
Optimising Internet Bandwidth in Developing Country Higher Education

Page 125

The University of Zululand gained academic autonomy from the University of South Africa in
1970 although teaching on the campus started ten years earlier with 41 students and a staff of
14. Currently the university has 6600 students.

The university has three campuses: its main campus is located 20km south of Empangeni in the
province of Kwazulu Natal, South Africa. The remote campuses are at Ulundi and the Cecil
Renaud campus in the Durban metropolitan area.

1. Introduction

The University of Zululand has are around 750 computers, including 400 student lab
workstations, serving 6600 students. At peak time, there are around 250 concurrent users.

The university is in a relatively poor area, and is not very well funded compared to some of
South Africa’s other universities.

The University has some on-line courses (using WebCt - www.webct.com). These courses can
be viewed at the URL rdisat.uzulu.ac.za:8900/webct/public/show_courses.pl

2. The network

2.1 TENET

Current bandwidth to the Internet is 1152 Kbps, of which there is a 576 Kbps CIR for
international traffic, burstable to 1152 Kbps. The connection to the Internet is via the Tertiary
Education Network (TENET), which is an academic network similar in concept to the Janet
network in the UK and the LEARN network in Sri Lanka. This approach is common to many
countries. The TENET network (www.tenet.ac.za) gets its bandwidth via Telkom
(www.telkom.co.za).

Tenet usage statistics, including that of the University of Zululand is available at
www.tenet.ac.za/mrtg-new/graphs.asp

TENET "shapes" traffic to sites on 3 virtual circuits:
• International Traffic
• National Traffic not from TENET sites
• Traffic from other TENET sites (called Higher Education traffic).
The University’s 1152 Kbps circuit is divided into
• Interational VC - CIR of 576 Kbps, BE of 1152 Kbps
• National VC – 192 Kbps CIR, 384 Kbps BE
• Inter-HE VC – 160 Kbps CIR, 320 Kbps BE

The university pays a monthly rate that is determined by the CIR of each of the VCs. The price
for International CIR is about three times the price of National/Inter-HE CIR bandwidth.

Appendix G
University of Zululand

Optimising Internet Bandwidth in Developing Country Higher Education

Page 126

2.2 The campus network
The university had Hewlett Packard Unix servers running HPUX. Maintenance of these
machines cost R70 000 (around € 7500) per year. These were scrapped, and replaced by Linux
servers; even the firewall runs Linux.

There are two proxy servers, one for students and one for staff.

Links to remote campuses are 64 Kbps leased line links.

2.3 Preventing P2P traffic
Only a few users who need to use protocols other than web, mail and FTP e get routable
addresses, therefore bandwidth-intensive applications like streaming media or P2P (for
example Kazaa) cannot be done.

2.4 Prepaid access
The university has implemented a system of quota based prepaid Internet access, because it
was found that “a small proportion of users consumed disproportionate amounts of
bandwidth.” To limit these users, but still allow for high usage when necessary, it was felt that
subsidised charging is the way forward. It was found that the principle of charging, along with
good statistics, enabled the IT department to present a case for more bandwidth to
management, because it gives them a sense that bandwidth issues are under control and money
is well spent. Users are presented with a web page showing their student numbers, usage
summary, number of users on-line and total credit remaining (see below), when they open their
web browser.

The system is well described in an article by its developer. The article contains many useful
points about optimisation, and is therefore included in full (with permission) in section 3
below. In its current state, other institutions wishing to implement this system should have the
necessary skills to implement it (including programming skills). However, due to interest from
other institutions, the system may be packaged for easy installation.

Optimising Internet Bandwidth in Developing Country Higher Education

Page 127

3. Implementing prepaid internet access at
 the University of Zululand

Soren Aalto <soren at pan.uzulu.ac.za>
Networking Services, University of Zululand, kwaDlangezwa, 3886

3.1 Introduction
The problems associated with unregulated Internet access are well known to the South African
educational community. Given our high cost of Internet access bandwidth, unregulated demand
will inevitably exceed the financial capacity of institutions to supply bandwidth to users,
resulting in congested access circuits and poor overall quality-of-service.

This problem is especially acute in the context of historically disadvantaged institutions (HDIs)
where IT facilities are usually not as well developed as at other educational institutions and IT
budgets are severely constrained. Indeed, at many HDIs students do not have general access to
the Internet, as these institutions are currently struggling with the financial and manpower
requirements of providing adequate access for staff. This lack of student access to the resources
of the Internet threatens to widen the quality-of-education divide that exists between HDIs and
other tertiary institutions.

At the University of Zululand, we have faced the problem of providing Internet access in our
student labs during a time of falling enrolment and ever-increasing pressure on the IT budget.
Various considerations led us to a quota-managed/prepaid-usage model for managing use of
the WWW and other Internet services. In effect:
• most Internet usage would continue to be subsidized by the university. But there would be

a limit on the level of subsidized usage for users and groups.
• costs could be recovered for certain kinds of Internet usage such as personal/recreational

usage or other types of usage that would otherwise be classified as abuse.

This paper outlines the motivation, design and implementation of the system we have
developed at the University of Zululand for managing usage quotas and prepaid WWW access.
This system uses our http caching proxy server together with user authentication to do
bandwidth accounting and to enforce per-user and per-group bandwidth usage quotas in a
flexible fashion. This system has been designed to do general resource accounting together
with session/quota management in a fairly generic way, with a view to extending it to other
services besides WWW access -- streaming media, email usage, dial-up access, printing, and
perhaps even telephone usage.

