

"RUAHA +10" SEMINAR 1993-2003: Ten years of the Drying Up of the Great Ruaha River 11-12 Dec, 2003: ICE, Sokoine University of Agriculture, Morogoro, Tanzania

Water Productivity Indicators in Great Ruaha River Basin: Analysis and Implications for Decision-Making and Allocating Water

M.Mdemu¹, B. Lankford², R. M. J. Kadigi¹, J.G. Cour¹, and J. Kashaigili¹

¹SWMRG, Sokoine University of Agriculture, Tanzania. ²School of Development Studies, University of East Anglia, UK.

Introduction

- Increase in population coupled with increase in per capital water demand
 - > Result into increase in water demand
 - Pressure on bulk water users (agriculture)-free or allow water to flow to economic productive uses (industries, high value crops)
- Perceptions of undervalued water uses (or un assessed) to be more productive
- This paper explores some of these issues by examining practical WPIs for water use sectors in the GRR Basin.

Outline of presentation

- Introduction
- Values of WPIs
- Indicators and implications for water allocation
- Conclusions

Importance of WPIs

- Generally:
 - Useful in gauging the state of national economies
 Classical means of measuring and assessing impacts
- For BWR
 - >Useful in deriving the benefits accrued from water use
 - creating a linkage with water allocation options
 Important for assessing the potentials for increasing the water productivity (output or benefit per drop) in different water use sectors
- Fostering informed debate about sustainable management and allocation of WR with particular attention to poor families

Values of WPIs

- Physical-apply to all water uses
- Economical-limited to uses with market
- Social values-AC, CVT-WTP
 - Difficulty because of scantiness of dataperceived as less productive
- Departure on application of some of the Dublin principles (Principle No. 4)-water has an economic value in all its competing uses –recognized as an economic good
- Primary-simple counts and measurements of inputs (e.g. water in m³, land in ha) and outputs (tones rice, jobs etc)
- Secondary (biophysical and socio-economic)output/input variables giving ratio indicators
- Tertiary-involve more variables in the ratio computation generating so called 'specific' variables-(\$/person/m³)
 - > are relatively new in water productivity research

• The RIPARWIN argument is that:

- water allocation based on economic efficiency should not necessarily be taken at a face value, but be backed up with comprehensive analysis of benefits accrued from, and opportunity cost of each water user
- ➤WPIs can be classified as primary, secondary and tertiary indicators

Water productivity indicators from water use –GRRB

Water use	Primary	Secondary (biophysical)	Secondary (socio-economic)	Tertiary
Irrigated Crops	Number of farmers Area (ha) Yield (ton) Income (\$) Water used, net & gross, (m ³)	Total biomass (ton/m ³) Crop yield (ton/m ³)	Total revenue (\$/m ³) Net revenue (\$/m ³) No. of employment (Jobs/m ³) Inputs (\$/m ³)	Specific net hydrovalue (\$/pp/m ³ – net) Specific gross hydrovalue (\$/pp/m ³ – gross)
Fishery	Number of fishers (n) Quantity of fish (n) Total income (\$) Water used, net & gross, (m ³)	fishers (fishers/m ³) Yield of fish (ton/m ³) CPUE (kg/unit effort)	Income (\$/m ³) Livelihood supported (Lhood/m ³) Artisan jobs (jobs/m ³)	Specific net hydrovalue (\$/pp/m ³ – net) Specific gross hydrovalue (\$/pp/m ³ – gross)
Domestic use	Households (N) (n) Reduction of water related diseases (diseases/m ³) Total income (\$) Water used, net & gross, (m ³)	Households (hh/m ³) Reduction of water related diseases (diseases/m ³)	Value added to water (\$/m ³)	incr. enterprises per area (Enterp/area/m ³) Increased sanitation (no of birth/ day/m ³)
Environmental	Livelihood supported (n) Number of species available (n) Total income collected (\$) Water evaporated (m ³)	Livelihood supported (N/ha) Number of species available (N/ha)	Income (\$/m ³)	Specific net hydrovalue (\$/pp/m ³ – net) Specific gross hydrovalue (\$/pp/m ³ – gross)
Hydropower	No of people engaged (n) Electricity produced (KW hrs) Water evaporated (m ³) or used Total income (\$)		Income from sales (\$/kWhrs) Economic output (\$/m3)	Specific net hydrovalue (\$/pp/m ³ – net) Specific gross hydrovalue (\$/pp/m ³ – gross)

Implications for allocating water in river basins

- Irrigated agriculture
- Domestic functions/benefits
- Livestock functions/benefits
- Environmental functions/benefits
- Hydropower functions/benefits
- Decision aids

Conclusions

- Productivity indicators are drawn based on input –output conceptualization of water use
- WPIs can be used as a resourceful tool for analysing the tradeoffs and prioritising of water use and allocation in competing and non-competing water uses
- WPIs will enrich the debate over whether water should flow to the sector representing the highest economic utility