South Asia. More than 14 million hectares of fertile land are underutilised and it seems likely that the productivity of at least a proportion of that area can be improved by deploying appropriate technologies. This study has identified where large concentrations of rice fallows are to be found and has attempted to match legume technologies to the soil- and climatic characteristics of those areas. Although it has operated at a regional and sub-regional level, the study is a valuable resource for planners, researchers and extensionists.

a. What further market studies need to be done?

This study has been able to identify, locate and quantify the areas of rice fallow land in S. Asia and has linked its distribution to various soil- and climatic factors. Thus it is easy for planners to find large areas of rice fallow, if they exist, in regions for which they are responsible. In order to target research or promotion efforts on these areas effectively however, more location-specific studies are necessary to identify the exact nature and relative importance of the local constraints to rainfed rabi cropping.

b. How the outputs will be made available to intended users?

C., Deb, U. K., Ahmed, I., Krishna Rao, M. V., Venkataratnam, L., Hebbar, K. R., Seshaii, M. V. R., and Harris, D. (2001) has been published and distributed to policymakers, research managers, funding agencies and other interested parties. The initial distribution list is attached as Annex 1. The contents of the book are also available online at:

www2.icrisat.org/text/research/nrmp/dfid/text/home5.asp

c. What further stages will be needed to develop, test and establish manufacture of a product?

The report has alerted people to the large scale of the problem. A sample of location-specific studies in rice fallow areas to identify and prioritise constraints is necessary. Other PSP-funded projects, e.g. R7438 ‘Participatory promotion of ‘on-farm’ seed priming’, R7540 ‘Promotion of chickpea following rice in the Barind area of Bangladesh’ and R7838 ‘Rapid generation advancement of a chickpea population for farmer participatory selection’ have all suggested promising ways to improve the feasibility of rainfed rabi cropping in rice fallows. Preliminary, on-farm trials of simple, generic rainfed rabi cropping technologies should be implemented in representative rice fallow areas in parallel with the constraints analysis. Synthesis of the results from these twin studies would inform larger-scale efforts to promote more productive use of rice fallows in S. Asia.

d. How and by whom, will the further stages be carried out and paid for.

The Plant Sciences Research Programme is to support such preliminary parallel studies in India (Jharkhand, Orissa, West Bengal, Chattisgarh, and Madhya Pradesh) and Nepal (Jhapa, Moran and Dhanusha districts) in collaboration with ICRISAT, NGOs and District Agriculture Development Offices (Nepal). Linkages are being forged with other legume-related projects implemented by ICRISAT and NARC (Nepal).

References

DFID/KRIBHCO (1998). On-Farm Seed Priming. A key technology to improve the livelihoods of resource-poor farmers in India. Centre for Arid Zone Studies, University of Wales, Bangor, U.K.

Constraints and opportunities. ICRISAT, Patancheru, India; and Ithaca, New York, USA: Cornell University. 230 pp.

Authors of the report:

Dr J.V.D.K. Kumar Rao
Dr Jagdish Kumar
Annex 1

As of 03 October 2001

1) Dr Dave Harris, DFID PSP – 50 copies
2) ICRISAT MG Members (numbering Five) comprising DG, DDG (Res), Dr B I Shapiro, Director (NRM), Mr S Parthasarathy, ADG (L), Mr K A Akoto – one copy each.
3) Dr MCS Bantilan (on request we sent 3 copies)
4) ICRISAT sub-centers in 6 locations one each to the location – 6
5) NRSA – Eight copies – Attn. Dr L Venkataratnam incl. One to Dr Kasturi Rangan, Head, ISRO.
6) NRMP scientists - 11
7) NRMP Program Office - 1
8) GREP Program Director - 1
9) Dr Nigam, Dr Belum Reddy, Dr K B Saxena - 3 Nos
10) Dr Jagdish Kumar - 1
11) Dr C L L Gowda, Director, IRMP - 1
12) Dr S L Dwivedi, Sr. Scientist, GREP - 1 No.