3.2 Our dilemma
During 1999, we were faced with a huge latent demand for Internet access in our student labs
by lecturers and students at the university. At the same time, student enrolment was declining,
which had a direct effect on operational budgets and staffing for our department (networking
services). Additionally, the causes of declining student enrolment needed to be addressed --
and it was clear that our failure to provide student Internet access contributed to a negative
perception of the university, especially when compared to neighbouring institutions that did
provide Internet access for their students.

However, the numbers were not encouraging. We were providing (unregulated but monitored)
WWW access to approximately 350 staff members via a 128Kbps access to Uninet. This
access circuit was heavily utilised during peak hours, although performance was usually
acceptable.

It was clear that the student user base was potentially much larger than the staff population. An
Internet access pilot for a single first-year computer applications course involved 730
additional WWW users, although this group was restricted to a single laboratory of 64
workstations. The number of active student users could easily top 3000 at the university, and
these students would have access to 350 workstations by early in the 2000 academic year.

Clearly the potential demand from the student user base could be an order of magnitude larger
than the current staff demand, which was already saturating our current access circuit capacity

Optimising Internet Bandwidth in Developing Country Higher Education

Page 128

during peak usage periods. However, we were in no position to finance a doubling or tripling
of our access bandwidth to provide for this demand. Unregulated student access would clearly
lead to appalling quality of service. In crude terms, this left us with the following alternatives:
• reduce the demand by limiting usage
• raise money to pay for increasing our access bandwidth

The prepayment/quota model we have adopted allows us the flexibility to do both of these.

3.3 Observations on internet usage
There is no such thing as a "typical user." For a large population of WWW users, you will find
a wide variation in how many Mbytes of traffic (HTML pages, images, data files, etc.)
different users download in a given period. The distribution of traffic/user is typically very
skewed, with most users' traffic tallies being well under the average for the population and a
small number of users being way above the average.

The following graph shows the per-user traffic, in Mbytes, for the 324 active users on our
campus during the week of 13-19 Feb., 2000:

This graph shows is that a small number of users are responsible for a significant fraction of
the bandwidth used. In the example above, the top 5% of users account for 50% of the total
traffic (2425 Mbytes) for the week. The average volume/user was 7.56MB, with the highest
volume user downloading 324 Mbytes, approximately 43 times the average.

The traffic typically associated with abuse corresponds to the area above the dashed line in the
above graph.

If the top 5% of users were limited to 25% of the total traffic volume (i.e., no more than five
times the current average traffic value), then we would cut our total traffic volume by 25%.
Another alternative is that these users would have to pay for usage above five times the current
average. This would correspond to a subsidized usage quota for users.

Here is a graph showing how much traffic came from each of the 6214 different hosts accessed
during the same one-week period.

This traffic volume distribution is even more skewed than the per-user distribution, with the

Optimising Internet Bandwidth in Developing Country Higher Education

Page 129

top 5% of hosts accounting for 75% of the total traffic volume. Contrary to our expectations
(and popular belief), very few of the high volume sites were identifiable as "inappropriate
content," (e.g. pornography) Only 5 of the top 100 sites by volume were obvious pornography
sites, which surprised us -- our guesstimates would have been higher. There is a substantial
amount of "recreational use" traffic among the high volume sites -- gaming sites feature
frequently, as do software downloads, WWW-based email/chat services, news and shopping
services. The whole list of 6214 hosts does contain a fairly large number of identifiably
pornographic domain names, but these are scattered throughout the demand curve.

Finally, we must bear in mind the relationship between costs, demand and quality-of-service
(QoS). Any demand can be accommodated at a fixed cost, if we allow the QoS to deteriorate.
In fact, eventually this limits user demand as the service becomes frustrating to use.

The challenge is to choose an acceptable minimum QoS level and to try and meet this target at
minimum cost given the constraints of user demand. As a rough QoS heuristic, we aim for
midday peak usage performance where most http connections still exceed 1kbyte/sec (which
some might consider poor). In terms of congestion on our access circuit, our 128Kbps circuit
can deliver 16 Kbytes/sec of incoming data. Our QoS heuristic would translate into a peak
period user demand of 16 or fewer simultaneous http connections on average. The graph below
shows the number of simultaneous http connections at any instant through our proxy server
during a one day (Wednesday) of the same week depicted above:

The two curves above are plots of the time averaged and peak number of simultaneous HTTP
connections computed over successive 5 minute snapshots during the day. We can see that we
are mostly meeting our desired QoS threshold of having fewer than 16 simultaneous HTTP
connections on average, but that during most of the day there are frequent short periods where
this threshold is violated.

This user demand is a function of the number of simultaneous users. The graph below shows
the number of concurrent user WWW "sessions" for the same period.

These graphs are disturbing as they suggest that our ability to provide our desired QoS is
already strained with a daytime peak of approximately 40-45 simultaneous users. Our worry
was that the potential demand from our student user base could easily exceed this by a
considerable amount.

Optimising Internet Bandwidth in Developing Country Higher Education

Page 130

3.4 Approaches to managing internet usage
The first question is whether we should manage Internet usage, and if so, why?

Our main motivation for bandwidth and cost management was the financial pressure on our
institution and our department. We needed to be able to establish the level of "true" user
demand, and be able to meet this demand at an acceptable QoS level. And we had to do this
while spending as little money as possible.

