R7548: FINAL TECHNICAL REPORT

Development of clean gene technology for rice transformation and mapping of natural resistance to rice yellow mottle virus and nematodes in rice interspecific crosses.

R7548 is composed of two projects: Project 1: Development of clean gene technology for rice transformation Project 2: Mapping of natural resistance to rice yellow mottle virus and nematodes in rice interspecific crosses

R7548: TECHNICAL REPORT - Project 1 (A Afolabi, P. Vain)

Executive Summary

The purpose of this project is to provide enabling "clean-gene" technology for rice genetic engineering to related DFID programmes. An already developed *Agrobacterium*-mediated transformation system was used to develop new "clean-gene" technology aimed at producing rice plants free of undesirable selectable marker genes. New binary vectors able to transfer multiple T-DNAs into rice plants were constructed. Hundreds of independently transformed rice plant lines and thousands of progeny plants were produced and analysed providing proof of concept for "clean-gene" transformation technology in rice. The transgenic technologies developed in R7548-1 allowed DFID collaborative programmes (R8031) to introduce nematode resistance genes into rice without any selectable marker genes. The absence of selectable marker genes in transgenic crops is a key issue for biosafety and public acceptance of GMOs in developing countries.

Background

Half the world's population depends on rice as its major source of nutritional calories. Rice systems in W. Africa are intensifying to meet a demand for rice, which has, until now, been fed by imports. This process of intensification is taking place without a parallel adoption of practices to replace the restorative aspects of traditional fallowing.

Rice transformation technologies hold great promise for increasing rice productivity especially in areas where rice farmers have little means to counter damage caused by pests and disease. The absence of classic plant breeding solutions (limited genetic sources of resistance available) and the limitations of chemical treatments (not economically feasible under low input sustainable systems and extreme damage to the environment) presents an excellent opportunity for biotechnological solutions. Until recently, particle gun bombardment-mediated transformation is the most widely used technology to genetically engineer rice. Despite its efficiency, particle gun technology has several drawbacks due to the type of transgene integration patterns it generates in the plant genome. Uncontrolled transgene rearrangements and systematic transgene linkage results in transgenic loci of unpredictable structure and from which the different transgenes - including antibiotic resistance genes - cannot be separated by genetic recombination in segregating progeny. Transgenic plants containing such antibiotic resistance genes are a constraint to uptake (Select Committee / Royal Society recommendations). Therefore, improved transformation technologies need to be developed in order to generate transgenic loci of simple and predictable structure and plants free of undesirable marker genes. Such "clean-gene" technology could be achieved using i) Agrobacterium-mediated transformation systems for rice ii) alternative selectable marker genes. Once developed, these technologies can be used by other DFID projects and internationally.

Project Purpose

The purpose of this project is to provide enabling "clean-gene" technology for rice genetic engineering to related DFID programmes which concentrate on either improving rice resistance to nematodes (R8031) and viruses (R7415) or on studying transgene behaviour in rice (R6948). The absence of selectable marker genes in transgenic crops is a key issue for biosafety and public acceptance in developing countries.

Research Activities

1.1 Construction of 1st generation binary vectors for "clean-gene" technology

1.2 Identification of *Agrobacterium* strains competent to interact with DFID targeted rice varieties.

- 1.3 Production of transgenic rice tissues via *Agrobacterium* transformation.
- 1.4 Production of fertile transgenic rice plants containing 1st generation Clean Gene vectors.
- 1.5 Segregation analysis of transgenics to determine genetic linkage of different transgenes.
- 1.6 Molecular analysis to confirm genetic linkage of different transgenes.

The activities relative to the "Production of transgenic plants containing alternative selectable marker genes" corresponding to Output 2 have been removed from the log frame in 2001 as "clean-gene" technology from Output 1 was available at this date. Transgenic rice plants without any marker gene could be produced. Alternative selectable marker genes were therefore not required.

Outputs

- 1.1 Construction of 1st generation binary vectors for "clean-gene" technology
- 6 binary vectors for rice "clean-gene" transformation were designed and constructed

1.2 Identification of Agrobacterium strains competent to interact with DFID targeted rice varieties

- Agrobacterium strain AGL1 harbouring the dual binary vectors pGreen/pSoup allowed rice transformation at high frequency
- pGreen-based binary vector pRT18 (containing one T-DNA with the *bar* and *gus* gene) and pSoup-based binary vector pRT47 (containing another T-DNA with the *aphIV* and *gfp* genes) were introduced into AGL1 (figure 1).

1.3 Production of transgenic rice tissues via Agrobacterium transformation

- Three selection regimes were applied during the transformation process with strain No. 25 *i*) dual selection of pRT18 and pRT47 T-DNAs *ii*) Selection of pRT18 T-DNA only *iii*) selection of pRT47 T-DNA only.
- The dual T-DNA selection regime was used to produce a large and random population of plants co-transformed and co-expressing all the transgenes present in the pRT18 and the pRT47 T-DNAs. This strategy was designed to by-pass the limitations of post-transformation screening for co-transformed and co-expressing lines in experiments designed to produce marker-free transgenic plants. Later on, the single T-DNA selection regimes were used to directly mimic experiments designed to produce marker-free transgenic plants.
- Hundreds of independently transformed callus lines were produced using single or dual T-DNA selection.

1.4 Production of fertile transgenic rice plants containing 1st generation Clean Gene vectors

• 403 independent plant lines were produced using single or dual T-DNA selection and were assessed for co-transformation and co-expression of transgenes (table 1).