African Locations

Dr Pierre C S Traore
NRMP Research Scientist
ICRISAT
PO Box 320
Bamako, Mali
(3 books - By Pouch)

Dr Marco Wopereis
IVC Scientific Coordinator
01 BP 2551
Bouake, Cote d'Ivoire
Ivory Coast
Mr V.Waiyaki
Human Resource Officer
International Livestock Research Institute
Post Box No. 30709,
Nairobi, Kenya

R Salami
Agr. Librarian
Ahmadu bello univ.
Inst. For Ag. Res.
PMB 1044
Zaria, Kaduna State
Nigeria

Librarian
IITA
PMB 5320
Ibadan Oyo State
Nigeria

Librarian
Dept. of Ag. And L.stock
Ag. Res. Divn.
PO Box 417
Konedobu
Papua New Guinea

Dr Dyno Keatinge
Division Director
RCMD, IITA
C/o L.W. Lambourn & Co., Carolyn House
26 Dingwall Road, Croydon CR9 3EE, England

Austria
Dr P M Chalk
International Atomic Energy Agency
Vienna

Bangladesh
Dr M A Razzaque
Director General
Bangladesh Agricultural Research Institute
Joydebpur, Gazipur 1701
Bangladesh
E-mail:DG@BARI.BDMAIL.NET
Dr Zahurul Karim
Executive Chairman
Bangladesh Agricultural Research Council
Farm Gate, New Airport Road
Dhaka 1215
BANGLADESH
E mail: barc@bdmail.net

Dr M Matiur Rahman
Project Director
Pulses Research Centre
Regional Agricultural Research Station
Bangladesh Agricultural Research Institute
Ishurdi 6620, Pabna
Bangladesh
Tel: 880-732-606/489 (O)
Fax: 880-732-888
E mail: prc@bdonline.com

Dr Md Abdur Razaque II
Chief Scientific Officer (Crops)
Bangladesh Agricultural Research Council
Farm Gate, New Airport Road
Dhaka 1215
BANGLADESH
E mail: barc@bdmail.net

Librarian
Agl. Information Center
GPO Box 3041
New Airport Road, Farmgate
Dhaka 1215
Bangladesh

Librarian
BRRI Bangladesh Rice Research Institute
PO BRRI
Joydebpur, Gazipur 1701
Bangladesh

Librarian
Bangladesh Agricultural University
Mymensingh 2202

Librarian
BINA Bangladesh Institute of Nuclear Agriculture
PO Box 4
Mymensingh 2200
Bangladesh
Dr C Johansen
Apartment 2B
Palmdale
Plot 6, Road 104
Gulshan II
Dhaka, Bangladesh

Bhutan
Librarian
Dept. of Agriculture
PO Box 119
Thimpu
Bhutan

Canada
Librarian (Acquisitions)
International Development Research Centre
250 Albert Stret
P O Box 8500
Ottawa, Ontario
KIG 3H9 Canada

India
Dr Raj Gupta
CIMMYT-India
(By pouch - Via ICRISAT Delhi Office)

Librarian
Directorate of Rice Research
Rajendranagar
Hyderabad
Andhra Pradesh 500 030

The Librarian
Acharya NG Ranga Agril. University
Rajendranagar
Hyderabad
Andhra Pradesh 500 030

Library Officer in charge
Central Research Institute for Dryland Agriculture (CRIDA)
Santosh Nagar
Saidabad
Hyderabad,
Andhra Pradesh 500 659
Librarian
National Research Centre for Soyean of ICAR
Khandwa Road
Indore 452 001
Madhya Pradesh

Librarian
JNKVV
Tribal Agricultural Research Vidyalaya
Dindori 481 880 (Mandla)
Madhya Pradesh

The Librarian
Jawaharlal Nehru Krishi Vishwa Vidyalaya
Jabalpur 482 004
Madhya Pradesh

Dr S K Rao
Prof. & Head
Division of Plant Breeding
Jawaharlal Nehru Krishi Vishwa Vidyalaya (JNKVV)
Jabalpur 482 004
Madhya Pradesh

Dr G B Singh
Vice Chancellor
Jawaharlal Nehru Krishi Vishwa Vidyalaya (JNKVV)
Jabalpur 482 004
Madhya Pradesh

The Dean
Jawaharlal Nehru Agricultural University
College of Agriculture
Indore 452 001
Madhya Pradesh

The Librarian
Indira Gandhi Krishi Vishwa Vidyalaya
Krishak Nagar
Raipur
Madhya Pradesh 492 012

The Librarian
Konkan Krishi Vidyapeeth
Dopali
Maharashtra 415 712
The Librarian
Mahatma Phule Krishi Vidyapeeth
Rahuri, Maharashtra

The Librarian
Marathwada Agricultural University
Parbhani
Maharashtra 431 402

The Librarian
Dr Panjabrao Deshmukh Krishi Vishwa Vidyalaya
Krishi Nagar
Akola
Maharashtra 444 104