Perhaps a very real motivation for implementing bandwidth/cost management was essentially
political -- to show management at our university that our Internet resources are being managed
in a "businesslike" fashion and that we could correlate "value" with "costs." The simple ability
to produce usage information, measure demand and limit abuse would put our department in a
strong position when we motivated for future bandwidth (and so cost-of-service) increases.
This motivation prejudiced us toward considering our management problem as a fundamentally
economic problem, so we were convinced from the outset that some kind of billing system
would be implemented.

3.4.1 Content filtering

Some institutions have attempted to combat the abuse problem by using content filtering
software to reduce the level of inappropriate usage, such as downloading pornography. Popular
content filtering software are packages are Cyber Patrol, Net Nanny and others.

The observations in the previous section show that it would be impractical to try and
implement content filtering by hand -- there are simply too many different hosts that would
need to be examined, and inappropriate content will be distributed over a large number of
these. Content filtering software use central lists of "blocked" sites that are classified by the
company that produces the software. One objection to the use of content filtering is that it
relies on an external agency to decide what constitutes inappropriate content.

Content filtering is a popular approach to combating Internet abuse because it is the only off-
the-shelf software solution for managing WWW access. However, these packages are primarily
aimed at the home user market where they are used to keep children from being able to access
pornography and other undesirable material.

We were not interested in the content filtering approach as:
• It is not (usually) appropriate to treat our users like children
• Several cases of bandwidth abuse on our campus have not involved undesirable material,

and would not have been prevented through the use of content filtering software.
• To our surprise, it didn't appear that inappropriate material is a large contribution to our

overall bandwidth demand.
• We have reservations about ceding the responsibility for content control to outside

agencies, especially in light of recent legal actions by Mattel, Inc., the producers of
CyberPatrol, against two students who published various details about the operation and
vulnerabilities of this software. It is clear that content filtering software is intrinsically
"closed" in approach, but the hostility of Mattel, Inc. to open source approaches is

Optimising Internet Bandwidth in Developing Country Higher Education

Page 131

worrying.

We acknowledge that content filtering is appropriate for many situations. We would like to
offer it as a service, however we would also like to see an "open" approach to content filtering
where we could implement our own filters based on content classification information that was
available from a central site. This would enable us, for example, to examine log files to see
what percentages of existing traffic could be classified as pornography, recreational and other
kinds of usage without actively having to block such usage.

3.4.2 Charging for access

The problem with content filtering is that it confuses an ethical issue (inappropriate use) with a
purely economic one - how to fund and control the cost of providing Internet access. The real
problem is that the demand for bandwidth will inevitably exceed supply as long as the cost of
bandwidth to the end-user is zero. The costs of providing Internet access must be passed on to
the end user in order to bring demand back to realistic levels. Charging for usage will also
recover some of the cost of providing access bandwidth. The funds generated can then be used
to improve the overall quality of service by purchasing additional bandwidth.

There are several "charging models" that can be used to recover costs:

flat rate
charging

All users are charged a fixed amount, typically monthly. This amount will be
based on the average usage.
This model is popular with commercial ISPs for their dial-up customers,
largely due to its administrative simplicity. However, it has the following
disadvantages:

• most users use less than the average amount of bandwidth. These
users end up subsidizing the minority of high-bandwidth users. This
tends to make the entry cost of the service a barrier to low-end users.

In particular, in the HDI environment, many users are very new to the
Internet. Our fear was that flat rate charges would exclude many of
these users.

• the fee tends to legitimize abuse as the service has now been "paid
for," in spite of the fact that high-end users are being subsidized by
low-end users.

Commercial ISPs have the advantage that their dial-up customers need to
worry about the metered cost of their dial-up connections on their Telkom
bills, and this factor tends to limit extreme abuse.

bill for
bandwidth
used

The alternative to flat-rate charging is to charge users on the amount of traffic
they consume, so that users pay for what they use. This is fairly simple to
implement, as a proxy server keeps a log of all WWW accesses, and these can
be tallied for each user, and a charge computed based on a cost/Mbyte for
WWW traffic.

While this approach is undoubtedly fair, it has the following drawbacks:

• there is an impractically large administrative overhead of billing a
large number of users and collecting accounts due. Most users will
have small accounts that are barely worth the administrative effort of
collecting.

• there is a risk of non-payment/bad debt. Our university already has a
substantial problem with non-payment of outstanding tuition. There is
clearly a risk of runaway Internet usage from students who have no
intention of paying for tuition, let alone for Internet bandwidth.

prepaid
access

The administrative problems associated with billing are largely alleviated by
changing to prepaid access. Users buy "bandwidth" in fixed amounts. These
amounts are added to a per-user usage quota that is stored in an on-line
database/directory, and the system enforces these usage quotas by not allowing

Optimising Internet Bandwidth in Developing Country Higher Education

Page 132

the user to access the WWW once the user has accumulated bandwidth
charges that exceed the user's quota.

Prepayment systems have been successful in other industries, specifically in
expanding the customer base to include higher credit risk users of services
such as telephones, cell phones, electricity, etc. Prepayment eliminates the
problems of debt collection and bad debt risk while eliminating the
administrative overhead of collecting accounts. Users are empowered as they
buy as much of the service as they need when they need it.

However, a prepaid usage system requires two things that are not needed in an
ordinary billing system:

• a method of controlling user access so that access is no longer
possible once accumulated charges exceed a user's quota limit.

• a secure token that can be sold to the user and used to increase the
user's quota limit.

3.4.3 Our choice

We chose a prepaid usage with partial subsidization model. While all Internet access will be
billed for, most normal Internet usage will continue to be subsidized by the university through
the provision of quota allotments to departments, research units, courses, etc. Additional usage
can be purchased on a prepaid cash purchase basis.