	Selection regime						
pRT18 (pGreen-based) T-DNA	pRT18	pRT18					
_pRT47 (pSoup-based) T-DNA		pRT47	pRT47				
No. of independent plant lines produced	10	208	185				
No. of co-tranformed plant lines	80%(8/10)	100% (208/208)	131 (71%)				
No. of plant lines co-expressing the transgenes	88% (7/8)	70% (146/208)	32 (24%)				
No. of plant line studied in T₁	3	50	9				
Unlinked lines	100% (3/3)	48% (24/50)	44 % (4/9)				
Unlinked loci	63% (5/8)	44% (43/98)	33% (7/21)				
"G-S locus" (linked pGreen and pSoup T-DNAs)	38% (3/8)	56% (55/98)	67% (14/21)				
"G locus" (pGreen T-DNA alone)	50% (4/8)	31% (30/98)	14% (3/21)				
"S locus" (Soup T-DNA alone)	12% (1/8)	13% (13/98)	19% (4/21)				

Table I. Summary of results of transformation experiments using different T-DNA selection regimes

1.5 <u>Segregation analysis of transgenics to determine genetic linkage of different transgenes</u>

- Transgene inheritance and segregation of transgene phenotype were analysed in 62 independently transformed plant lines: 50 plant lines produced with dual T-DNA selection (3109 T₁ plants studied) and 12 plant lines with single T-DNA selection (727 T₁ plants studied).
- Transgene inheritance was studied using the genotyping data of the T₁ plants. The observed ratios for each line were compared statistically to those of 30 theoretical models representing all possible linkage configurations of pRT18 (pGreen-based) and pRT47 (pSoup-based) T-DNAs in up to four Mendelian loci. For each independent line, a three step analysis was undertaken to compare the observed ratios to the ratios from the 30 theoretical models 1) elimination of models predicting the absence of a given type of progeny when some where observed among the T₁ plants 2) ranking all possible models according to their probability (using Chi square analysis). 3) comparison of each probable model to the T₀ molecular data (*i.e. bar, gus, aphIV* and *gfp* gene copy numbers) and to the number of active loci determined by the segregation of transgene phenotype (see activity 1.6).
- In total, more than 4500 genotyping and 8000 phenotyping analyses were conducted as well as 7440 individual tests to identify all probable models for each of the 62 independently transformed plant lines.
- Unlinked T-DNA integrations were obtained in around half of the loci providing proof of concept for clean gene transformation technology in rice.

n genetic linkage of different transgenes

number, integration pattern, loci number) and expression were y transformed plant lines. Transgene presence and expression were

transgenes allowed clear identification of which T-DNA was present

es contained one locus or more harbouring a single-type T-DNA. t for clean gene transformation technology in rice.

Fig. 2 Dot blot analysis of T_1 rice plants produced by self pollination of a T_0 plant independently transformed with *Agrobactrium* strain No. 25 harbouring pRT18 (containing the *bar* and *gus* genes) and pRT47 (containing the *aphIV* and *gfp* genes) in AGL1. The membrane was probed with the R2272 rice genomic RFLP probe, then probes for the *bar*, *gus*, *aphIV* and *gfp* genes. Dot in right bottom corner contains wild-type rice DNA. Rectangle indicates T_1 plants containing pRT47 and not pRT47 and not pRT47 and not pRT48 - DNAs.

Contribution of Outputs

Project R4578-1 has successfully provided enabling technology for the production of transgenic rice plants free of selectable marker gene (*i.e.* containing only the genes of interest) to other DFID programmes which concentrate on improving rice resistance to nematodes (R8031). Hundreds of transgenic lines and thousands of progeny plants were produced and studied. In addition, R4578-1 contributed to an understanding of the factors controlling T-DNA integration in rice.

The transgenic technologies developed in R7548-1 allowed DFID collaborative programmes (R8031) to introduce nematode resistance genes into rice without any selectable marker genes. Upon confirmation of resistance under controlled conditions, transformed seeds will be made available to downstream users for testing at WARDA and IRRI. Germplasm would then be made available to NARS by the CGIAR centres, for the testing and release. The ultimate beneficiaries would be farmers in Africa and Asia

Publications:

- Vain P., **A.S. Afolabi**, B. Worland and J.W. Snape (2003) Transgene behaviour in populations of rice plants transformed using a new dual binary vector system : pGreen / pSoup. *Theor. Appl. Genet.* 107:210-217.
- **A.S. Afolabi** (2003) Development and understanding of a new "clean-gene" technology for rice (*Oryza sativa* L.) Ph.D. Thesis. University of East Anglia, Norwich, UK.

Internal Reports:

• Vain P., **A.S. Afolabi** and J.W. Snape (2002) Development of clean gene technology for rice transformation. DFID Annual Report.

- Vain P., **A.S. Afolabi** and J.W. Snape (2001) Development of clean gene technology for rice transformation. DFID Annual Report.
- **A. Afolabi**, JW Snape and P. Vain (2001) "Clean Gene" transformation technology for rice. Highlight 2001 DFID Annual report.
- Vain P., **A.S. Afolabi** and J.W. Snape (2000) Development of clean gene technology for rice transformation. DFID Annual Report.

