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Abstract 

Many exploited fish stocks experience unexpected and large fluctuations as a consequence of 

climatic variability. It seems therefore inappropriate to manage these stocks by applying 

principles based on equilibrium assumptions. This study aims to establish a classification or 

typology of fish stocks to enable suitable management approaches to be matched to fisheries 

characterised by similar patterns of fluctuations. The approach used builds on previous 

attempts to classify fish stocks according to the patterns of variability in time series of catch 

or biomass.  Fifty-one catch and biomass time series were decomposed into linear trend, short 

and long-term fluctuations.  Parameters representing total variability and relative amount of 

short and long-term variations were used to classify stocks into categories, using cluster 

analysis. Six categories of stock were distinguished. A discriminant analysis was then used to 

ascertain if there was any link between the ecological features of fish stocks (e.g. growth, 

mortality, maximum size) and classifications according to patterns of variability.  It can be 

concluded that few fish stock biomass or fishery catch time-series correspond to steady-state 

ideals. However, there is no strong statistical evidence for a general correspondence between 

different types of fish (e.g.. small pelagic species, large demersal stocks) and differing 

patterns and extent of variation in biomass or catch time series. 

 

Introduction 

 

Many fisheries resources fluctuate dramatically from year to year due to climatic variability 

(Glantz 1992; Bakun 1998). There has long been widespread recognition that constant catch 

or constant effort approaches to management, based on the paradigm of an achievable 

optimum sustainable yield, are inappropriate for these fisheries (Beddington and May 1977; 

Larkin 1977). It is not clear what form of fish stock management, if any, is appropriate for 
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stocks where biomass, and therefore catches, appear to fluctuate independently of fishing 

effort in previous years.  

Caddy and Gulland (1983) proposed, on the basis of a selection of �archetypal� stocks, 

that fisheries could be classified as either steady-state, cyclical, irregular or occasional. For 

irregular and occasional stocks, it has proved difficult to demonstrate that overfishing is the 

cause of either the high variability or the apparent collapse of stocks. Despite the fact that 

different fisheries are known to have very different patterns of catch series, and that the 

implications of these different patterns have profound consequences for management, there 

have been few attempts to test Caddy and Gulland�s proposal to classify fisheries according 

to extent and patterns of variability. 

The most notable attempts are the work of Kawasaki (1983), who attempted to relate 

Caddy and Gulland's classification to to life history traits of the species. More recently, 

Caddy and Gulland's typology, which was based on a visual inspection of four representative 

fish stocks, has been tested empirically by a statistical analysis of pattern in the time series of 

32 stocks (Spencer and Collie 1997).  

The implications for stock management of Caddy and Gulland's (1983) typology have 

never been properly considered even by these later, more quantitative analyses. Despite the 

clear indication that different fisheries have different production dynamics, all continue to be 

managed, explicitly or implicitly, by application of principles derived from the same class of 

models, based on equilibrium assumptions. Interpreting Caddy and Gulland's four categories 

of fisheries in terms of the factors that could drive different patterns of variability (DeAngelis 

and Waterhouse 1987) suggests that steady and cyclical fisheries are likely to be driven 

primarily by biotic interactions. Irregular and occasional stocks could be either chaotic 

systems driven by strong biotic interactions, or systems where biotic interactions are 

relatively unimportant, and abiotic factors the main influence on stock dynamics. If the latter 
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explanation for the dynamic behaviour of fluctuating stocks is accepted, management based 

on regulation of biotic interactions is irrelevant. 

This study aims to critically examine past attempts to develop a system of classifying 

fisheries, and propose a strategy for examining the dynamics of stocks for which there are 

long data series, and to look at some simple associations between the ecological features and 

stock to develop a set of attributes identifiable with each major category of fishery. This 

study presents a statistical analysis, using time series of different patterns of variability. We 

then explore the linkages between different patterns of catches and biomass with main 

ecological characteristics of stocks, using discriminant analysis. The analysis aims to explore 

associations between different long-term patterns in catches and biomass and particular 

fishery characteristics.  

 

 

Data Sources 

 

Catch and biomass time series were obtained from Ransom Myers� database (Myers et al. 

2000).  A sub-set of 33 catch and biomass series was selected for the analysis. Selection was 

on the basis of time series length (at least 30 years); the inclusion of all the tropical and sub-

tropical fish stocks in the database (due to the focus of our research on developing-country 

fisheries) and the exclusion of shellfish (so that we could use maximum body length as a 

comparable measure of size when exploring correlation between patterns of variability and 

life-history features). We included some stocks from higher latitudes, selected to provide 

maximum contrast in life-history features and to include those used by Caddy and Gulland 

(1983) and Spencer and Collie (1997) for comparative purposes. Because of the geographical 

focus of our research project, we included additional data on fisheries of Malawian waters, 
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including Lake Malawi and Lake Malombe, and on fisheries of Indonesian coastal waters. 

These were obtained from official government statistics (GOM, 1999; GOI, 2000). The 

summary features of the chosen datasets are given in Table A1. 

Data on ecological features of stocks were obtained from FISHBASE (Froese and Pauly, 

2000). Data include the maximum length, parameters of the von Bertalanffy growth model 

(L∞, K), natural mortality (M), length at maturity (Lmat), approximate life span and whether 

the species occupies a predominantly pelagic or demersal habitat. These data are summarised 

in Table A2.  

 

 

Methods  

 

In classifying fish catch and biomass time series by patterns of variability, we followed the 

methods used by Spencer and Collie (1997). However, unlike in Spencer and Collie's study, 

biomass data and catch data were analysed separately, since we considered that it was 

inappropriate to conduct the analyses on a combination of the two datasets. Furthermore, both 

biomass and catch time series were available for 20 of the 51 fish stocks included in our 

study, which allowed us to compare the results obtained. The 71 time series of marine and 

freshwater fish stock biomass and catch (Table A1), including 32 biomass time series and 39 

catch time series, were each analysed to provide parameters indicative of the extent and 

pattern of variability in the series. These parameters were then used in a cluster analysis that 

aimed to distinguish groups of stocks with similar patterns of variability. Our analysis then 

goes beyond that of Spencer and Collie (1997) by attempting to establish a link between 

clusters corresponding to different patterns of variability and indicators of life-history 
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patterns, using a discriminant analysis. All statistical analyses were done using the SPSS 

software. 

 

Analysis of patterns of variability in time series 

A regression of abundance (catch or biomass) against year was used to determine if there was 

a significant overall linear trend, with the sign of the correlation coefficient indicates whether 

the biomass or catch has increased or decreased. The total variability of each stock was 

assessed with the coefficient of variation (CV). To assess the relative contributions to 

variability at long-term and short-term time scales, R²lo was calculated from a Lowess 

smoother (Cleverland 1979) applied to each data set, with a smoothing window of 0.3 times 

the data set length. R²lo is defined as R²lo = 1 - [Variance(residuals) / Variance(original data)] 

where the residuals can be defined as the short-term high-frequency variations and are 

determined from both the original data and smoothed data (residuals = original data � 

smoothed data). The value of R²lo calculated from smoothed data indicates the proportion of 

variance taking place at low-frequency time scales, with high value of R²lo indicating 

predominance of low-frequency variations.  