3.5 Implementation - initial idea
Our initial requirement was to provide a method for restricting a user's WWW access based on
a user's accumulated charges. We realised that it would be simple to modify the user
authentication program used with our WWW proxy to deny user logins when a user had
exceeded his/her quota.

3.5.1 The function of a WWW proxy

Like most other institutions, all WWW browsers on our campus are required to fetch WWW
pages through a caching proxy server. Rather than a WWW browser contacting a remote server
directly to ask for a page, the browser asks the on-campus proxy server to fetch the page on its
behalf as shown in here:

The main reason for using a caching proxy server is to reduce the demand for bandwidth by
caching downloaded objects on the server. If a user requests an object that has previously been
requested by another user at our site, then the proxy server can deliver the object directly to the

Optimising Internet Bandwidth in Developing Country Higher Education

Page 133

user without having to fetch it from the remote server. Eliminating redundant downloads of
WWW objects can save anything from 10% to 30% on the level of HTTP traffic into a site.
These savings translate directly either into

• cost savings - the site can buy less access bandwidth, or

• improved QoS - the site effectively has an additional 10% to 30% available HTTP
bandwidth on average.

Like most sites who have implemented HTTP caching, we did this in order to make more
efficient use of their access bandwidth. However, we soon realised that the proxy server
provided a valuable central point of administrative control for WWW access as:

• Each URL fetched through the proxy server is recorded in a log file. This log file records
the time of access, the size in bytes of the object, the elapsed time required to transfer the
object, whether the object was fetched from the remote server or delivered from the local
cache, the URL fetched, the IP address of the workstation making the request.

This information allows one to construct an accurate picture of user demand, usage
patterns, etc. It also allows one to easily compute billing information based on bandwidth
usage.

• the proxy server can be configured to require users to identify themselves via
username/password authentication for WWW access.

We use Squid as our HTTP caching software running on Linux on Dell PowerEdge servers
(PII/350, 256MB RAM, 4x4GB F/W SCSI drives). Squid is a popular open-source program for
HTTP/FTP caching that runs on most Unix and Unix-like systems.

3.5.2 Controlling access through user authentication

Squid provides for user authentication by allowing the administrator to configure an external
program that verifies username/password combinations. Several authentication programs exist
for use with squid that authenticate users against Unix/NCSA password files, Windows NT
domain logons, LDAP directory services and other methods.

As all the authentication programs for Squid are available as source code under the GNU
Public License, we realised that it would be straightforward to modify these to check that a
user had not exceeded his/her quota when authenticating a username/password pair. Once a
user exceeded his/her quota, subsequent authentication would fail and they would no longer be
able to retrieve pages from the WWW through the proxy server.

The handling of usernames/passwords by an HTTP proxy server is somewhat confusing. Once
a user's browser has authenticated to a proxy server, it sends the username/password pair on
every HTTP request. The proxy server caches these credentials to avoid having to verify them
on each request. The proxy is configured to re-verify the username/password credentials after a
set interval, typically every 5 minutes, by passing the username/password to the authentication
helper program.

What this means, in terms of behaviour is:

• The user is prompted for a username/password when the browser first accesses a page
through the proxy server. After that, the browser remembers the username/password and
the user doesn't see the authentication dialog again until the browser is shut down and
restarted. The user has to log on once per session.

• If a user exceeds his/her configured quota, then within the next five minutes, the proxy
server will reject the user's authentication credentials. The user will be unable to retrieve
WWW pages from the proxy until his/her quota is increased.

3.6 Prototype development
3.6.1 Initial prototype

An initial prototype of the WWW quota management system was written in C using a DBM
database that stored user account, tally and quota information. This prototype consisted of a
server that accepted request messages and returned responses over TCP connections.
Accounting information was fed into the server from a Perl script that parsed the squid log file
as it was produced. The authentication program would then query the server to check whether

Optimising Internet Bandwidth in Developing Country Higher Education

Page 134

the quota for a particular user had been exceeded.

The interactions of these entities are shown in the following data flow diagram:

This prototype was tested on a small group of students, declared a qualified success as a proof-
of-concept prototype, and then immediately abandoned. While it did work, we found that:

• Administration was difficult due to problems with the DBM database libraries which didn't
allow the database to be updated by another program while the server was running. This
necessitated shutting the system down to add new users, for example.

• Billing information was presented to users via their browsers using CGI programs that
interrogated the server. The resulting CGI programs were awkward, and necessitated
adding more and more request messages to the server's message API, which was a
potential source of security problems.

3.6.2 Rewrite in Java

After the initial prototype, we decided on a rewrite with the following requirements:

• We should use a standard SQL database to store account/tally/quota information

• The server should have an embedded HTTP server for the various user reports, billing
information and administrative/management interface. The CGI programs of the previous
prototype would all be embedded in the server.

• The server should be written in an object-oriented programming language.

C++ was considered as an implementation language, however the above requirements left Java
as a much more suitable choice of implementation language.

3.6.3 Why Java?

Java is a small, well designed, object-oriented language with a rich standard class library that
satisfied all of the above requirements. It has a well defined interface to SQL databases --
JDBC. Additionally, there is a well defined framework for extending a Java-based HTTP
server with servlet classes. In a Java-based HTTP server, servlets play a role similar to that of
CGI programs in an ordinary HTTP server in that they are executable entities that produce
dynamically generated content. But servlets are far more powerful than CGI programs as they
are an integral part of the server and have access to state information in the server that is
maintained across invocations.