Posters:

- Afolabi AS, B Worland, JW Snape and P Vain (2003) Development and understanding of new clean gene technology in rice. 7th International Congress of Plant Molecular Biology. June 23-28, Barcelona, Spain. S10-95.
- Afolabi AS, JW Snape and P Vain (2002) Development and understanding of new clean gene technology in rice. JIC Annual Science Meeting 2002. October 31st- November 1st. John Innes Centre, Norwich, UK.
- Afolabi AS, JW Snape and P Vain (2002) Development of *Agrobacterium*-mediated clean gene (marker free) technology for rice transformation using a novel dual binary plasmid Pgreen/pSoup. RF-NARO Conference on biotechnology, breeding and seed systems: research output that reaches farmers. Entebbe, November 4-7th, Uganda. p20.
- Afolabi AS, B Worland, JW Snape and P Vain (2002) Pgreen/pSoup dual binary vector in *Agrobacterium*-mediated co-transformation show good promise for generating marker free transgenic rice. 2nd Biennial Regional Rice Research Review (4Rs 2002) Meeting. April 9-12 2002. WARDA Headquaters, M'be/Bouake, Ivory Coast.
- Afolabi AS, JW Snape and P Vain (2001) Development of *Agrobacterium*-mediated clean gene technology for rice transformation. JIC Annual Science Meeting 2001. November 1-2. John Innes Centre, Norwich, UK.
- Afolabi AS, B Worland, P Mullineau, JW Snape and P Vain (2000) Development of clean gene technology for rice transformation. JIC Annual Science Meeting 2000. November. John Innes Centre, Norwich, UK.

Seminars:

- P. Vain (2000) WARDA, Bouake, Ivory Coast
- P. Vain (2000) DFID Plant Biotechnology Group Meeting, London, UK
- P. Vain (2000) Cereal Research Department seminar, Norwich, UK
- P. Vain (2000) DFID-GATSBY-WARDA Rice Biotechnology Meeting, Norwich, UK
- P. Vain (2000) DFID Plant Biotechnology Group Meeting, London, UK
- P. Vain (2001) DFID-PETRA Project Scientist Meeting, Norwich, UK
- P. Vain (2001) Crop Research Department seminar, Norwich, UK
- P. Vain (2001) DFID Plant Biotechnology Group Meeting, London, UK
- P. Vain (2002) Zhejiang University, Hangzhou, China
- A. Afolabi (2002) Crop Research Department seminar, Norwich, UK
- P. Vain (2002) Rice Research Institute of AAAS, Hefei, China
- A. Afolabi (2002) DFID Plant Biotechnology Group Meeting, London, UK
- A. Afolabi (2002) Conference on biotechnology, breeding and seed systems, Entebbe, Uganda
- A. Afolabi (2002) 2nd Regional Rice Research Review Meeting, WARDA, Bouake Ivory Coast.
- P. Vain (2003) DFID Plant Biotechnology Group Meeting, London, UK
- P. Vain (2003) DFID Plant Biotechnology Group Meeting, Norwich, UK

Other reports:

- A Afolabi (2002) UEA-JIC-Rockefeller Foundation. Annual report Year 3 Ph.D.
- A Afolabi (2001) UEA-JIC-Rockefeller Foundation. Annual report Year 2 Ph.D.
- A Afolabi (2000) UEA-JIC-Rockefeller Foundation. Annual report Year 1 Ph.D.

R7548: TECHNICAL REPORT - Project 2 (J W Snape, M Koyama, P-L Ammousou)

Executive Summary

The purpose of this project was to map major genes/QTL for natural resistance to RYMV and nematodes in introgression lines derived from rice interspecific crosses (*Oryza sativa x O.glaberrima*), and to investigate QTL controlling components of yield. However, because of the political instabilities in the Ivory Coast and personnel changes at WARDA, it was not possible for WARDA to carry out weed competition experiments with the mapping populations, and hence they did not provide any data on yield components for QTL analysis. This part of the project was therefore not achieved. In addition, despite previous data given to us by WARDA indicating that the crosses examined were segregating for RYMV resistance, in containment experiments at JIC, no resistance was found in the parents of the two mapping populations, and, consequently, no genes for resistance could be mapped. Thus the main aspect of this project that was completed was the mapping of major genes /QTLs for nematode resistance.

Background

In 1991, in response to problems of rice cultivation in Sub-Saharan Africa, WARDA decided to create interspecific hybrids to generate a "low management rice plant type" for resource poor farmers in rainfed ecosystems to improve the welfare of rice producers and consumers. A wide hybridisation program was initiated in 1992, using as parents one inbred *O. sativa* japonica upland rice line (WAB 56-104) crossed with a cultivated *O. glaberrima* line (CG14) from Senegal. More than 300 backcross-introgressed lines (BC_2F_6) derived from these two parents have been generated through anther culture and double haploidization in the early generations. In general, these interspecific lines behave like *O.glaberrima* at the vegetative stage and like *O.sativa* at the reproductive stage. Those lines containing introgressions of *O.glaberrima* showed high yield potential and have been screened and characterized in the field for many traits affecting rice smallholder farmers throughout West Africa.

In general, hybridization between *O.sativa* and *O.glaberrima* produces a near sterile F_1s . However, by selecting certain varieties of *O.sativa* (e.g. WAB 56-104) and *O.glaberrima* (e.g. CG 14) for crossing, it was possible to reduce this level of sterility to 95% in F_1 generation. These F_1 plants showed a number of desired traits of the *O.glaberrima* parent including the lack of secondary branches on the panicles and early vigour. The F1 plants were then backcrossed twice with the *O.sativa* parent to increase fertility (5-95%) while at the same time helping to combine the *O.sativa* and *O.glaberrima* traits in the F_2 population. The majority of the population resembled either one or the other parent and with varying in levels of fertility. Up to one third of the F_2 population were intermediates showing combinations of traits from the two species.

