

# Fruit fly management in Pakistan

## **CABI Bioscience Pakistan Imperial College, London**

Funding from United Kingdom Department for International Development Renewable Natural Resources Knowledge Strategy Crop Protection Programme

# Fruit fly management in Pakistan

#### John Mumford

## Fruit fly management project

- The fruit fly problem
- Research programme for management
- Options for future management
- A fruit fly management plan for Pakistan

# FAO and Pakistan MFAL Databases)

#### All fruit 6.2 million tonnes 1998

- up from 3.9 million tonnes 1990
- 39 kg/person/year

#### Most fruits susceptible to some fruit flies

- Citrus 2.1 million tonnes 1998
- Mango .92 million tonnes 1998
- Guava .45 million tonnes 1998

### Fruit exports from Pakistan (Pakistan MFAL Database)

All fruit exports \$55 million

fresh fruit is about 40%

- 202,000 tonnes (3%)
- Average value about \$272/tonne

average for all fruit is \$148/tonne

 Substantial opportunity for additional exports with good quality

## **Export and production problems**

### • Export

- Quality demands in high value markets in the Gulf and SE Asia
- Pesticide residue rejections in SE Asia
- Production
  - Small scattered farms
  - Poor access to inputs, information, markets
  - Post-harvest handling losses up to 40%

# The fruit fly problem

### Poorly managed fruit fly control

- lack of control on poorer farms
- cover sprays are not ideal
- Income reduced
  - commercial producers
  - farm labour
- Health problems
- Quarantine risk

7

## Income affected by fruit flies

- \$150 million/year lost production
  - despite control efforts
- 50-90% of late season fruit affected, depending on variety
- Exports lost due to quarantine
  - added cost of post harvest treatment for export

## Health is affected by fruit flies

- Children suffer from diarrhoea from eating infested fruit
- Pesticide residues and drift from cover sprays can cause illness
- Diet is poor with less fruit

9

## Quarantine risk from fruit flies

Fruit flies are the major quarantine pests

- Europe, USA, Japan and Australasia
- Pakistan on the Mediterranean/Asian ecological border
- Egypt is a recent victim of an Indo-Pak fruit fly invasion (\$100 million/year)
- Pakistan faces a risk both as an importer and an exporter

## Bactrocera fruit fly species



# **Ceratitis** *fruit fly species*



## Fruit fly risk to/from Pakistan



# The quarantine "front lines"



## **Research project and results**

- John Stonehouse
- Riaz Mahmood
- Qamar Zia
- Abdul Hai
- Muhammad Afzal

# Plan for fruit fly management

- Objectives
  - commercial sector sales
  - village consumption
- Outputs
  - Bait and Male annihilation capacity
    - materials in the markets, use organised
- Activities
  - commercialisation, extension, NGO mobilisation, research, quarantine

# Pakistan-United Kingdom Fruit Fly Project 1998-2000: Introduction

#### John Stonehouse

# A research project comprising two major components

- Programme of on-farm trials of innovative technologies in four locations
- Three focussed studies on the damage and control of fruit flies
  - Relationship between fly infestation and damage
  - Development of low cost protein baits
  - Optimisation of wood blocks for male annihilation

Farm-Level Assessment of Innovative Options for Fruit Fly Control in Pakistan

**Riaz Mahmood** 

# **Opportunities for Fruit Fly Control**

- Cover sprays
- Bait Application Technique (BAT)
- Male Annihilation Technique (MAT)
- Sterile Insect Technique (SIT)
- Biological Control

# **Fruit Flies of Major Economic Importance in Pakistan**

- Bactrocera zonata (Saunders) Peach Fruit Fly
- Bactrocera dorsalis (Hendel) Oriental Fruit Fly
- Bactrocera cucurbitae (Coquillet) Melon Fly
- Dacus ciliatus (Loew) Cucurbit Fly, Lesser Pumpkin Fly
- Carpomya vesuviana (Costa) Ber Fruit Fly

# Programme of Field Research, 1998-1999

#### • BAT

- Guava
- Jujube
- Melon

DI Khan, Mardan DI Khan, Faisalabad RY Khan, DI Khan, Faisalabad

#### • MAT

• Mango

**RY Khan** 

#### **Guava infestation in BAT & check plots**

Ripe fruit sampled before harvest





Jujube infestation at harvest Check, BAT & Cover sprays, Faisalabad









#### Melon infestation in BAT & check plots

DI Khan - before and at harvest





## Pristine melon yield with/without BAT

Kg/hectare - five farms



#### Melon yields with and without BAT Kg/ha - 15 Kulachi melon farms











- **Guava, season end infestations** 
  - BAT 17% Untreated 80%
  - Cover spray 40%
- Jujube
  - BAT 3%
- Melon
  - BAT 3%
- Mango, late season igodol
  - MAT 0% Untreated 20%