The Java-based prototype of the server was based on a class library, Acme.Serve, which
provided an embedded HTTP server that could be extended with servlet objects and also
supported CGI programs. The server used JDBC to talk to an open-source SQL database,
MySQL, running on a Linux host.

Optimising Internet Bandwidth in Developing Country Higher Education

Page 135

The main selling point of the Java/servlet approach was that the skeleton of the server, with the
basic message API and servlets that displayed information from an SQL database was
developed from freely available components in under two days. This initial success completely
sold us on the Java servlet/JDBC framework for developing the server.

3.6.4 Basic design

The basic design of the server has two main components. The HTTP server and various servlet
classes process all HTTP requests. There is also message-based interface, where request
messages from clients and responses from the server are sent over TCP connections to port
3178 on the server. The request/response message format is loosely designed on the URL
encoding for CGI programs, which is easy to debug and free format. Each client connection to
the server is handled by a separate thread.

Both the message API and all the servlets access three main data structures:

• a list of current sessions

• a cache of active account information from the database

• a cache of active account tally information from the database

Updates to account tally information are made to the cached data which is flushed back to the
database at periodic intervals. This alleviates potential bottlenecks that can arise while updating
the database, as the hierarchical account structure and structured billing (discussed below) can
mean that a single URL can cause the update of perhaps 20-25 separate tallies.

3.6.5 A name for the project

One of the more difficult parts in the early prototype stages of this process was that the server
being developed didn't have a catchy name. The first prototype was jokingly christenened
ICBM - the Internet Cache Bandwidth Manager, which had the appeal of being some ways
from politically correct. After the rewrite in Java, we followed the tradition of adding a 'J' at the
beginning of the acronym, giving us the name JCBM. This name seems to have stuck, in the
absence of anything better.

3.6.6 Using URL redirection to control access

Another shortcoming of the original prototype/approach was that using user authentication to
enforce user quotas was fairly user-unfriendly. A user who had exceeded their quota would
have their login refused without any indication of why. A substantial portion of our student
user base will be very confused by this and assume that they have either forgotten or mistyped
their username/password.

Fortunately, Squid supports another external interface for URL redirection. Squid can be
configured to pass each URL requested to an external program that can do one of two things:

• pass the URL back unchanged, in which case the proxy fetches the requested URL
normally

• pass back a different URL, in which case the original URL request is redirected to the new
URL.

The redirector interface is intended for implementing content filtering -- a URL redirector
would typically maintain a database of undesirable URLs, and requests that were found in the
database would be redirected to a WWW page containing a notice telling the user that the
requested URL has been classified as undesirable.

We realised that URL redirection could be used in a much more powerful way. We made a
modification to squid that passes the username as well as the client IP address to the redirector.
Then we wrote a redirector that keeps a cache of active session information which is retrieved
from the JCBM server. If a particular session exceeds the quota for the account it is being
billed to, the URL redirector will discover this when it next refreshes the cached session status.
At this point, the URL redirector will redirect all requests to a servlet that informs the user that
their current balance has exceeded their quota.

The following diagram shows all the components in this design:

Optimising Internet Bandwidth in Developing Country Higher Education

Page 136

Using URL redirection allows us to handle various aspects of the user interface in a user-
friendly way. For example, when opening a billing session, the user may have to choose one of
several available accounts to which the session is to be billed. Using the URL redirector, the
users URL request is redirected to a page that displays a list of accounts available to the user.

3.6.7 Technical aspects of URL redirector

The current URL redirector was written in C and communicates with the JCBM server over a
standard sockets-interface TCP connection. The only complication in implementing the URL
redirector is that Squid usually starts up several copies of the redirector program for
performance considerations. All these copies of the URL redirector must share a single copy of
the cached session information. This was done using SVR4 IPC, namely shared memory
segments to store the session info cache and a single semaphore to guarantee atomic update of
the session list.

The following diagram shows the several URL redirector processes sharing a common cache of
session status information. The Squid proxy server sends requested URLs to the URL
redirectors, and these processes may in term request updated session status information from
the JCBM server if the cached information for the session making the URL request is stale.

Optimising Internet Bandwidth in Developing Country Higher Education

Page 137

3.7 Current system features
3.7.1 Hierarchical accounts

Billing accounts for the system are organised into a hierarchical structure. In a real
implementation, this hierarchical structure is intended to reflect the hierarchical group structure
of users. For example, at our university, our users would be divided into student and staff
users. The staff users would be divided into administrative staff and academic staff, and these
groups would be further subdivided into faculties and departments. Student users would be
subdivided into courses.

With this hierarchical structure, a usage quota can be attached at any point in the hierarchy. So
individuals can have a usage quota, but each group can also have a usage quota.

Optimising Internet Bandwidth in Developing Country Higher Education

Page 138

In the current implementation it is also possible to administratively enable/disable any part of
the tree. So, as an example, it would be possible to disable all student accounts by simply
disabling the account uz.students in the above hierarchy. When a portion of the hierarchy is
disabled, then any all sessions associated with accounts in this disabled portion of the hierarchy
will be marked as blocked. These sessions will be unable to fetch URLs through the proxy
server as the URL redirector will then redirect all URL requests for these sessions to a servlet
that tells the user that their account is currently disabled.

In fact, the current implementation has a notion of "overriding" the behaviour of a parent
account, so for example, while all student accounts could be disabled, one particular course
could be selectively enabled. This enables quite fine level administrative control over which
accounts have access.