Some of these have the following characteristics:

- Secondary panicle branching giving the high yield characteristic of O.sativa varieties
- Early maturity, with the plants ripening between 75 to 100 days after sowing

Rapid vegetative growth with droopy leaves enabling the plants to compete successfully against weeds

- Production of high numbers of tall erected tillers
- Multiple disease and pest resistance traits

One *O.glaberrima* accession (TOG 5681) and one *O.sativa* indica (Gigante) have shown an immune reaction after being infected by different isolates of RYMV. Several *O.sativa* spp. japonica's upland varieties, like Moroberekan and OS6 have shown high levels of tolerance to RYMV (4% of yield losses). A tropical japonica variety Azucena has been used by breeders as sources of RYMV resistance in their breeding programs. A diallel analysis of resistance to rice yellow mottle virus in *O.glaberrima* suggested that this resistance was oligogenic. A mapping study on a double haploid population derived from a cross between IR64 and Azucena revealed a major QTL for RYMV resistance on rice chromosome 12. A study on of the inheritance of RYMV resistance demonstrated

that a single recessive gene, mapped on Chromosome 4, using two mapping populations respectively derived from TOG 5681 and Gigante, as donors of the resistance, was responsible for RYMV resistance and have been recently fine mapped.

In parallel, transgenic rice varieties resistant to RYMV have been produced using over expression by the plant of one part of the RNA polymerase of the virus. Moreover, through serial inoculations the emergence of breaking isolates without any link to either an initial high pathogenicity or an increase of virus content was observed.

Some of the WARDA BC_2F_6 interspecific hybrids were described as having levels of resistance towards RYMV (Monty Jones, personal communication). One of project R7548-2 objective was to investigate the genetics behind this resistance using four mapping populations derived from two BILs previously identified by WARDA as RYMV resistant.

O.glaberrima was found resistant to a number of nematodes species such as *Meloidogyne* spp and *Heterodera sacchari*. However, the resistance mechanisms involved have not yet been fully characterized.

Some of WARDA's interspecific (*O.sativa* x *O.glaberrima*) hybrids lines have raised the possibility of introgression nematode resistance. One interspecific WAB 450-IBP-160-HB has shown resistance for *Heterodera sacchari* isolates from Côte d'Ivoire and Ghana, and is reduced susceptibility compared to *O.sativa* lines towards *Meloidogyne graminicola*. The expression of resistance in the interspecific hybrids (*O. sativa* x *O. glaberrima*) suggested that resistance to *H* sacchari seems qualitative whilst that to *Meloidogyne* spp. looked rather quantitative. Another objective of project R7548-2 was to detect and map the nematode resistance originated from *O.glaberrima* using one mapping population derived from one BIL (WAB 450-IBP-160-HB).

Project Purpose

This project was set up to investigate, and when possible, characterize, the genetics behind the resistance of some rice interspecific material against three different species of plant parasitic nematodes (*Heterodera* spp., *Meloidogyne* spp. and *Pratylenchus* spp.) and RYMV.

Research Activities

1.1 SSR and anchor RFLP polymorphism levels between parental lines established

1.2 Four populations genotyped for polymorphic SSRs and RFLPs

2.1 Resistance to RYMV and nematodes phenotyped

2.2 QTL maps produced by combining resistance data and genotype characterisation

2.3 Diagnostic markers developed for marker-assisted selection

Outputs

1.1 <u>SSR and anchor RFLP polymorphism levels between parental lines established</u> 1.2 <u>Four populations genotyped for polymorphic SSRs and RFLPs</u>

Initially this study was focused on the following four mapping populations – See Figure 1

- WAB 450-IBP-160-HB x ITA 257 (105 F₄ families)
- WAB 450-IBP-160-HB x OS6 (19 F₅ families)
- WAB 450-IBP-160-HB x Moroberekan (48 F₅ families)
- WAB 450-11-2-BL1 DR1x Bouaké 189 (76 F₃ families)

The parental screens for markers included the following lines:

WAB 56-104 and CG14 (the two WARDA interspecifics ancestors), WAB 450-IBP-160-HB (WARDA interspecific BIL), ITA 257 (inbred line), OS6 (West African landrace) and Moroberekan (West African landrace), WAB 450-11-2-BL1-DR1 (WARDA interspecific BIL), Bouaké 189 (West African landrace). On top of those line a highly susceptible line to RYMV, ITA 212, was used as a positive control.

To perform the DNA extractions needed for this study, the protocols used were either a CTAB protocol or the DNeasy 96 Plant kit (Quiagen). Eluted DNA solutions are stored at 4°C (for short term use) or at -20°C (for long term use). SSR amplification was carried out using standard procedures developed at JIC and elsewhere. However, some recalcitrant markers were successfully amplified using this special PCR amplification profile (source: Plant Breeding Unit, Cornell University, USA). Denaturing acrylamide gels were used to analyse the SSR PCR products. In addition to SSR markers, Sequence Tag Site (STS) procedure and the Cleaved Amplified Polymorphism (CAPS) procedure were used to generate further markers for specific regions of interest. The protocols were inspired from Konieczny and Ausubel, 1993 and from the Rice Genome Project of Japan website (<u>http://www.rgp.dna.affrc.go.jp</u>) from which the CAPS and STS primers sequences were found.

