HRGP genes expressed during physiological deterioration of cassava storage roots

Yuanhui Han*, Hongying Li, R. M. Cooper and J. R. Beeching
Department of Biochemistry and Biology, University of Bath,
Bath BA2 7AY, UK
*Present address: Plant Science Division, University of Nottingham,
Sutton Bonington Campus, LEICS LE12 5RD, UK

Introduction
Cassava is one of the most important tropical crops. Rapid post-harvest deterioration, which can occur within 24 hours after harvest has been a major problem in its production. The deterioration consists of two stages, primary or physiological deterioration, and secondary or microbial deterioration (Booth, 1976; Onwume, 1978). Visual evidence for the postharvest physiological deterioration (PPD) is vascular streaking, a blue-brownish coloration of the xylem vessels in the storage parenchymatous tissue. PPD is a special wound response lacking wound-healing process; in other words, PPD is initiated from wound sites and spreads through the root.

Hydroxyproline-rich glycoproteins (HRGPs) are abundant proteins in the plant cell wall. They strengthen cell walls and control cell wall extension by insolubilization of the molecules through intermolecular cross-links. HRGPs are induced in wound responses and are involved in the wound healing process (Hirsinger et al., 1997; Bradley et al., 1992; Ussai et al., 1996). No wound healing processes have been observed at the histochemical level during PPD. It remains to be established whether there are any wound healing responses at a molecular level during PPD. Here we report the isolation of HRGPs genes expressed during PPD.

Material and Methods
A PPD related cDNA library in λ gt10 (Beeching et al., 1998) was screened with parsley hydroxyproline-rich glycoprotein (HRGP) cDNA EL9 as a probe (Kawalleck et al., 1995). After 3 h of pre-hybridization at 50°C, hybridization was carried out at 50°C overnight. The membrane was washed to 0.1 x SSC/0.1% SDS at 50°C for 2 x 10 min. Then secondary screening was performed to obtain single positive plaques. The cDNA inserts in the isolated positive clones were then amplified by PCR using λ gt10 primers.

Results and Discussion
Nine positive clones were isolated from the PPD related cDNA library. Six of these positive clones were amplified by PCR and sequences were determined using the PCR products. The deduced amino acid sequence of clone G showed typical repeat pattern of HRGP, serine-proline-proline-proline-proline or SPPP (Han et al., 2000). Clone B showed 93% identity over 271 bp to clone G and all the identified nucleotide differences between these two clones in the compared region occurred in the third nucleotide of the codons for amino acid residues, which did not change the encoded amino acid residues.

The deduced amino acid sequence of clone C had SPPP and YYY (tyrosine) repeats, two A(Ala)Y(A)G(Gly)K repeats, two polyproline units W(Trp)P and H(His)P, seven palindromes of at least four amino acid residues and many palindromes of three residues (Figure 1). The partial polypeptide is rich in proline (17 mole%), lysine (16%), tyrosine (9%), valine (8%), glycine (7%) and histidine (5%).

The determined sequence of clone D was highly similar to the 3'C' end of clone G, with just 8 extra nucleotides compared to clone G. Clone F was identical to the 3'C' coding region of clone G and clone H showed 74% identity to clone G over 170 bp compared.

The SPPP motif, which can lead to molecular inflexibility and wall-self assembly, is the most common repeat motif in HRGPs of many plants and it is also present in all the analysed HRGP clones. Palindromes including YY, YYYP, HSPH, HPH(Phe)HH, VVYVY, YD(Asp)WDY and GKKG are present in the deduced amino acid sequence of clone C. The palindromic peptides could create centrosystematic domains, which may act as self-assembly nucleation sites. In other words, an intermolecular interaction may establish a structure to initiate a succession of intermolecular reaction or growth (Kieliszewski and Lampert, 1994). The effect of HRGP gene expression on wound healing was demonstrated by the impaired healing response in potatoes after gamma irradiation (Ussai et al., 1996). It has been shown that proline-rich cell wall protein was rapidly insolubilized at wound sites (Bradley et al., 1992). Increases in the level of HRGP transcripts upon wounding stimulation have been observed in many plant systems such as tomato and potato (Showalter et al., 1992; Bown et al., 1993). The isolation of HRGP cDNA clones from PPD related cDNA library indicated that they were expressed during the special wounding response, suggesting that at least one element of the healing process was present during PPD. However, there may be insufficient expression of HRGPs or insolubilization of existing HRGPs, or/and other healing components, which results in the development of PPD.

Acknowledgements
HL and YH thank the University of Bath for studentships. This publication is an output from a research project funded by the United Kingdom Department for International Development (DFID) for the benefit of developing countries. The views expressed are not necessarily those of DFID. Crop Post-Harvest Programme: R7550.

References
Figure 1. Deduced amino acid sequence from the partial nucleotide sequence of cDNA clone C. SPPP and YYYY are in bold, other XP (X refers to any residues) and repeats are underlined. Palindromic regions of the amino acid sequence are over-lined. Palindrome-like structures are indicated with double underlines. The palindrome overlapping with another one is dot-underlined.


© CAB International 2001