A good example of the application of this kind of access control would be a policy where
general student access is not permitted during daytime hours (8am-4pm), but each course is
permitted access during its scheduled class times. This might be necessary when bandwidth
resources are at a premium to guarantee an acceptable QoS for users in scheduled classes.

An improvement we would like to make to the current server is to extend the semantics of
restrictions on accounts so that these also have time and address restrictions. This would make
it possible to attach a restriction to the group account for a particular course so that the account
was governed by the general restrictions on student accounts, but was otherwise enabled for
access during scheduled class times for the course for workstations in a particular lab.

Each user may have more than one account -- in fact, this is typically the case. In our current
implementation, a user will be identified by his/her login on the Linux server that hosts the
user's email account. The user’s login ID will be the first component of the fully qualified
name of each of the user's accounts. For example, a student user might be registered in two
courses and additionally have a personal usage quota. The list of accounts for this student
would look like:

• s971219.scs315.courses.students.uz

• s971219.sma215.courses.students.uz

• s971219.personal.students.uz

3.7.2 "Structured" billing

A user account can contain billing information for several different kinds of services. These
services form a natural hierarchy as well. For example, Internet charges can arise from WWW
usage, Email usage, dialup charges and other traffic that comes directly through the border
firewall (secure HTTP, streaming media clients, etc.). Each of these categories may be further
subdivided. In the diagram below, WWW traffic is divided into International, Domestic and
Cache traffic. Each of these types of traffic may be charged at a different rate/Mbyte.

This is handled by having a hierarchical structure of cost codes. Each cost code has a charging
rate associated with it, and additionally a discount parameter that can be used to effect off-peak
hour usage discounts.

The total charges for a particular cost code will be the total for all of the "children" of that cost
code. In the example above, the WWW cost code will be the total of the cost codes for

Optimising Internet Bandwidth in Developing Country Higher Education

Page 139

International, Domestic and Cache WWW traffic.

3.7.3 How items are tallied

When a tallyItem request is sent to the server, it contains a cost code and a quantity (e.g. size of
downloaded URL in bytes). The request also contains information that will bind the request to
a current session (e.g. workstation IP address and user ID).

The cost code and quantity are used to compute a charge and discount for the request. This
charge is added to the current tally for that cost code and account.

The charge then propagates up the hierarchy of cost codes. For example, if the item being
tallied was a URL that was classified as International WWW traffic, then the charge would be
added to the following tallies:
• International WWW traffic charges
• total WWW traffic charges
• total Internet bandwidth charges
• total charges

The tally is also propagated up the account hierarchy. For example, if the tally was for a
session being charged to to the account s971219.scs315.course.students.uz, then the tally
would be added to the tally hierarchy for each of these accounts:
• s971219.scs315.courses.students.uz
• scs315.courses.students.uz
• courses.students.uz
• students.uz
• uz

Each time the tally is added to an account, it is propagated up the hierarchy of cost codes for
the tallies for the account. In this particular example, this would mean that a single tallyItem
request would affect 20 tally items (4 cost codes for 5 accounts) in the database of all tallies.
All of these updates take place in the tally cache in the server, and the updates are written back
to the database periodically.

3.7.4 HTTP user/management interfaces

Users can see the status (current tallies, charges and quotas) of any of their accounts on-line.
These reports are generated directly by servlets in the JCBM server. Since these reports are
generated by servlets embedded in the server, the servlets have access to the currently cached
tallies and session status in the server. This means that the reports the user sees are a real-time
reflection of his/her current charges/tallies/quotas.

There are several servlets that handle the submission of HTML forms for:
• browsing the account hierarchy
• editing account parameters -- administrative enable/disable accounts
• listing all current sessions

3.8 Administrative model
3.8.1 Student usage

Each student user will have several accounts with a separate usage quota for each account:

• For each course that a student is registered in that requires Internet access, the student will
have an account and quota for the course. The per-user quota amount will be negotiated
with the lecturer before user accounts are created. The quota amount will depend on the
usage requirements of the course.

• The lecturer in the course will be able to adjust the quotas for accounts in the group for the
course. This will give the lecturer discretion to allocate additional usage for students.

• There will be a usage quota for the group account for the course. The total usage for all
accounts in the group may not exceed the group quota. If it does, then all the accounts in
the course group are unable to use the WWW.

• Additionally, each student will have a personal use account. Quotas for these accounts will
be issued on a prepaid cash basis only.

This provides a fairly flexible model for subsidizing course-related usage, while curtailing

Optimising Internet Bandwidth in Developing Country Higher Education

Page 140

compulsive runaway usage/abuse. It also gives users the freedom to fund their own usage if
their needs exceed their quota amounts, or if they are not registered in courses with an Internet
access quota.

3.8.2 Staff usage

Staff usage will similarly to student access. Each department will be given a usage quota for all
members of the department. The department will nominate an administrator who can assign
individual quotas to department members.

As in the case of students, staff will have the option of buying additional quota amounts for
their personal accounts, or for "topping up" their departmental quotas.

An important aspect of personal accounts for staff is that the usage details of these accounts
will be kept private. Effectively, our appropriate usage policy will be "he who pays the piper
calls the tune." Users paying for their own access will be free to access whatever they wish. For
departmental usage quotas, we hope that devolving the administration of quotas to a member of
the department will make abuse problems easily spotted and peer controlled.

3.8.3 Prepayment

While most quota usage is subsidized as course-specific or departmental usage, there is the
option for users to purchase additional quota amounts for cash.