A set of 285 simple sequence repeat markers (SSR) and 3 sequence tag markers (STS), covering more than 300 loci were tested and used in the mapping populations and are shown in the Tables below :

1	2		3		4		5		6
RM323 1	RM109 0	PM 60		DM207		OSP 35		BH (B	
RM 1 19.3	OSR 17 1.1		0	RIVIJU/	V	RM159	0	RM133	0
RM 84 26.2	OSR 11 4.8	RM 81B	0	RM335	21.5	RM122	0	RM197	2.2
RM 86 28.4	RM110 6.9	RM 36	4.5	DMOOA	05.4	RM 13	28.6	OSR 19	7.4
RM283 31.4	OSR 14 6.9	DM 7	64	RM261	35.4	RM267	28.6	RM204	25.1
OSR 2 36.2	RM211 14.4		0.4	RM185	50.8	RM267	28.6	RM225	26.2
RM272 37.3	RM236 14.4	RM132	7		0010	RM194	34.7	RM115	26.2
RM259 54.2	RM233A 16.3	RM 22	11	RM177	50.8	RM289	56.7	RM217	26.2
RM243 57.3	RM279 17.3	DM024	45.7	RM142	68 5	RM169	57.9	RM314	33.6
RM 35 57.3	RM 8 28.7	RIVIZƏT	13.7		00.0	RM146	78.7	RM253	37.
RM 23 71.6	RM 53 32.7	RM175	23.9	RM119	76.1	RM 39	78.7	RM 50	39.5
RM312 71.6	RM174 47.5	OSR 16	42.9	PM273	0/ /	RM291	78.7	RM276	40.3
RM 81A 77.5	OSR 9A 49.8		50.4		34.4	RM163	78.7	RM121	43.8
RM238A 77.5	RM 71 49.8	USR 13	53.1	RM252	99	RM164	78.7	RM238B	46.1
RM140 78.4	RM322 49.8	RM218	67.8	DM244	406.0	RM161	96.9	RM136	51.2
RM129 78.4	RM191 51.9	RM232	76.7	RWZ41	100.2	RM305	96.9	RM 3	74.3
RM294B 78.4	RM327 51.9	RMZJZ	10.1	RM303	116.9	RM173	99.8	DSR 18 RM275	108.3
RM157B 78.4	RM324 66	RM157A	76.7	DM047	440.0	RM188	100.6	RM343	115.8
RM329 78.4	RW 27 00	RM251	79.1	RM317	118.3	RM233B	110	RM 30	125.4
RM113 78.4	RM290 00	DM292	100.6	RM255	135.4	RM178	118.8	RM340	133.5
RM150A 78.4	RW301 00	RIVIZOZ	100.0			RM 26	118.8	RM141	143.7
RM158 78.4	RM 20 68 0	RM338	108.4	RM348	137.9	RM 31	118.8	RM103	143.7
RM 9 92.4	RM25 00.5	RM156	125.7	RM349	146.8	RM274	126.6	OSR 21	143.7
RM 5 94.9	RM341 82.7	DM 16	121.5		140.0	RM 87	129.2	RM345	145.2
RM 34 104.2	RM106 123.2		131.3	RM131	148.8	RM334	141.8	RM150C	6C
RM237 115.2	RM263 127.5	RM347	131.5	RM124	150 1	RM249	5C	RM193	6L
RM246 115.2	RM221 143.7	OSR 31	157.3	Nii 124		RM225		OSR 25	
OSR 27 134.8	RM318 150.8	DM 40	159.6	RM127	150.1				
RM200 143.2	RM 6 154.7	- NW 43	130.0	PM280	152.3				
RM302 147.8	RM240 158	RM203	165.9	I/WIZOU	JL,J				
RM319 150.2	RM112 166	RM 55	168.2	RM150B	4L				
RM102 152.2	RM250 170.1	DM496	160.0	OSD 15					
OSR 3 154.8	RM166 183	RIVI 100	100.2	USKIJ					
RM297 155.9	RM208 186.4	RM168	171.2						
RM265 155.9	RM213 186.4	RM293	193.4						
RM315 165.3	RM 48 190.2	DM142	207.2						
DSR 23 180.0	RM207 191.2	rivi 145	207.3						
RM165 186.6	RM266 192.2	RM130	208.2						
RM 14 194.1	OSR 26 196.8	RM114	208.2						
	RM183 2L	DM4.40	20012						
	OSR 9B	KW148	224.2						
	USK 8	RM 85	231						

3L

RM227

OSR 5

	-					
RM192		0			l fi	R
RM295		0				0
RM 51		0			<u> </u>	R
RM298		0				2
RM 82		4.4				R
RM125		24.8			İ	R
RM180		30.1			Ī	R
RM325B		33.3				R
RM214		34.7				R
RM320		36.1				R
RM 2		42.1				R
RM 11		47			İ	R
RM346		47			Ī	R
OSR 4		61				R
RM336		61				2
RM 10		63.5			Ľ	R
RM351		63.5			ŀ	R
RM 70		64.6	-		Ī	R
RM234		88.2				R
RM 47		90.4	_			R
RM 18		90.4	-			2
RM118		96.9	-		ľ	
RM134		96.9	-		Ì	R
DM172		115.3	-	_	Ī	R
DM2/Q		116.6				R
		110.0	_			R
U3K 22		110.0				R