The Librarian
Central Agricultural University
Jroisemba, Imphal
Manipur 795 001

Prof Narendra Pratap Singh
Principal Scientist-HEAD
ICAR, Division of Agronomy
ICAR Research Complex, 4th NEH Region
Umroi Road, Umiam
Meghalaya 793 103

Dr. Kamal Bhattacharyya
Agriculture Technical Advisor
CRS India
5 Community Centre, Zamrudpur,
Kailash Colony Extension,
New Delhi 110048
Ph: 0091-11-6487256-58
Fax: 0091-11-6487259
Email: crsuscc@giasl01.vsnl.net.in

Mr C Lal
Head (Library Services)
IARI, Pusa
New Delhi 110 012

Mr JNL Srivastava (2 Nos.)
DG & Secy. Min. of Agriculture
ICAR, Krishi Bhavan
New Delhi 110 001
Dr J S Samra (2 Nos.)
DDG
Natural Resource Management
ICAR
Krishi Bhavan
New Delhi 110 001
Phone 3392306

Dr Mangala Rai
DDG (Crops)
ICAR
Krishi Bhavan
New Delhi 110 001

Dr N B Singh
Assistant Director General (OP)
Indian Council of Agricultural Research
Krishi Bhavan,
Dr Rajendra Prasad Road
New Delhi 110 001, India
Tel: 011-3385357
Fax: 011-3388991
E mail: nbsingh@icar.delhi.nic.in

Librarian
Indian Council of Agricultural Research
Krishi Bhavan
New Delhi 110 001

Librarian
FAO of the United Nations
55, Lodi Estate
New Delhi 110 003

Head
Library Services
Indian Agril. Research Institute
Pusa
New Delhi 110 012

Mr K L Gozia
Documentation Officer
Indian National Scientific Documentation Centre
National Science Library Serials
14, Satsang Vihar Marg
New Delhi 110 067
Librarian
UNICEF of the United Nations
Regional Library
UNICEF House
73 Lodi Estate
New Delhi 110 003

Librarian
Orissa University of Agriculture & Technology
Bhubaneswar 751 003
Orissa

The Librarian
Punjab Agricultural University
Ludhiana
Punjab 141 004

Librarian
Central Arid Zone Research Institute
Jodhpur 342 003
Rajasthan

The Librarian
Agricultural University Udaipur
University Campus
Udaipur
Rajasthan 313 001

The Librarian
Rajasthan Agricultural University
Bikaner
Rajasthan 334 002

Librarian
Rajasthan Agricultural University
University Central Library
Udaipur 313 001
Rajasthan

The Librarian
Tamil Nadu Agricultural University
Coimbatore 641 003

Dr R L Yadav
Project Director
Project Directorate for Cropping Systems Research
Modipuram 250 110
Meerut, U.P.
Dr Masood Ali
Director
Indian Institute of Pulses Research
Kalyanpur, Kanpur
Uttar Pradesh 208 024

The Librarian
Chandra Sehkhar Azad University of Agriculture and Technology
Kanpur
Uttar Pradesh 208 002

The Librarian
Narendra Dev University of Agriculture and Technology
Faizabad
Uttar Pradesh 224 229

The Librarian
Govind Ballabh Pant University of Agriculture and Technology
Pantnagar
Uttar Pradesh 263 145

The Librarian
West Bengal University of Animal & Fishery Sciences
68 Khudi Ram Bose Sarani
Belgachia
Kolkata
West Bengal 700 037

The Librarian
Bidhan Chandra Krishi Vishva Vidyalaya
Haringhatta PO Mohanpur
Nadia, West Bengal 741 246

Italy
Librarian (Serials)
FAO of the United Nations
Via delle terme di Caracalla
Rome 001000 Italy

Japan
Dr Joji Arihara
JIRCAS

DG
JIRCAS
DG
JICA

Dr O Ito
Division Director
Division of Crop Production and Natural Resources
JIRCAS, 1-1 Ohwashi
Tsukuba
Ibaraki, 305-8686
Japan

G.V. Subbarao
Crop Physiologist/Nutritionist
Crop Production and Environment Division
JIRCAS (Japan International Research Center for Agricultural Sciences)
1-2 Ohwashi, Tsukuba, Ibaraki 305-8686
JAPAN
Phone & Fax: +81-298-38-6354