In order to minimise the administrative difficulties of buying additional quota amounts, we
chose to implement a voucher-based system similar to that used by prepaid cell phone users. In
our system, we print vouchers in fixed denominations (R5.00, R20.00). Each voucher has a
serial number and a secret number printed on it and is sealed in an envelope. A user buys a
voucher, goes to a WWW browser, and enters the serial number and secret number on the
voucher into a WWW form and submits it.

On the server side, there is a database that contains a record of every voucher that has been
printed. The database records the serial number of each voucher together with a cryptographic
hash of the secret number printed on the voucher. Using these values, a CGI program on the
server can verify the authenticity of the voucher without actually knowing the secret number on
the voucher. This means that the vouchers cannot be compromised without them actually being
stolen. And if vouchers are stolen, then the serial numbers of the stolen vouchers can easily be
removed from the database so that they can no longer be redeemed. (Additionally, any stolen
vouchers that are redeemed will be traceable as there will be a record of who redeemed them
and what accounts they were "deposited to.")

Once a voucher is redeemed, the Rand amount of the voucher is added to the quota for the
user's current account and the voucher is marked as redeemed in the database so that it cannot
be reused.

For staff users, prepayment amounts can be issued against payslip deductions rather than
requiring staff users to buy vouchers for cash. In this case, the prepaid access system still has
advantages over billed access in that the user is consciously aware of how much he/she is
spending -- as the quota amounts have to be bought in advance. This eliminates possible
problems from a compulsive user accumulating a large debt against his/her next payslip
without realising it.

3.8.4 Charging models

In our current implementation, the charge for a tallied item depends on two things:

• the cost code for the tally. In the case of a URL, there might be different WWW cost codes
depending on whether the URL is retrieved from an overseas server, a domestic server, or
the case where the URL is retrieved directly from the on-site cache.

• the current discount in effect for the cost code. The discount can be increased during off-
peak usage times to provide an incentive for users to use the WWW during periods where
there is more available bandwidth, thereby spreading the demand load more evenly around
the clock.

We are still unresolved on the issue of how to compute the charges and time-of-day discounts
for different kinds of traffic. By creating differences in various charges, we can provide
incentives for end users to shift their demand to less expensive services (download from

Optimising Internet Bandwidth in Developing Country Higher Education

Page 141

domestic mirror sites), or moving to off-peak usage (download large files after hours when the
access circuit is uncongested).

3.9 Implementation issues
3.9.1 Browser configuration and rollout

We chose to deploy Netscape communicator in our student labs as it is a single program
solution for our student Internet access needs -- WWW browsing and email/news. Netscape
configuration, customisation and rollout is well documented and we have a lot of control of the
interface our students see.

Deploying Netscape in the student labs required a non-standard installation/configuration of
the software. Each user needs his/her own particular user profile, which contains various
configuration information such as the user's email address, mail/news servers, http proxy
settings and other per-user files such as the user's bookmarks, cookies, certificates, etc. We
configured Netscape to look for the user's Netscape profile directory on his/her home directory
on the file server. Unfortunately, this particular aspect of the configuration was not
documented anywhere we could find -- we relied on a combination of hints from people on
mailing lists and comparing times/dates on snapshots of all the files on a machine before and
after changing the configuration. Netscape looks for initial configuration information in the file
C:\WINDOWS\SYSTEM\NSREG.DAT. This file cannot be marked read-only. If it is,
Netscape will not start.

We used ZenWorks/NAL (Netware Application Launcher) to provide an easy way to install the
Netscape software distribution at a workstation. After the software is installed on the
workstation, we have an ActivePerl script that builds a customised user configuration in the
user's home directory. The script picks up the user's student number from an environment
variable containing the student's login ID on the workstation, looks up the student's details in a
database and generates a customised user profile for that user.

We have replaced the desktop shortcuts and menu items for Netscape so that these point to an
ActivePerl script that checks timestamps on files in the user's profile against the template
profile for all users. If changes have been made to the template profile, these are incorporated
in the user's profile the next time the user launches Netscape. We also removed many
troublesome options from the default Netscape installation -- RealPlayer currently will not
work through our firewall configuration (as we don't currently have sufficient bandwidth to
support RealPlayer), so it not available to students. Neither are several of the utilities that allow
students to edit/create/destroy user profiles.

3.9.2 Our particular environment

In our current implementation, all student users have two accounts - a LAN account (Novell
Netware) which gives them access to the workstations in the student lab, and a Unix account
which is used for IMAP mail and for authentication for the HTTP proxy server.

This is shown in the following diagram

Optimising Internet Bandwidth in Developing Country Higher Education

Page 142

3.9.3 Managing user accounts/passwords

One of the most time consuming (and unplanned for) issues was the issuing of user
accounts/passwords. The existing system for student LAN (Novell login) accounts was that all
registered students were given an account. These accounts usually had either a null password
or a standard password which the students were expected to change when they first logged in.
Which they almost never do.

Clearly such a system is open to abuse, and it is clear to us that there are existing problems
with students "borrowing" accounts, unregistered students using other students accounts.

However, the incentives for abuse are limited as all students have pretty much the same access
to a standard suite of Office applications. This all changes when Internet access is introduced
as we have now associated a monetary value with an account. Even in the case of per-course
quotas, users will want to be sure that other students can not simply login to their account and
exhaust their quota -- which compulsive Internet users will certainly wish to do.

This implied the need for a secure system of issuing account passwords.