7

	8		
RM337		1.1	
OSR 34		9.4	
RM 52		24.8	
RM 38		28	
RM 25		52.2	
RM310		57	
RM126		57	
RM 72		60.9	
RM330B		60.9	
RM 44		60.9	
RM 88		60.9	
RM 32		60.9	
RM350		60.9	
RM195		60.9	
RM137		69	
RM325A		69	
RM331		69	
RM339		72.2	
RM342A		78.4	
RM 42		78.4	
RM223		80.5	
RM284		83.7	
RM210		90.3	
RM256		101.5	
RM 80		103.7	
OSR 7		103.7	
RM308		104.8	
RM230		112.2	
RM264		128.6	
RM281		128.6	
RM344		8C	

	9		
RM 41		0	
RM296		0	
RM219		1.7	
RM285		1.8	
RM316		1.8	
RM342B		14.3	
RM105		32.1	
RM321		32.1	
RM257		66.1	
RM242		73.3	
RM108		73.3	
RM288		74.6	
RM278		77.5	
RM201		81.2	
RM328		82.4	
RM107		82.4	
OSR 29		82.4	
OSR 28		85.4	
RM189		90.7	
RM215		99.4	
RM245		112.3	
RM205		114.7	
OSR 12			

10

RM330A

RM222

RM244

RM216

RM239

RM311

RM184

RM271

RM269

RM269

RM258

RM304

OSR 33

RM294A

RM228

RM147

RM333

	2.4		RM2
	11.3		RM3
	15		RM1
	47.0		OSR
	17.6		RM2
	25.2		R728
	25.2		RM2
			RM2
	58.3		RM 2
	59.4		C189
	<u> </u>		C50
	03.0		RM2
	69.6		E367
	70.8		C950
	73		G18 ⁻
	10		S128
	73		C102
	87.1		S187
	06.3		E442
	30.3		RM2
	99.8		RM1

110.4

286	0	
332	27.9	
167	37.5	
R 1	54	
202	54	
8	64.2	
209	73.9	
229	77.8	
21	85.7	
9	85.7	
	89.5	
206	102.9	
76	108.5	
0	110	
81	112	
886	117	
2955	117.3	
72	117.3	
20	117.9	
224	120.1	
144	123.2	

11

12 RM 20A 3.2 5.2 RM 4A RM 19 20.9 RM247 32.3 RM117 <u>32.3</u> 46.8 RM 83 RM179 46.8 OSR 20 49.5 57.2 RM277 65.5 RM313 RM309 74.5 RM270 91.3 RM235 91.3 RM 17 109.1 RM 12 109.1 OSR 32 12L

 Microsatellites which amplified
 Microsatellites which did not amplify
 Polymorphic microsatellites for the F₄ families
 Polymorphic microsatellites for the F₃ families
 Non-polymorphic microsatellites

2.1 Resistance to RYMV and nematodes phenotyped

Virus work

Before being able to investigate the genetics behind the resistance towards RYMV in the mapping populations, a parental screen in JIC controlled environment rooms was conducted. The two experiments using an Ivorian Isolate were conducted using the following plant material: WAB 56-104, CG14, WAB 450-IBP-160-HB, ITA 257, OS6 and Moroberekan.

Three virus purifications were carried out using a combination of the methods described by Fauquet and Thouvenel, 1977, Brisco *et al.* 1985 and Mansour (1990). Virus particles were chosen for the inoculation instead of RNA in order to be as close as possible to the field condition. The two experiments using a Nigerian isolate were conducted with the following plant material: WAB 450-11-2-BL1 DR1 and Bouaké 189 (6 plants for each concentration and 2 plants for negative control : one WAB 450-11-2 BL1-DR1 and one Bouaké 189). Observations of symptoms were carried out every 3 days (from 3 to 30 days). To standardize serological tests the antiserum was used as an already optimized 1:1000 dilution (recommended by WARDA)

No RYMV resistance was found to be segregating between the parents of the two mapping populations in controlled environment room conditions. Visual scoring were taken for the experiment with using the Ivorian isolates showing susceptibility to RYMV in all parental pairs (including the ancestors). In order to back those visual scoring with quantitative data, samples of 3 plants at each 4 concentrations was analysed by indirect ELISA for WAB 450 11-2-BL1-DR1 (*O.sativa* japonica *x O.glaberrima*) and Bouaké 189 (*O.sativa* indica) which form the most contrasting parental pair (in term of parental background) among the four crosses. For each concentration, equal amounts of leaves from each of the 3 sampled plants were mixed and titred together serologically. Global means for each variety (grouping the concentration means) were obtained and used to carry out a t-test of comparison of means to test the hypothesis of significance difference among the response towards RYMV for those lines. There was no significant difference among the mean of the two lines, therefore there was no evidence to conclude that those lines respond in a different way to RYMV infection. This implied no possibility of a mapping study using this material.

Nematode work

• Response towards Heterodera sacchari.

For each population, there were separate experiments conducted at CABI Bioscience by John Bridge and Judith Ineson. Two separate experiments conducted on the 105 F_4 families, their parents and the BIL ancestors using isolates RNC 71 and RNC 65, respectively, and one experiment for the 76 F_3 families, their parents and the BIL ancestors using isolate RNC 71. For each experiment, seedlings of each progeny family along with their parents and the BIL ancestors (WAB 56-104 and CG14), were grown. The rice seedlings were grown in 5 cm pots containing soil (Loam: Sand 3:1) in a completely randomised block design (see figure 2 step 0) of 5 replicates (30 randomly placed trays of 20 randomly placed pots each). In addition to those, 4 plants of IDSA6 (a susceptible cultivar from the Ivory Coast) were planted at one end of each tray and 7 were randomly placed within each replicate to act as susceptible checks to assess the most suitable harvesting time. However, depending of sampling on the IDSA6 plants two weeks before the theoretical harvesting dates, the effective harvesting date was calculated. Th4 testing protocols were as described by Bridge & Ineson. Counts were made of the numbers of cysts and white females under microscope.