Malaysia
J Jais
Librarian (Central Lib.)
PO Box 12301
Kuala Lumpur, Malaysia

Mexico
DG,
CIMMYT, Mexico
(VIA CIMMYT, Delhi by Pouch)

Myanmar
Myint Thein
Librarian
CARI, Yezin
Pyinmana
Mandalay Division
05282 Myanmar

Nepal
Dr Dhruva Joshi
Executive Director
Nepal Agricultural Research Council
Department of Agriculture
Khumaltar, Lalitpur, P.O. Box 5459
Kathmandu
Nepal
E-mail: NARC@ED.MOS.COM.NP
National Agril. Res. And Services Centre
Central Agril. Res. Library
Khumaltar, Lalitpur
Nepal

Mr D S Pathic
Director, Crops and Horticulture Research
Nepal Agricultural Research Council
Khumaltar, Lalitpur
PO Box No 5459, Kathmandu
NEPAL
Tel: 977-1-525703 (O); 481065, 478925 (R)
Fax: 977-1-521197, 523653
E mail: narced@mail.com.np

Mr Nira Gurung
Dist. Officer
Int. centre for integ. Mountain deve. (Nepal)
GPO Box 3226
Khatmandu, NEPAL

Dr Madhav Joshi
Coordinator
Grain Legume Research Program
Rampur
Chitwan, Nepal
Tel: 977-56-29309
E mail: chitwan@mos.com.np
Cpdd@mos.com.np

Mr B Mishra
Coordinator
Oilseed Research Program
Nawalpur, Sarlahi
Janakpur Zone
NEPAL

Librarian
National Agril. Document Centre
GPO Box 1440
Ramshah Path,
Kathmandu
Nepal
B M Basnet
Asst. Secy.
Nat.Ag. Res. & Ser. Centre
Centl. Agrl. Res. Lib
Khumaltar, Lalitpur
Nepal

Dr K.D. Joshi (5 Nos)
CIMMYT South Asia Regional Office
P. O. Box 5186
Lazimpat, Kathmandu
Nepal

Netherlands
Librarian
Ag. Univ. of Wageningern
Postbus 9100
Wageningen
6700 HA Netherlands

Librarian (Acquisition)
Royal Tropical Inst.
Central library
PO Box 95001
Amsterdam
1090 HA Netherlands

Pakistan
Dr Abdul Majeed Haqqani
National Coordinator (Pulses)
National Agricultural Research Centre
PO National Institute of Health
National Park Road, Islamabad
PAKISTAN
Tel: 92-51-240468
Fax: 92-51-9255034
E mail: mail@pulses.sdnpk.undp.org

Philippines
Dr J K Ladha (2 Nos)
IRRI
Philippines
Dr Leslie D Swindale
2910 Nanihale Place
Honolulu
HI96822 United States of America
Email: L.Swindale@cgiar.org

Dr Michael Shannon
Associate Director
800 Buchanan St.,
Albany, CA 94710
USDA-ARS-PWA,
United States of America

Dr W A Payne
Associate Professor
Crop Stress Physiologist
Texas A&M University
Agricultural Experiment Station
6500 Amarillo Boulevard West,
Amarillo, Texas 79106
United States of America

Dr R M Wheeler
Plant Physiologist
NASA
John F Kennedy Space Center
Mail Code: JJ-G
Kennedy Space Center
FL 32899
United States of America

Thailand

Mr Ram Badam Singh
Assistant Director General /
Regional Rep. for Asia and the Pacific
FAO of the United Nations
Maliwan Mansion
39 Phra Atit Road, Bangkok 10200,
Thailand
Telephone : (++66 2) 281 7928
Facsimile (also Tel.) : (++66 2) 280 0758

P Watanapongse
Dir. (Lib.)
Kasetsart Univ.
Bangkhen
Bangkok
10900 Thailand
United Kingdom
Librarian
Commonwealth Agricultural Bureaux
International Accessions Unit
PO Box 100
Wallingford, Oxon
OX10 8DE United Kingdom

Librarian
The British Library
Acquisitions Unit (SRIS)
Boston Spa
Wetherby, West Yorkshire
LS23 7BQ United Kingdom

Uzbekistan
Dr. R.S. Paroda
Head, CGIAR Program for CAG
C/O. ICARDA
PO Box 4564, Tashkent 700 000
Uzbekistan
E-mail: pfu-tashkent@icarda.org.uz

Vietnam
Head (Library and Documentation Service)
Vietnam Agricultural Research Institute
Van Diem
Tranh Tri
Hanoi, Vietnam