Under the current system, each student user has a Novell login which is used to gain access to
the workstation. The user then has a second account on the Linux server that handles student
email (IMAP) and http proxy authentication and accounting services. Access to either mail or
the http proxy (or shell access) will require this username and password.

All registered students have accounts on the Linux server. However, the current system for
issuing passwords for these accounts involves the following steps:

• When the student launches Netscape for the first time, he/she is taken to a CGI script on
the server that usually generates the student Web home page. However, this CGI script will
note that the student does not yet have a password and will redirect the student to a form
asking them to open their account.

• This form will ask them to supply their student number and name (for purposes of
redundancy -- we already know these details) and other sundry information. When the
form is submitted, the CGI script that handles it will pick the next unassigned clear text
password from a database table and set this password as the initial password for the
account. The CGI script will then return the reference number of this password to the user.

• The user will then take this reference number, together with his/her student card to the
networking helpdesk.

• Upon verification of the student card, the helpdesk person will retrieve a printed form with
the matching reference number that contains the clear text of the initial password.

• The user then takes this printed form, launches Netscape and is taken to a form that asks
the user to change the initial password to one of the user's choosing.

While this system does have potential security vulnerabilities to brute force type attacks, it is a
major improvement on the existing system and in principle supplies an initial password to each
user without the password being handled in clear text by any of the system administrators. This
is necessary to reassure the users that their accounts and usage quotas cannot be tampered with
by other users.

3.10 Future development directions
There are several areas of future possible development that have been in our minds since the
early stages of development of the system. Some of these possibilities have influenced the
existing design of the system.

3.10.1 Security issues

The security of password handling for HTTP proxy authentication is acknowledged to be poor.
Usernames and passwords are sent base64 encoded, effectively in the clear. And
username/password credentials are sent with every single URL request from the browser to the
proxy.

In the long term, this is unacceptable, and one of the advantages of separating user
authentication from the mechanism for quota enforcement will makes it easier to adopt a
different method for user authentication.

Optimising Internet Bandwidth in Developing Country Higher Education

Page 143

User authentication is part of a broader architectural issue. We are looking at integrating user
authentication from our LAN servers (primarily NDS based) and our Unix systems.

3.10.2 Integrating other services

It was the original intent of the design of this system that it would be a general accounting
service for a range of different network services. The reasons for focussing on WWW traffic
were:

• it comprises the bulk of our Internet traffic

• the cache server produces a detailed and easy-to-parse log file of all WWW activity.

The general design of the JCBM server makes it easy to add accounting and quota management
for any service that produces a parseable log file. In the short term we plan to introduce
accounting of email usage and dialup usage by writing scripts that parse the log files that are
produced by these services. Services that pass directly through the firewall will also be subject
to accounting, and log files on the firewall can also be parsed to account for secure HTTP
traffic and other applications like streaming media. While we do not currently have the
bandwidth resources to offer access to streaming media, these applications will be of increasing
importance and we will need to add these into the accounting infrastructure.

We are looking at ways to integrate accounting for network printing, and if possible telephone
usage by extracting the information from PABX log file records.

3.10.3 Platform issues

The Acme.Serve class library that the current JCBM server is based on is not a current Java
servlet implementation. We are researching more mainstream Java server/servlet
implementations with a view to rehosting the current JCBM server on one of these. In
particular, we would like to be able to use Java server pages (JSPs) to speed up the
development of some of the servlets. Some of the dynamically generated output in the current
implementation is still being done with Perl/CGI as this is quicker to write than straight Java
servlet code.

3.10.4 Intranet applications

One of the interesting possibilities of using the URL redirector is the implementation of a
messaging system in the server. Bulletins to users can be delivered through the browser
interface by redirecting URL requests to a servlet that returns queued messages for a particular
user or group.

3.10.5 Directory service integration

The hierarchical structure of user accounts duplicates one of the functions of a typical directory
service, such as NDS, LDAP or Active Directory. We would like to integrate the management
of user accounts into an existing directory service. This is part of a longer-term initiative to
integrate the management of aspects of our Linux-based services into a standard directory
service.

In order to do this, we need to understand how to extend the directory schema of a standard
directory service infrastructure. We are currently researching how to do this with OpenLDAP
as the documentation and development tools are freely available for it. The hope is that LDAP
integration will enable us to interoperate with the other two major commercially provided
directory services, Novell's NDS and MicroSoft's ActiveDirectory as both of these claim to
offer LDAP access to their directory information.

The directory service can contain information about what services are allowed for a particular
user and which services are blocked. Certain classes of user may have access to secure HTTP
or RealAudio, where others may not.

3.10.6 QoS support

Linux has well developed, if not yet well documented QoS support, including traffic shaping
and class-based queuing (CBQ). Eventually we would like to be able to offer different QoS
levels to different classes of users in the account directory. Users could be billed a different
rates that corresponded to different QoS levels.

Optimising Internet Bandwidth in Developing Country Higher Education

Page 144

Directory-enabled QoS support is being promised by the industry. We think that it will be
important to be able to offer differential QoS for Internet services at the boundary of the
network.

Streaming media and other real-time data streams will be an important area for QoS support.
For a site like ours, with limited access bandwidth, audio/video streams will require the
reservation of bandwidth at the border firewall. Connection requests that require a guaranteed
QoS will need to be accepted/rejected based on (i) whether the user has access to the service in
question and (ii) whether sufficient bandwidth can be reserved to guarantee the requested QoS
can be met.

High QoS services will need to be billed slightly differently than ordinary data flows.