The Table below shows the segregation patterns observed. Clearly, the parents showed clear discontinuous variation with the WAB 56-104 and CG lines resistant and the *O. Sativa* parents susceptible. This shows that the resistance of the Introgression line is derived from the *o. glaberimma* parent. Thus mapping of this resistance could proceed using the molecular markers.

Results of *H.sacchari* RNC 71 (Ivory Coast) screening experiment on ancestors and parental lines

Response towards Meloidogyne graminicola.

To extract *M.graminicola* J2's (RNC 42 isolate), galled roots from previously infected susceptible plants were washed free from soil in a bucket of water and finally washed over a 1mm sieve. Shoot heights before inoculation were recorded. About 100 J2's in 1 ml of water were inoculated, 15 days after planting, on the parents of the 105 F_4 families, the BIL ancestors and 8 selected highly susceptible and 8 selected highly resistant F_4 families towards *H.sacchari*. In this experiment, the plants were left infested for longer and a galling index used in place of nematode counts to determine rice plant susceptibility. At harvest, 23 DAI, shoot heights after inoculation were recorded. The soil was washed off the root by dipping in a beaker of water until all the soil is removed. Galling index was recorded according the percentage of galls on the roots. The root galling index was determined according to the following scale:0 = no galls; 1 = 10% galls; 2 = 20% galls; 3 = 30% galls, 4 = 40% galls; 5 = 50% galls; 6 = 60% galls; 7 = 70% galls; 8 = 80% galls; 9 = 90% galls; 10 = 100% galls. Once scored, the roots were blotted to dry and weighted.

No resistance towards *Meloidogyne graminicola* was found to be segregating between the parents of the two mapping populations in glasshouse conditions – see below :

• Response towards Pratylenchus zeae.

For the *P.zeae* testing, 100 J2's (of U23IRRI isolate), in 1ml of water were inoculated, 15 days after planting, on the parents of 105 F_4 families, the BIL ancestors, 2 selected highly susceptible and 2 selected highly resistant lines towards *H.sacchari* among the 105 F_4 families. At harvest, 50 DAI, roots were washed, weighted and immersed for 3 min in a boiling solution of equal parts lactic acid, glycerol and distilled water with 0.05% acid fuchsine. Roots were then cleared in a 50:50 mixture of glycerol and distilled water. Then, roots were cut into short lengths and placed in an electric mixer with 30 ml of water. Maceration of 10 sec is carried out to break open the plant material without damaging the nematodes. The macerated material was poured onto the tissue of a Baermann funnel and left for up to 144 hours. For each root sample, two subsamples of cleared maceration solution were taken within the first 48 hours and two others within 48 to 144 hours. The counts of J2's in 1 ml of cleared maceration solution were recorded and the total number of nematodes in the root system deduced as well as the density of nematodes per gram of root tissue.

No resistance was found toward *Pratylenchus zeae* neither in the ancestors nor in the interspecific parents or the batches of resistant and susceptible families towards *H.sacchari*.

The results of the phenotyping suggested that only resistance to *H.sacchari* exited in the mapping populations and all further mapping work was concentrated on this objective

2.2 QTL maps produced by combining resistance data and genotype characterisation

Two mapping populations were used for determining the inheritance of resistance to *H.sacchari*

- WAB 450-IBP-160-HB x ITA 257 (105 F₄ families)
- WAB 450-IBP-160-HB x OS6 (19 F_5 families)

The segregating families in these populations were populations were screened with polymorphic markers using a bulked segregant approach in the first instance to narrow down the area of the genome of interest. Genetic map distances was calculated using Joinmap 3.0 (Stam, 1993).

To evaluate the segregation patterns in the populations the phenotypes of each of the segregating families was assessed at CABI for response to *H* sacchaii and the distributions were plotted – see below. Both populations behaved in a similar fashion and the discontinuous segregation observed indicated that resistance is controlled by a single recessive gene, see below.

Single recessive gene hypothesis tests

	Resistant		Susceptible		
	Observed Expected		Observed	Expected	
105 F ₄ families	26	26.25	79	78.75	

 $\chi^2_{3:1}=0.25$, P>0.05

	Resistant		Susceptible		
	Observed Expected		Observed	Expected	
76 F ₃ families	20	19	56	57	

 $\chi^2_{3:1} = 0.07, P > 0.05$

Division of 105 F₄ families tested with *H.sacchari* RNC71 into resistant and susceptible group

Division of 76 F₃ families tested with *H.sacchari* RNC71 into resistant and susceptible group

Using Bulk Segregant Analysis on the F_3 families (with at least 10 DNA samples per line), one microsatellite marker, RM 224 on Chromosome 11 appears to be reasonably linked to the resistance but in a dominant way. Also, the linked band (lower band on photo) segregated in a 3 : 1 ratio (51 : 21 with 4 amplifications failure) like our targeted gene and is present in most segregating and resistant F_3 families and absent or very weak in most of the susceptible F_3 families, confirming our single gene hypothesis.