In order to identify significant longer-term periodicity in the time series for the different 

stocks, an autocorrelation analysis was applied to the logged detrended data. The log-

transformation was necessary to remove any relationship between mean catch or biomass and 

variance as heteroscedasticity violates assumptions of autocorrelation analysis. The log-

transformed data was then detrended, as linear trend (i.e. long period in autocorrelation 

analysis) could mask periods of principal interest (Spencer and Collie 1997). The 

autocorrelation coefficient Rk, defined here as the highest coefficient in absolute value, which 

corresponds to the highest secondary peak, and associated lags were determined, as well as 

apparent period. The apparent period was estimated as the lag related to the second highest 
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value of Rk for positive values of Rk, and as twice the lag for associated negative values of 

Rk. The significance of the coefficient Rk was used to identify the existence of cyclicity in 

stocks.  

Thus, CV (the relative magnitude of variation), R2
lo (the proportion of variance occurring 

at relatively low-frequency time scales) and Rk (cyclicity) describe three different aspects of 

stock variability (Spencer & Collie, 1997). Linear models showed that the three parameters 

(CV, R²lo and Rk) were not correlated with the length of time series. 

 

Cluster analysis 

Hierarchical agglomerative cluster analysis was used to classify the different fish stocks with 

respect to the following variables: CV, R²lo and Rk. The analysis included the computation of 

the Euclidean distance for each pair of stocks, and the production of a dendogram of stock 

groups, using average linkage clustering. Average linkage clustering has been preferred to 

single or complete linkage clustering, as it is the most commonly used method, and other 

methods did not give significantly different results. 

 

Discriminant analysis 

In order to explore the linkages between different patterns of catches or biomass with main 

ecological characteristics of stocks, a stepwise discriminant analysis was applied. The 

stepwise discriminant analysis is the most generally applicable method, as it does not give 

some predictors higher priority than others (Kinnear and Gray 1997). The application of this 

method aimed at classifying the different fish stocks with respect to the following variables: 

maximum length, L∞ and K growth parameters, natural mortality, length at maturity, 

approximate life span and habitat (demersal or pelagic). Before conducting the discriminant 
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analysis, outliers were identified using boxplots and stem-and-leaf diagrams, then removed 

from the datasets as suggested in Kinnear and Gray (2000).  

 

Results 

 

Patterns of variability in biomass time series 

Patterns of variability were analysed for biomass time-series for 32 stocks. These results are 

summarised in Table A3. The CV measured the relative magnitude of variation in the 32 

stocks. The lowest value obtained for the CV was 0.12 for the bigeye tuna (East Pacific) and 

the highest value 1.10 for the sardine (California) with a median of 0.54. The estimated 

biomass of 27 of the 32 stocks were significantly correlated with year at the 0.05 level, with 

19 of the 27 stocks being negatively correlated and therefore showing decreases over time. 

However, 6 stocks revealed positive increases over time. Twenty-five of the 32 stocks had 

significant R² values at 0.05 level and 16 stocks had an R² above 0.5, which indicates a 

relatively high relationship between the independent variable 'year' and the abundance. This 

likely indicates that the overall trend in catches is large compared to stock fluctuations. Three 

stocks, the Bombay duck (Northwest Coast of India), Herring (Norway) and pacific halibut 

(North Pacific), had very low R² value of respectively 0.26, 0.28 and 0.21.  

R²lo defined as an indicator of high-frequency variations, showed high values for the 

majority of stocks with 22 R²lo values > 0.75. This indicates that most of the stocks 

experienced high-frequency variations in abundance over time. Among these 22 stocks, 6 

stocks showed very small high-frequency variation with R²lo values over 0.95; these included 

the Atlantic bluefin tuna (West Atlantic), Pacific Ocean perch (Aleutian Islands), red snapper 

(U. S. Gulf of Mexico), Southern bluefin tuna (Southern Pacific), Southern bluefin tuna 2 

(Southern Pacific) and Swordfish (North Atlantic). Two stocks, the Northern anchovy 
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(California) and Yellowtail flounder (Southern New England), were found to have very high-

frequency variations in abundance over time with an R²lo of 0.16. The remaining 8 stocks, 

had R²lo values between 0.41 and 0.75, indicating that high and low frequency variation 

occurred almost equally for these stocks. 

The analysis of the autocorrelation coefficients (Rk) showed apparent periodicities, 

significant at the 0.01 level for all the stocks except the grey mullet (Taiwan) (Table A3). The 

apparent period extended from 6 years for the red snapper (U.S. Gulf of Mexico) to 40 years 

for the pacific halibut (North Pacific).  

 

Patterns of variability in catch time series 

Patterns of variability were analysed for catch time-series for 39 fisheries including the 

fisheries of Malawian waters and fisheries of Indonesian waters for which data on estimated 

biomass were not available. The lowest and highest values obtained for the CV were 

respectively 0.22 for the mackerel (western ICES) and 2.42 for the sardine (California) with 

median of 0.60. Catches of 33 of the 39 fisheries were significantly correlated with year at 

p<0.05, with 12 of the 33 stocks being negatively correlated and 21 stocks revealing positive 

increases over time. 31 of the 39 stocks had significant R² values at 0.05 level, 18 had an R² 

over 0.5 and one fishery, the kambusi (Lake Malombe) had a very low R² value of 0.24 

(Table A3). 

Eighteen stocks had R²lo values above 0.75 and among these 18 stocks, 7 stocks, all 

Indonesian fisheries, had R²lo values over 0.95 including the anchovy (Indonesia), Eastern 

little tuna (Indonesia), fringescale sardinella (Indonesia), giant seaperch/barramundi 

(Indonesia), Indian mackerel (Indonesia), skipjack tuna (Indonesia) and trevally (Indonesia). 

The herring (gulf of Maine) was found to have the highest frequency variations in abundance 

over time of the dataset with an R²lo of 0.10. The Bombe (Lake Malawi), Pacific Ocean perch 
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(Aleutian Islands) and Utaka (Lake Malawi) also had small R²lo values of respectively 0.39, 

0.31 and 0.24. The remaining 17 stocks had R²lo values between 0.42 and 0.74. 

The Rk values showed apparent periods extending from 10 years (usipa - Lake Malawi) to 

40 years (king mackerel - West Gulf of Mexico).  

 

Cluster analysis using biomass time-series 

Six different groups of stocks were identified by applying a hierarchical agglomerative 

cluster analysis to the three variables representing different aspects of variability: CV, R²lo 

and Rk (Figure 1). An example of pattern of variation for each group is given in Fig. A1. 

These groups are defined as follows:  

- Group 1: low-frequency, cyclic stocks (albacore tuna, Atlantic bluefin tuna, bigeye tuna -

West Atlantic, Bombay duck, Brazilian sardine, greater lizardfish, herring - Gulf of Maine, 

king mackerel, mackerel - NAFO 2 to 6, mackerel - Western ICES, pacific halibut, pacific 

ocean perch, red snapper, silk snapper, South African anchovy, swordfish and yellowfin tuna 

- eastern pacific ocean and Indian ocean. All the stocks have high R²lo values and Rk values 

greater than 0.43, which indicates a cyclic behaviour for each stock occurring with low 

frequency. Stocks have CV values between 0.14 and 0.70. 

- Group 2: irregular stocks (bigeye tuna - east pacific, grey mullet, southern bluefin tuna 1 

and 2). The CV values for these stocks range from 0.12 to 0.54 that indicates moderate levels 

of variation. Rk values are low (between 0.29 and 0.34), which suggests an irregularity in any 

possible cyclicity. The R²lo is between 0.77 and 0.98. 

- Group 3: spasmodic stocks (chub mackerel - Pacific coast of Japan 1 and 2, chub 

mackerel - southern California, gold-spotted grenadier anchovy, herring - north sea, mackerel 

- black sea and sardine). These stocks have a very high level of variation (CV between 0.81 

and 1.07) with strong low-frequency variations (R²lo between 0.60 and 0.92). Most species in 
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this group seem to be unpredictable due to the lack of apparent periodicity in their variation. 

However, one stock in this group, the gold-spotted grenadier anchovy, has smaller CV and 

R²lo values (respectively 0.69 and 0.41) than the other fisheries of the group, as well as a 

highest Rk value (0.61). 

- Group 4: high variation, low frequency stock (herring - Norway). This stock has a high 

CV value of 1.03 and a high R²lo value of 0.95. The large Rk value of this stock suggests a 

cyclic pattern that occurs with very low frequency. 

- Group 5 and 6: high variation, high frequency stocks (respectively northern anchovy and 

yellowtail flounder). The values of CV are high for each group (0.82 and 0.79) with very 

weak R²lo values of 0.16 for both stocks. The main difference between these stocks is the Rk 

value, which is weak for the northern anchovy (0.19) and relatively high for the yellowtail 

flounder (0.45). The latter suggests the existence of a cyclic behaviour at high frequency, 

which does not appear in group 5 stock. 

The six different groups show a range of variation between the low-variability stocks 

(group 2) and highly variable stocks (groups 3 and 4). Scatterplots of CV against R²lo and Rk 

respectively Figure 2 and 3, illustrate the characteristics of each group. Groups 1 and 2 have 

similar CV and R²lo values, but very different Rk values, which are high for group 1 and 

therefore suggest a cyclic behaviour. Group 5 and 6 also present the same characteristics with 

similar CV and R²lo values, but with different Rk values. Group 4 has higher low-frequency 

components (high R²lo values) and variations (high CV values) than group 3 but similar Rk 

values.  
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Figure 1.  Dendrogram of stock groups obtained from cluster analysis (using biomass time series). Numbers 

indicate the stock identification number assigned in Table A1. 

 

        0         5        10        15        20        25 
  Stock   Serial +---------+---------+---------+---------+---------+ 
            No  
  Atlbluef    3   !"!!!# 
  Pacperch   36   !$   %!# 
  YelltuIO   50   !!!!!$ %!# 
  Greatliz   17   !!!!!"!$ %!!!!!!!# 
  HerrGM     20   !!!!!$   &       & 
  MackNAFO   30   !!!!!!!!!$       & 
  BigeyeWA    5   !!!"!!!!!#       & 
  Swordfis   45   !!!$     &       %!!!!!!!# 
  Albatuna    1   !"!!!#   %!#     &       & 
  Pachalib   35   !$   %!# & &     &       & 
  MackICES   31   !!!!!$ %!$ %!!!# &       & 
  Redsnapp   37   !!!!!!!$   &   & &       & 
  Silksnap   40   !!!!!!!!!!!$   %!$       & 
  Brazsard    8   !!!"!!!!!!!!!# &         %!!!!!# 
  YelltuEP   49   !!!$         %!$         &     & 
  Bombduck    6   !!!!!"!#     &           &     & 
  Kingmack   28   !!!!!$ %!!!!!$           &     & 
  SAancho    42   !!!!!!!$                 &     & 
  Sbluetun   43   !!!"!!!#                 &     & 
  Sbluetu2   44   !!!$   %!!!!!!!!!!!#     &     & 
  Greymull   18   !!!!!!!$           %!!!!!$     
%!!!!!!!!!!!!!!!!!# 
  BigeyeEP    4   !!!!!!!!!!!!!!!!!!!$           &                 
& 
  ChubmaSC   12   !!!!!!!!!"!!!#                 &                 & 
  Sardine    38   !!!!!!!!!$   %!!!!!!!!!!!#     &                 
& 
  HerrNS     21   !!!!!!!!!!!!!$           &     &                 & 
  ChubmacJ   10   !!!!!!!"!!!#             &     &                 & 
  ChubmaJ2   11   !!!!!!!$   %!!!!!!!#     &     &                 
& 
  MackBS     29   !!!!!!!!!!!$       %!!!!!'!!!!!$                 
& 
  Goldanch   16   !!!!!!!!!!!!!!!!!!!$     &                       
& 
  HerrNorw   22   !!!!!!!!!!!!!!!!!!!!!!!!!$                       
& 
  Northanc   33   
!!!!!!!!!!!!!!!!!!!!!!!!!!!"!!!!!!!!!!!!!!!!!!!!!$ 
  Yellflou   51   !!!!!!!!!!!!!!!!!!!!!!!!!!!$ 
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Figure 2.  Scatterplot of CV against R²lo for the 32 stocks. Numbers represent stock groups. 

 

Figure 3.  Scatterplot of CV against Rk. Numbers represent stock groups. 
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Cluster analysis using catch time-series 

Six groups were identified (Figure 4).  

- Group 1: irregular stocks (albacore tuna, grey mullet, herring - North Sea, Indian oil 

sardinella, usipa and yellowtail flounder).   

- Group 2: low variation, low frequency stocks (anchovy, bigeye tuna - west Atlantic, 

eastern little tuna, fringescale sardinella, giant seaperch, grouper, Indian mackerel, mackerel - 

western ICES, narrow barred king mackerel, scad, skipjack tuna and trevally).  

- Group 3: high variation, high frequency stocks (Atlantic bluefin tuna, bigeye tuna - east 

pacific, Brazilian sardine, chambo, gold-spotted grenadier anchovy, herring - Norway, 

kambusi - Lake Malawi and Malombe, king mackerel, mackerel - black sea and NAFO 2 to 

6, northern anchovy and pacific ocean perch).     

- Group 4: low frequency, cyclic stocks (Bombay duck, pacific cod, and pacific halibut).  

- Group 5: steady state stocks (bombe, herring - Gulf of Maine, kampango and utaka). 

- Group 6: spasmodic stocks (sardine). 

These groups are similar to the groups identified in Spencer and Collie's study. However, 

out of seven stocks common to both the studies, only four were found belonging to the same 

groups in each study, they include the herring - north sea and yellowtail flounder (irregular 

stocks), pacific halibut (low frequency, cyclic stocks), and sardine (spasmodic stocks). It is 

also important to note that most of the Indonesian species belong to group 2 (low variation, 

low frequency stocks). The scatterplots of CV against R²lo and Rk illustrate the characteristics 

of each group (Figure 5 and 6). 
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Figure 4.  Dendrogram of stock groups obtained from cluster analysis (using catch time series). Numbers 

indicate the stock identification number assigned in Table A1. 

 
                 0         5        10        15        20        25 
  Stock   Serial +---------+---------+---------+---------+---------+ 
            No 
  KambMlb    26   !"!!!# 
  Kingmack   28   !$   %!!!!!# 
  Atlbluef    3   !!!!!$     & 
  Goldanch   16   !"!!!#     %!!!!!!!!!# 
  KambMlw    25   !$   %!!!# &         & 
  Northanc   33   !!!!!$   %!$         %!# 
  MackNAFO   30   !!!!!!!!!$           & & 
  MackBS     29   !!!!!!!!!!!!!"!!!!!!!$ & 
  Pacperch   36   !!!!!!!!!!!!!$         %!# 
  BigeyeEP    4   !!!!!!!"!#             & & 
  Chambo      9   !!!!!!!$ %!!!#         & & 
  HerrNorw   22   !!!!!!!!!$   %!!!!!!!!!$ %!!!# 
  Brazsard    8   !!!!!!!!!!!!!$           &   & 
  Bombduck    6   !!!"!!!!!!!!!#           &   & 
  Pachalib   35   !!!$         %!!!!!!!!!!!$   %!# 
  Paccod     34   !!!!!!!!!!!!!$               & & 
  Bombe       7   !!!!!"!!!!!#                 & & 
  Kampango   27   !!!!!$     %!!!!!!!!!#       & & 
  Utaka      48   !!!!!!!!!!!$         %!!!!!!!$ & 
  HerrGM     20   !!!!!!!!!!!!!!!!!!!!!$         & 
  HerrNS     21   !!!#                           
%!!!!!!!!!!!!!!!!!# 
  Indsard    24   !!!'!#                         &                 & 
  Albatuna    1   !!!$ %!!!!!!!#                 &                 & 
  Greymull   18   !!!!!$       %!!!!!!!!!!!#     &                 
& 
  Usipa      47   !!!!!!!"!!!!!$           &     &                 & 
  Yellflou   51   !!!!!!!$                 &     &                 & 
  Frinsard   14   !"!#                     &     &                 & 
  Indmack    23   !$ &                     %!!!!!$                 & 
  MackICES   31   !!!'!#                   &                       & 
  Anchovy     2   !!!$ %!!!#               &                       & 
  Skiptuna   41   !!!!!$   %!!!!!!!#       &                       & 
  MackIndo   32   !!!!!!!!!$       &       &                       & 
  Easttuna   13   !!!!!"!#         %!!!!!!!$                       & 
  Grouper    19   !!!!!$ %!!!#     &                               & 
  BigeyeWA    5   !!!!!!!$   %!!!!!$                               & 
  Seaperch   15   !!!!!"!#   &                                     & 
  Trevally   46   !!!!!$ %!!!$                                     & 
  Scad       39   !!!!!!!$                                         & 
  Sardine    38   
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$ 
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Figure 5.  Scatterplot of CV against R²lo for the 39 stocks. Numbers represent stock groups. 

 

Figure 6.  Scatterplot of CV against Rk. Numbers represent stock groups. 
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Discriminant analysis from biomass time series 

A stepwise discriminant analysis was applied to predict category membership from data on 

several other variables. Seven ecological variables including the maximum length, L∞ and K 

parameters, natural mortality, length at maturity approximate life span and habitat were used. 

The discriminant analysis was conducted on the stocks for which all the ecological data were 

available, due to the lack of data for some stocks. Six fisheries were also removed from the 

dataset since they were identified as outliers, they include the Atlantic bluefin tuna, mackerel 

-Black Sea and pacific halibut for their high life span values, Bombay duck, Brazilian sardine 

and mackerel -Black Sea, which present high natural mortality values, and swordfish with a 

very high L∞ value.  

The result of the stepwise discriminant analysis indicates that the success rate for 

predictions of membership of the grouping variable's categories using the discriminant 

functions developed in the analysis is 76%. The analysis demonstrates that groups 2 (irregular 

stocks), 4 (high variation, low frequency stocks), 5 and 6 (high variation, high frequency 

stocks) are the most accurately classified with 100% of the cases correct. However it is 

important to note that groups 4, 5 and 6 only contain one stock, which explains the result 

obtained for these groups. Group 1 (cyclic stocks) is next with 69.2%, and group 3 

(spasmodic stocks) is last with 60%. The results also provide an indication on whether there 

is a statistically significant difference among the dependent variable means (six different 

groups) for each independent variable (ecological characteristics). Four of the differences 

were found to be significant, including maximum length, L∞, life span (significant at the 0.05 

level) and length at maturity (significant at the 0.01 level).  

We can therefore conclude from the application of the discriminant analysis that four 

ecological characteristics explain the classification obtained from the cluster analysis.  
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Discriminant analysis from catch time series 

Five outliers, including the albacore tuna, Atlantic bluefin tuna, bigeye tuna, grouper and 

usipa, were identified and removed from the dataset before conducting the discriminant 

analysis.  

The success rate obtained for prediction of membership is 69%. Group 4 (cyclic stocks) 

and 6 (spasmodic stocks) appear to be the most accurately classified with 100% of the cases 

correct. Group 2 (low variation, low frequency stocks) is second with 90%, and group 5 

(steady state stocks) is third with 66.7%. Group 3 (high variation, high frequency stocks) is 

next with 50%, and group 1 comes last with 25%. None of the differences is significant 

except 'habitat', which was found significant at the 0.05 level.  

The application of the discriminant analysis shows that the ecological characteristics do 

not explain the classification obtained from the cluster analysis.  

 

 

Discussion  

 

Time series for 51 fish stocks, including both biomass and catch data sets were used to 

produce a classification of variability patterns. A comparison of the results of this study with 

the results of Caddy and Gulland's (1983) and in particular Spencer and Collie's (1997) study 

shows that most groups have been found to be common to the three studies. These groups are 

cyclic, irregular, steady state, spasmodic and high variability, high frequency and low 

variation, low frequency stocks. The analysis of catch time series showed that four out of 

seven stocks that were common to Spencer and Collie's (1997) and our study, belong to the 

same groups in both the studies. This in the case for the herring - North Sea and yellowtail 

flounder (irregular stocks), pacific halibut (low frequency, cyclic stocks), and sardine 
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(spasmodic stocks). The analysis of biomass data also identified similarities between both the 

studies, with the sardine, which presented the characteristics of spasmodic stocks, herring - 

Gulf of Maine, Pacific Ocean perch and pacific halibut, which had the characteristics of 

cyclic stocks. In our study of catch time series, only four stocks having the characteristic of 

steady-state stocks, hypothesis generally assumed in classical fisheries models, have been 

identified. These stocks are the bombe (Lake Malawi), herring (Gulf of Maine), kampango 

(Lake Malawi) and utaka (Lake Malawi). No stocks having these characteristics were 

identified when conducting the cluster analysis on biomass data only. 

A comparison of the groups obtained from the cluster analysis of respectively biomass 

time series and catch time series was undertaken in order to check the validity of the results 

obtained. From the observation of the different groups, it appears that only four groups were 

found to be similar in both the analyses, and include cyclic, irregular, spasmodic and high 

variation, high frequency stocks. Both biomass and catch time series were available for 20 

stocks of the initial data set. Only five stocks out of 20 were found to belong to the same 

groups within the respective data sets, biomass and catch. One of the five stocks (sardine - 

California) belonged to the spasmodic stocks for both biomass and catch data. Two of the 

five stocks, Bombay duck and pacific halibut, belonged to stocks identified as irregular. The 

grey mullet and northern anchovy presented the characteristics of respectively irregular 

stocks and high variation, high frequency stocks.  

We can conclude from the previous results that the cluster analysis applied to produce 

stock classification did not give the same results whether biomass or catch estimates were 

used. It therefore seems inappropriate to conduct a cluster analysis on a mix of data in catch 

and biomass. This assertion challenges Spencer and Collie's classification, for which 

estimated biomass, catch and Catch Per Unit Effort were compiled and analysed together. 
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This study aimed at identifying a system to classify various exploited fish stocks, in order 

to improve their management, stated by Bakun (1998), as a research priority to understand 

better how fisheries science can be applied most effectively in support of fisheries 

management. It has been shown that it is possible to pick up pattern of variations from the 

analysis, and that the different groups obtained when conducting the analyses on biomass 

time series, can be partly explained by the ecological features of each stock.  

 

 

Shortcomings 

 

Although this study made possible the identification of patterns of variation for 51 stocks, 

several limitations have to be highlighted. As we mentioned before, a cluster analysis carried 

out on estimated biomass and a cluster analysis conducted on catch data for the same stocks 

with, in most cases, identical periods of time, gave different classifications. Furthermore 

similar stocks did not belong to the same groups in both cases. It seems therefore 

inappropriate to use data indifferently. It is also important to note that statistics on fisheries 

may not be reliable (Larkin 1996) which would in this case lead to biased results.   

 

Conclusion 

 

In this study, time series of estimated biomass and catches were compiled for 51 stocks. The 

different aspects of stock variability were explained with the coefficient of variation (CV), R² 

from Lowess (R²lo), and the coefficient of autocorrelation (Rk), identifying respectively the 

extent of variation, the relative importance of high and low frequency variations, and 

occurrence, or not, of significant periodicities. The statistical methods used to characterise 
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various patterns of variation and classify the stocks into groups included respectively linear 

autocorrelation analysis and cluster analysis. The groups identified, cyclic, irregular, steady-

state, spasmodic, high variation, high-frequency and low variation, low frequency stocks, 

clearly indicate that the majority of fish included in the study do not present the steady-state 

characteristics assumed in classical fisheries models.  

The uncertainties in cluster allocation, weak or ambiguous association between biological 

features and patterns of variability, and issues with data quality (e.g. the classification of all 

Indonesian fish stocks, from ocean perch to anchovy, into one group) all suggest that a simple 

typology would be elusive. However, there is sufficient statistical evidence to reject the 

notion that all fish stocks tend towards bioeconomic equilibrium. 
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Appendices 

 

Table A1.  Fish stocks used in the study. 

 

Serial No. Common name Scientific name Spawning location Method and abundance (unit) Time 

1 Albacore tuna Thunnus alalunga South Pacific Ocean Biomass (Index) 1962-1993 

1 Albacore tuna Thunnus alalunga South Pacific Ocean Catch (Thousand tonnes) 1952-1995 

2 Anchovy Encrasicholina punctifer Indonesia Catch (Tonnes) 1971-1998 

3 Atlantic bluefin tuna Thunnus thynnus West Atlantic Biomass (Tonnes) 1970-1993 

3 Atlantic bluefin tuna Thunnus thynnus West Atlantic Catch (Tonnes) 1963-1993 

4 Bigeye tuna Thunnus obesus East Pacific Biomass (Thousand tonnes) 1971-1996 

4 Bigeye tuna Thunnus obesus East Pacific Catch (Number of fish) 1971-1996 

5 Bigeye tuna Thunnus obesus West Atlantic Biomass (Tonnes) 1961-1995 

5 Bigeye tuna Thunnus obesus West Atlantic Catch (Tonnes) 1960-1995 

6 Bombay duck Harpodon nehereus Northwest Coast of India Biomass (Millions) 1956-1984 

6 Bombay duck Harpodon nehereus Northwest Coast of India Catch (Tonnes) 1956-1984 

7 Bombe  Bathyclarias spp. Lake Malawi Catch (Metric tons) 1976-1996 

8 Brazilian sardine Sardinella brasiliensis South Eastern Brazil Biomass (Thousand tonnes) 1977-1992 

8 Brazilian sardine Sardinella brasiliensis South Eastern Brazil Catch (Thousand Tons) 1977-1992 
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9 Chambo Oreochromis spp. Lake Malombe Catch (Metric tons) 1976-1998 

10 Chub mackerel Scomber japonicus Pacific Coast of Japan Biomass (Thousand tonnes) 1971-1988 

11 Chub mackerel 2 Scomber japonicus Pacific Coast of Japan Biomass (Trillions of eggs) 1951-1970 

12 Chub mackerel Scomber japonicus Southern California Biomass (Million pounds) 1929-1968 

13 Eastern little tuna Euthynnus affinis Indonesia Catch (Tonnes) 1973-1998 

14 Fringescale sardinella Sardinella fimbriata Indonesia Catch (Tonnes) 1972-1998 

15 Giant seaperch/ Barramundi Lates calcarifer Indonesia Catch (Tonnes) 1971-1998 

16 Gold-spotted grenadier anchovy Coilia dussumieri Northwest coast of India Biomass (Millions) 1960-1985 

16 Gold-spotted grenadier anchovy Coilia dussumieri Northwest coast of India Catch (Millions) 1960-1985 

17 Greater lizardfish Saurida tumbil East China Sea Biomass (Index) 1955-1964 

18 Grey mullet Mugil cephalus Taiwan Biomass (Thousands of females) 1977-1986 

18 Grey mullet Mugil cephalus Taiwan Catch (Numbers) 1977-1987 

19 Grouper Cephalopholis igarashiensis Indonesia Catch (Tonnes) 1973-1998 

20 Herring Clupea harengus Gulf of Maine Biomass (Thousand tonnes) 1967-1989 

20 Herring Clupea harengus Gulf of Maine Catch (Thousand tonnes) 1960-1989 

21 Herring Clupea harengus North Sea Biomass (Tonnes) 1947-1989 

21 Herring Clupea harengus North Sea Catch (Tonnes) 1940-1973 

22 Herring Clupea harengus Norway Biomass (Tonnes) 1950-1996 

22 Herring Clupea harengus Norway Catch (Tonnes) 1950-1996 
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23 Indian mackerel Rastrelliger kanagurta Indonesia Catch (Tonnes) 1971-1998 

24 Indian oil sardinella Sardinella longiceps Indonesia Catch (Tonnes) 1971-1998 

25 Kambusi Lethrinops spp. Lake Malawi Catch (Metric tons) 1976-1995 

26 Kambusi Lethrinops spp. Lake Malombe Catch (Metric tons) 1976-1998 

27 Kampango Bagrus meridionalis Lake Malawi Catch (Metric tons) 1976-1996 

28 King mackerel Scomberomorus cavalla West gulf of Mexico Biomass (Thousands) 1952-1990 

28 King mackerel Scomberomorus cavalla West gulf of Mexico Catch (Tonnes) 1952-1990 

29 Mackerel Scomber scombrus Black Sea Biomass (Thousand tonnes) 1952-1968 

29 Mackerel Scomber scombrus Black Sea Catch (Tonnes) 1942-1992 

30 Mackerel Scomber scombrus NAFO 2to 6 Biomass (Thousand tonnes) 1962-1990 

30 Mackerel Scomber scombrus NAFO 2to 6 Catch (Tonnes) 1960-1990 

31 Mackerel Scomber scombrus Western ICES Biomass (Thousand tonnes) 1972-1990 

31 Mackerel Scomber scombrus Western ICES Catch (Tonnes) 1977-1990 

32 Narrow barred king mackerel Scomberomorus commerson Indonesia Catch (Tonnes) 1971-1998 

33 Northern anchovy Engraulis mordax California Biomass (Thousand tonnes) 1951-1988 

33 Northern anchovy Engraulis mordax California Catch (Short tons) 1951-1986 

34 Pacific cod Gadus macrocephalus West Vancouver Island Catch (Thousand tonnes) 1954-1989 

35 Pacific halibut Hippoglossus stenolepis North Pacific Biomass (Tons) 1935-1981 

35 Pacific halibut Hippoglossus stenolepis North Pacific Catch (Million pounds) 1929-1989 
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36 Pacific ocean perch Sebastes alutus Aleutian Islands Biomass (Tonnes of Females) 1960-1989 

36 Pacific ocean perch Sebastes alutus Aleutian Islands Catch (Tonnes) 1962-1995 

37 Red snapper Lutjanus campechanus U.S. Gulf of Mexico Biomass (Thousand billion eggs)  1984-1992 

38 Sardine Sardinops sagax California Biomass (Short tons) 1932-1965 

38 Sardine Sardinops sagax California Catch (Thousand Tonnes) 1950-1989 

39 Scad Decapterus russelli Indonesia Catch (Tonnes) 1971-1998 

40 Silk snapper Lutjanus synagris Zone B � Cuba Biomass (Hundreds tonnes) 1962-1978 

41 Skipjack tuna Katsuwonus pelamis Indonesia Catch (Tonnes) 1971-1998 

42 South African Anchovy Engraulis capensis South Africa Biomass (Thousand tonnes) 1964-1981 

43 Southern bluefin tuna Thunnus maccoyii Southern Pacific Biomass (Thousands of tonnes) 1960-1991 

44 Southern bluefin tuna 2 Thunnus maccoyii Southern Pacific Biomass (Tonnes) 1951-1995 

45 Swordfish Xiphias gladius North Atlantic Biomass (Thousand tonnes) 1978-1995 

46 Trevally Carangoide malabaricus Indonesia Catch (Tonnes) 1971-1998 

47 Usipa Engraulicypris sardella Lake Malawi Catch (Metric tons) 1976-1996 

48 Utaka Copadichromis spp. Lake Malawi Catch (Metric tons) 1976-1996 

49 Yellowfin tuna Thunnus albacares  Eastern Pacific Ocean Biomass (Thousands of tons) 1967-1992 

50 Yellowfin tuna Thunnus albacares Indian Ocean Biomass (Millions of fish) 1952-1977 

51 Yellowtail flounder Pleuronectes ferrugineus Southern New England Biomass (Thousand tonnes) 1973-1996 

51 Yellowtail flounder Pleuronectes ferrugineus Southern New England Catch (Thousand tonnes) 1961-1996 
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Table A2.  Ecological features of stocks. 

 

Serial No. Stock Maximum 

length (cm)

L ∞ 

(cm) 

K Natural 

mortality 

Length at 

maturity (cm) 

Life span 

(year) 

Habitat 

1 Albacore tuna (south Pacific Ocean) 140 141 0.15 0.22 71.1 19.3 Pelagic 

2 Anchovy (Indonesia) 13 12.4 1.21 2.54 8 2.3 Pelagic 

3 Atlantic bluefin tuna (West Atlantic) 420 278 0.17 0.1 169.9 41.6 Pelagic 

4 Bigeye tuna (East Pacific) 250 187 0.38 0.6 120 15.3 Pelagic 

5 Bigeye tuna (West Atlantic) 250 222 0.19 0.4 100 15.3 Pelagic 

6 Bombay duck (Northwest coast of India) 40 39 0.53 1.01 22.4 5.4 Demersal 

7 Bombe (Lake Malawi) 135 138.2 0.1 0.34 69.8 Demersal 

8 Brazilian sardine (South Eastern Brazil) 25 27.1 0.59 1.2 16.8 4 Pelagic 

9 Chambo (Lake Malombe) 36 29 0.72 1.32 17.2 3.9 Demersal 

10 Chub mackerel (Pacific Coast of Japan) 64 41.6 0.33 0.56 28.9 8.6 Pelagic 

11 Chub mackerel (Pacific Coast of Japan) 2 64 41.6 0.33 0.56 28.9 8.6 Pelagic 

12 Chub mackerel (Southern California) 64 41 0.22 0.5 32 9 Pelagic 

13 Eastern little tuna (Indonesia) 100 90 0.45 0.68 47.5 6.4 Pelagic 

14 Fringescale sardinella (Indonesia) 13 14 1.61 3.07 8.9 1.7 Pelagic 

15 Giant seaperch/ Barramundi (Indonesia) 200 143 0.13 0.27 72 22.200 Demersal 
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16 Gold-spotted grenadier anchovy (Northwest coast of 

India)  

20 28.5 0.07 2.08 12.9 Pelagic 

17 Greater lizardfish (East China Sea) 60 69.5 0.28 0.46 26.7 4.4 Demersal 

18 Grey mullet (Taiwan) 120 49.8 0.39 0.31 54.4 26.2 Pelagic 

19 Grouper (Indonesia) 43 44.8 0.07 0.35 25.4 40.6 Demersal 

20 Herring (gulf of Maine) 40 35.3 0.33 0.48 20.5 8.6 Pelagic 

21 Herring (North Sea) 40 30 0.38 0.2 24 8.6 Pelagic 

22 Herring (Norway) 40 34 0.27 0.13 28 8.6 Pelagic 

23 Indian mackerel (Indonesia) 35 25.5 1.5 2.44 15.3 1.9 Pelagic 

24 Indian oil sardinella (Indonesia) 23 27 0.55 1.2 16.1 5.2 Pelagic 

25 Kambusi (Lake Malawi) 13.1 13.9  1.78 8.9 Demersal 

26 Kambusi (Lake Malombe) 13 13.8  1.77 8.8 Demersal 

27 Kampango (Lake Malawi) 150 109 0.09 0.21 56.4 32 Demersal 

28 King mackerel (West gulf of Mexico) 115 115 0.16 0.16 69.3 19.3 Pelagic 

29 Mackerel (Black Sea) 50 35 0.5 0.82 20.3 16 Pelagic 

30 Mackerel (NAFO 2 to 6) 60 40.6 0.27 0.3 32 20 Pelagic 

31 Mackerel (Western ICES) 60 39 0.43 0.15 31.5 20 Pelagic 

32 Narrow barred king mackerel (Indonesia) 240 184 0.26 0.4 90.3 11.1 Pelagic 

33 Northern anchovy (California) 24.8 21 0.45 0.6 11.6 6.9 Pelagic 



 30

34 Pacific Cod (West Vancouver Islands) 117 94 0.27 0.33 49.4 10.7 Demersal 

35 Pacific halibut (North Pacific) 140 143.2 0.04 0.06 72.1 72.8 Demersal 

36 Pacific Ocean Perch (Aleutian Islands) 51 47.7 0.07 0.07 33.2 21.9 Demersal 

37 Red snapper (U.S. Gulf of Mexico) 100 117 0.18 0.15 49.5 16.9 Demersal 

38 Sardine (California) 30 29 0.45 0.4 21.5 8.6 Pelagic 

39 Scad (Indonesia) 45 28.4 1.13 2 21.6 2.5 Pelagic 

40 Silk snapper (Zone B � Cuba) 80 75.7 0.1 0.19 43.3 28.7 Demersal 

41 Skipjack tuna (Indonesia) 108 79.1 0.64 0.8 42.3 4.5 Pelagic 

42 South African Anchovy (South Africa) 20 24.6 0.32 0.59 14.8 8.8 Pelagic 

43 Southern bluefin tuna (Southern Pacific) 245 222 0.14 0.08 119 20.7 Pelagic 

44 Southern bluefin tuna 2 (Southern Pacific) 245 222 0.14 0.08 119 20.7 Pelagic 

45 Swordfish (North Atlantic) 480 640 0.15 0.2 112.9 17.1 Pelagic 

46 Trevally (Indonesia) 60 25  15 Demersal 

47 Usipa (Lake Malawi) 13 13.8 2.63 4.14 8.8 1.1 Pelagic 

48 Utaka (Lake Malawi) 13.2 12.1 0.78 1.85 7.8 3.6 Pelagic 

49 Yellowfin tuna (Eastern Pacific Ocean) 280 190 0.45 0.8 100.4 9.4 Pelagic 

50 Yellowfin tuna (Indian Ocean) 280 194 0.16 0.25 120 9.4 Pelagic 

51 Yellowtail flounder (Southern New England) 55 50 0.33 0.15 25.5 13.1 Demersal 

 

Source: Froese and Pauly (2000). 
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Table A3.  Summary of statistical analysis. ***: p<0.0005; **: p<0.01; *: p<0.05; a: p<0.10; n.s.: not significant 

 

Serial 

No. 

Stock  Catch 

and / or 

biomass

Correlation 

with year 

Coefficient of 

variation CV

R² R²lo Lag Autocorrelation 

coefficient Rk 

Apparent 

period 

Length of time 

series 

1 Albacore tuna (south Pacific Ocean) Biomass -0.30* 0.25 0.09a 0.94 14 -0.51 28***  44 

1 Albacore tuna (south Pacific Ocean) Catch  0.73*** 0.39 0.53*** 0.76 19 -0.25 28*** 32 

2 Anchovy (Indonesia) Catch  0.97*** 0.32 0.94*** 0.96 11 -0.34 22*** 27 

3 Atlantic bluefin tuna (West Atlantic) Biomass -0.95*** 0.69 0.90*** 0.96 8 -0.49 16*** 31 

3 Atlantic bluefin tuna (West Atlantic) Catch -0.69*** 0.73 0.47*** 0.74 8 -0.42 16*** 24 

4 Bigeye tuna (East Pacific) Biomass -0.67*** 0.12 0.45*** 0.77 10 -0.34 20*** 26 

4 Bigeye tuna (East Pacific) Catch 0.65*** 0.63 0.42*** 0.76 9 -0.56 18*** 26 

5 Bigeye tuna (West Atlantic) Biomass -0.85*** 0.39 0.73*** 0.95 13 -0.57 26*** 36 

5 Bigeye tuna (West Atlantic) Catch 0.91*** 0.45 0.83*** 0.87 14 -0.45 28*** 35 

6 Bombay duck (Northwest coast of India) Biomass 0.51** 0.46 0.26** 0.7 13 -0.51 26*** 29 

6 Bombay duck (Northwest coast of India) Catch 0.20 n.s. 0.25 0.04 n.s. 0.42 12 -0.57 24*** 29 

7 Bombe (Lake Malawi) Catch -0.61** 0.28 0.37** 0.39 11 -0.39 22*** 22 

8 Brazilian sardine (South Eastern Brazil) Biomass -0.72** 0.36 0.50** 0.69 4 -0.63 8*** 16 

8 Brazilian sardine (South Eastern Brazil) Catch -0.85*** 0.34 0.73*** 0.82 6 -0.58 12*** 16 
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9 Chambo (Lake Malombe) Catch -0.76** 0.94 0.58*** 0.81 10 -0.56 20*** 23 

10 Chub mackerel (Pacific Coast of Japan) Biomass -0.68** 0.91 0.47** 0.65 8 -0.50 16*** 18 

11 Chub mackerel (Pacific Coast of Japan) 2 Biomass 0.62** 0.87 0.39** 0.71 9 -0.43 18*** 30 

12 Chub mackerel (Southern California) Biomass -0.74*** 1.05 0.56*** 0.74 12 -0.38 24*** 40 

13 Eastern little tuna (Indonesia) Catch  0.98*** 0.47 0.96*** 0.98 11 -0.42 22*** 25 

14 Fringescale sardinella (Indonesia) Catch  0.98*** 0.38 0.96*** 0.97 12 -0.36 24*** 26 

15 Giant seaperch/ Barramundi (Indonesia) Catch  0.84*** 0.68 0.71*** 0.97 12 -0.53 24*** 27 

16 Gold-spotted grenadier anchovy (Northwest 

coast of India)  

Biomass 0.60** 0.69 0.36** 0.41 9 -0.61 18*** 26 

16 Gold-spotted grenadier anchovy (Northwest 

coast of India)  

Catch 0.73*** 0.6 0.53*** 0.53 9 -0.44 18*** 26 

17 Greater lizardfish (East China Sea) Biomass -0.94*** 0.58 0.88*** 0.94 4 -0.53 8** 10 

18 Grey mullet (Taiwan) Biomass -0.86** 0.38 0.74** 0.88 2 -0.32 4 n.s. 11 

18 Grey mullet (Taiwan) Catch -0.53* 0.47 0.28a 0.68 7 -0.25 14 n.s. 10 

19 Grouper (Indonesia) Catch  0.74*** 0.67 0.56*** 0.92 11 -0.41 22*** 25 

20 Herring (gulf of Maine) Biomass -0.07 n.s. 0.54 0.006 n.s. 0.86 9 0.50 18*** 30 

20 Herring (gulf of Maine) Catch -0.22 n.s. 0.33 0.05 n.s. 0.1 10 0.48 20*** 23 

21 Herring (North Sea) Biomass -0.79*** 0.86 0.62*** 0.92 13 0.41 26*** 34 

21 Herring (North Sea) Catch 0.58*** 0.47 0.34*** 0.79 16 0.22 32*** 43 
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22 Herring (Norway) Biomass -0.53*** 1.03 0.28*** 0.95 18 -0.60 36*** 47 

22 Herring (Norway) Catch -0.64*** 1.04 0.40*** 0.68 16 -0.53 32*** 47 

23 Indian mackerel (Indonesia) Catch  0.97*** 0.41 0.95*** 0.98 9 -0.38 18*** 27 

24 Indian oil sardinella (Indonesia) Catch  0.90*** 0.55 0.81*** 0.82 16 -0.24 32*** 27 

25 Kambusi (Lake Malawi) Catch 0.61** 0.71 0.37** 0.55 7 -0.45 14*** 20 

26 Kambusi (Lake Malombe) Catch 0.49** 0.78 0.24* 0.68 10 -0.37 20*** 23 

27 Kampango (Lake Malawi) Catch -0.57** 0.32 0.33** 0.47 7 -0.35 14*** 21 

28 King mackerel (West gulf of Mexico) Biomass 0.18 n.s. 0.38 0.03 n.s. 0.64 17 -0.48 34*** 39 

28 King mackerel (West gulf of Mexico) Catch 0.81*** 0.83 0.66*** 0.68 20 -0.38 40*** 39 

29 Mackerel (Black Sea) Biomass 0.04 n.s. 0.81 0.002 n.s. 0.6 5 -0.57 10*** 51 

29 Mackerel (Black Sea) Catch -0.65*** 1.14 0.43*** 0.49 14 -0.53 28*** 17 

30 Mackerel (NAFO 2 to 6) Biomass 0.75*** 0.63 0.57*** 0.82 10 -0.44 20*** 31 

30 Mackerel (NAFO 2 to 6) Catch -0.02 n.s. 1.18 0.00 n.s. 0.56 13 -0.45 26*** 29 

31 Mackerel (Western ICES) Biomass -0.86*** 0.22 0.74*** 0.9 8 -0.57 16*** 14 

31 Mackerel (Western ICES) Catch -0.54* 0.26 0.29* 0.93 6 -0.37 12** 19 

32 Narrow barred king mackerel (Indonesia) Catch  0.92*** 0.32 0.85*** 0.94 16 -0.29 32*** 27 

33 Northern anchovy (California) Biomass -0.12 n.s. 0.82 0.01 n.s. 0.16 9 -0.19 18*** 36 

33 Northern anchovy (California) Catch 0.26 a 0.88 0.06 n.s. 0.62 12 -0.43 24*** 38 

34 Pacific Cod (West Vancouver Islands) Catch 0.09 n.s. 0.7 0.01 n.s. 0.46 13 -0.61 26*** 36 



 34

35 Pacific halibut (North Pacific) Biomass -0.46*** 0.32 0.21** 0.93 20 -0.52 40*** 61 

35 Pacific halibut (North Pacific) Catch -0.18a 0.27 0.03 n.s. 0.42 18 -0.53 36*** 47 

36 Pacific Ocean Perch (Aleutian Islands) Biomass -0.74*** 0.7 0.54*** 0.96 12 -0.51 24*** 34 

36 Pacific Ocean Perch (Aleutian Islands) Catch -0.64*** 1.35 0.41*** 0.31 11 -0.46 22*** 30 

37 Red snapper (U.S. Gulf of Mexico) Biomass 0.94*** 0.14 0.89*** 0.96 3 -0.50 6** 9 

38 Sardine (California) Biomass -0.87*** 1.1 0.77*** 0.86 16 -0.31 32*** 40 

38 Sardine (California) Catch -0.55*** 2.42 0.30*** 0.51 13 -0.52 26*** 34 

39 Scad (Indonesia) Catch  0.89*** 0.86 0.79*** 0.91 7 -0.49 14*** 27 

40 Silk snapper (Zone B � Cuba) Biomass 0.81*** 0.3 0.67*** 0.92 7 -0.43 14*** 17 

41 Skipjack tuna (Indonesia) Catch  0.94*** 0.6 0.89*** 0.97 7 -0.34 14*** 27 

42 South African Anchovy (South Africa) Biomass 0.70* 0.36 0.49* 0.76 6 -0.54 12*** 18 

43 Southern bluefin tuna (Southern Pacific) Biomass -0.97*** 0.54 0.95*** 0.96 18 -0.32 36*** 32 

44 Southern bluefin tuna 2 (Southern Pacific) Biomass -0.97*** 0.47 0.94*** 0.97 15 -0.29 30*** 45 

45 Swordfish (North Atlantic) Biomass -0.97*** 0.47 0.94*** 0.98 6 -0.56 12*** 18 

46 Trevally (Indonesia) Catch  0.96*** 0.55 0.93*** 0.97 10 -0.48 20*** 27 

47 Usipa (Lake Malawi) Catch 0.70*** 1.07 0.49** 0.65 5 -0.30 10*** 21 

48 Utaka (Lake Malawi) Catch 0.39* 0.49 0.15a 0.24 9 -0.37 18*** 21 

49 Yellowfin tuna (Eastern Pacific Ocean) Biomass 0.38* 0.31 0.14a 0.77 11 -0.62 22*** 26 

50 Yellowfin tuna (Indian Ocean) Biomass -0.89*** 0.68 0.8*** 0.86 9 -0.54 18*** 26 
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51 Yellowtail flounder (Southern New England) Biomass -0.30a 0.79 0.09 n.s. 0.16 10 -0.45 20*** 36 

51 Yellowtail flounder (Southern New England) Catch -0.78*** 0.84 0.62*** 0.73 8 -0.28 16*** 24 
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Fig. A1.  Time series of estimated biomass or catches for 6 stocks. Solid line: biomass/catch; doted line: Lowess 

smoothed trend; dashed line: linear trend.  

 

 

 