Untreated 43%

Untreated 26%

# The role of fruit flies in damage and loss of plums

**Abdul Hai** 

# Fruit fly losses may be from

- 1- infested fruit harvested but of no value
- 2- infested fruit which fall from the tree
- 1 is shown by data on percentage infestation of fruit on the tree and at harvest; but if 2 is prevalent then these data will underestimate true losses

# Fruit fly losses

- Infestation is often higher in fruit on the ground than in fruit on the tree, because:
- infested fruit are more likely to fall ?
- fallen fruit are attacked on the ground ?
- more developed, riper fruit are more likely to be infested and to fall ?

# **Observations from quantification of fruit progress**

- Fruit fly larval survival was low, at 36%
- Fruit fly attacked 23% of fruit in unprotected orchards; 13% in protected orchards, larvae emerge in 6% of fruit in both

# **Observations from quantification of fruit progress**

- Losses of fruit were 6% to fruit bats, 3% to birds, 17% to human theft
  - thefts were largely of green fruit early in the season, 14% of fruit fell from the tree and 60% survived until harvest
- Bat losses were greatest on the west side of trees
  - there were no significant differences in the compass orientations of losses to flies, birds or humans





# The relationship between attack, ripening and drop

- Fruit are rarely attacked after they fall to the ground (1 fruit in 1200)
- Attacked fruits do not fall before unattacked fruits
- Attacked fruits ripen at the same rate as unattacked fruits

# The relationship between attack, ripening and drop

- Faster-ripening, more developed fruits were no more likely to be attacked or to fall prematurely
- Most loss comes from unsaleable but harvested fruit, not from fruit flies causing fruit fall before harvest

# Assessment of low-cost bait control of fruit flies in Pakistan

Qamar Zia

## Fly mortality comparison

#### Commercial mix:Water only



## Fly mortality comparison

#### Commercial mix:Commercial mix



#### Fly mortality comparison Commercial mix:Insecticide only



## Fly mortality comparison

#### Commercial mix:Home-made mix



#### Fly mortality comparison

Home-made mix with/without urea





#### **Comparison of bait substrates**

Fly catches per baitspot after 5 days



#### **Comparison of bait strengths**

Fly catches per baitspot after 10 days



#### **Comparison of baits and applicators**

Fly catches per baitspot after 5 days

Home-made, sprayer Commercial, sprayer Home-made, brush Commercial, brush 6 10 12 14  $\mathbf{0}$ 2 4 8 Mean catches and 95% C.I.s.

#### Comparison of baits and insecticides Catches per baitspot after 5 days





- Beef broth 71% effect of commercial protein hydrolysate
- Brushes are as effective as spraying
- Dipterex is 62% as effective as Malathion
- Spray is most effective on foliage
- Urea and cucumber extract gave no benefit
- Possible health risks mixing insecticide and beef broth - care should be taken!

# Optimisation of wood blocks for Male Annihilation Technique in Pakistan

#### Muhammad Afzal

## Results

 A series of acetate overheads were displayed to show the results of MAT block experiments which are summarised in the next slide



- Blocks attract and kill flies in the field for about four weeks
- Plywood gave the best results
- Square and rectangular blocks were more effective than round or hexagonal blocks
- Lure:insecticide:alcohol ratio of 6:4:1 was most effective

# Conclusions and implications of the Pakistan-UK Fruit Fly Project

#### John Stonehouse

## What we have found so far

- Presence of flies
- Distribution, abundance and damage
- Control effectiveness
- Control cost-effectiveness



- Scale effects
- Application
- Markets and flows of resources
- Extension and flows of information

## Challenges remaining

- MAT-BAT as orphan technologies
- Safety and health risks
- Need for publicity and information provision to ensure that there is a successful launch of the technology

# Objectives and options for fruit fly research and control

## Workshop sessions <u>24 F</u>ebruary 2000



## Workshop planning session

### Objectives

- commercial sector sales
- village consumption
- Outputs
  - Bait and Male Annihilation capacity
    - materials in the markets, use organised
- Activities
  - commercialisation, extension, NGO mobilisation, research, quarantine

# Workshop sessions

- Research needs for on-farm control
  - Riaz Mahmood
- Extension and technology transfer
  - Ashraf Poswal
- Commerce, markets and supplies
  - John Stonehouse
- Quarantine challenges
  - John Mumford

# Workshop outputs

- Objectives
  - objectives relevant to commercial orchard sector and to village consumption
- Outputs
  - what will be achieved or delivered?
  - what timescale?
- Activities
  - what should be done? where? by whom?
  - likely costs and resources