In total, we found 10 recombinants (over 76 x 2 = 152 gametes in total) for that band indicating we are roughly at 6.5 cM distance from our gene. But this distance is likely to be over estimated by JOINMAP of the real distance from the resistant gene, as the length of chromosome 11 on the consensus map do not exceed 123 cM.

2.3 Diagnostic markers developed for marker-assisted selection

Since the mapping results indicates that there is a single recessive gene for resistance towards *H.sacchari*, located on chromosome 11. the one PCR-based marker linked to *H.sacchari* resistance is now available.

Contribution of Outputs

WARDA, which is the main conduit for promoting outputs and ensuring that technology reaches beneficiaries, have already the capacity to use marker-assisted selection (MAS) in conjunction with conventional breeding techniques. Once a more closely linked marker to this nematode resistance identified, this project will enable the Molecular Marker Group at WARDA to select efficiently rice plants carrying nematode resistance towards *H. sacchari*.

Project R7548-2 will provide enabling technology for marker-assisted selection (MAS) to be conducted in Africa and hopefully at WARDA. WARDA has already the capacity to use MAS in conjunction with conventional breeding techniques. Once a more closely linked marker to this nematode resistance identified, this project will enable the Molecular Marker Group at WARDA to select efficiently rice plants carrying nematode resistance towards *H. sacchari*. WARDA will be the main conduit for promoting outputs and ensuring that technology reaches beneficiaries in Africa.

Publications

None to date

Internal Reports

- * M. Koyama, P-L Amoussou, J. Snape (2002): Mapping of natural resistance to rice yellow mottle virus and nematodes in rice interspecific crosses. DFID Annual report
- * M. Koyama, P-L Amoussou, J. Snape (2001): Mapping of natural resistance to rice yellow mottle virus and nematodes in rice interspecific crosses. DFID Annual report

* M. Koyama, P-L Amoussou, J. Snape (2000): Mapping of natural resistance to rice yellow mottle virus and nematodes in rice interspecific crosses. DFID Annual report

Seminars

- * P-L Amoussou (2003) Mapping of natural nematode resistance in rice for use by West African farmers. DFID Plant Biotechnology group meeting July 9th, John Innes Centre, Norwich, UK.
- * P-L Amoussou (2003) Construction of an Oryza glaberrima Transformation Artificial Chromosome (TAC) library. February 13th. DFID Plant Biotechnology group meeting, London, UK.
- * P-L Amoussou (2002) Mapping of natural nematode resistance in rice for use by West African farmers. Student Poster Interactive Talks (SPIT) site meeting. November 21st, Norwich, UK.
- * P-L Amoussou (2002) Mapping of natural nematode resistance in rice for use by West African farmers. First General Meeting: Biotechnology, Breeding and Seeds Systems for African Crops. November 4-7th Entebbe, Uganda.
- * P-L Amoussou (2002) Mapping of natural nematode resistance in rice for use by West African farmers. DFID Plant Biotechnology group meeting, July 25th, London, UK
- * P-L Amoussou (2001) Transferable traits for rice in West Africa. Crop genetics research department seminar. June 25th , John Innes Centre, Norwich, UK.
- * P-L Amoussou (2000) DFID-GATSBY-WARDA Rice Biotechnology Meeting, John Innes Centre, Norwich, UK.

Posters:

P-L Amoussou, J. Ashurst, J. Bridge, M.P. Jones, J. Snape, M. Koyama. (2002) Mapping of natural nematode resistance in rice for use by West African farmers. First General Meeting: Biotechnology, Breeding and Seeds Systems for African Crops, November 4-7th Entebbe, Uganda.

(This poster was voted "best poster" for the Crop Genetics Department at the John Innes Centre annual meeting, October 31st -November 1st, 2002)

- * P-L Amoussou, J. Ashurst, J. Bridge, M.P. Jones, J. Snape, M. Koyama. (2002) Mapping of natural nematode resistance in rice for West African farmers. Plant, Animal and Microbes Genome conference X conference, January 12-16th San Diego, California, USA.
- * P-L Amoussou, M. Koyama, J. Snape. (2000) Towards low-management rice for West African farmers. John Innes Centre annual meeting, November 2 -3rd Norwich, UK.

Other reports:

- * P-L Amoussou (2003) UEA-JIC-Rockefeller Foundation. Annual reports -Year 3 Ph.D.
- * P-L Amoussou (2001) UEA-JIC-Rockefeller Foundation. Annual reports -Year 2 Ph.D.
- * P-L Amoussou (2000) UEA-JIC-Rockefeller Foundation. Annual reports -Year 1 Ph.D.

Follow-up activities

The Rockefeller Foundation, JIC and CIRAD are supporting a new follow-on project. This is a collaborative project between the John Innes Centre (JIC), the Centre de Cooperation Internationale en Recherche Agronomique pour le developpement (CIRAD) and the West African Rice Development Association (WARDA) funded by the Rockefeller Foundation (RF). Specifically, this Fellowship would enable the development of an *Oryza glaberrima* Transformation Artificial Chromosome (TAC) library. This library should contribute to finding additional markers which are more tightly linked to the *H.sacchari* nematode resistance gene and therefore more reliable to be used routinely for MAS by WARDA Plant breeding unit in the future.

Name and signature of authors of this report

R7548 project 1

Name: Philippe Vain

Signature:

R7548 project 2

Name: John W Snape

Signature:

Date:

Date: