PACE - Private Public Partnerships in Rural Electrification Uganda

International Stakeholders Meeting

Presentation by Arthur B. Mugyenzi Renewable Energy Development Centre Feb - 2003

Country Background

- 24.6 million People
- Physical area 236,040 Km²
- GDP Per Capita US \$ 300
- Urban Rural Mix 25:75
- Percentage Electrification 4%
- Generation Installed Capacity 320MW
- Literacy Rate 65%
- Overland Temperature 26-28°C

Energy Situation

- Uganda has one of the World's Lowest Per Capita Consumption of Modern Energy – Petroleum and Electricity
- 90% of Uganda's total Energy consumption is Provided by Biomass
- Only 4% of the Population have access to Electricity yet Uganda has an Energy demand growth of 7% per annum

Energy Situation – Cont'd

- Up till the early 90's there was little concern for Energy sector issues and energy was synonymous with Grid power
- Policy concerns were governed by the annual budgetary allocations by the MOF
- In early 90's the Energy department was established
- In 1999 the Electricity Act was passed

Energy Situation – Cont'd

- In September 2002 the MEMD published the Energy Policy
- Mechanisms are now in place for the guidance of the developments of a broader range of energy forms
- Opportunities are now ripe for investments in solar, biomass, mini & micro grids

Key Developments

- Power sector Restructuring and Privatization based on the June 1999 Strategic plan
- The plan emphasizes the need for competition in promoting efficiency and on private sector participation
- The Electricity Act, 1999 gave legal backing to the reforms and ended the monopoly by the state Utility
- IPP's have since embraced the sector

Recent Renewable Energy and Energy Efficiency Developments

- The power sector currently requires new investments. The options include:-
 - Decentralized power systems
 - IPP projects
 - M'gt contracts with large utilities
- Gov't in collaboration with the W Bank has initiated the 10 year phased Energy for Rural Transformation Program (ERT)

Renewable Energy Dev'pts

- Solar PV market The private sector being the major actor over 10,000 units have been installed to date
- The solar market development has had to overcome a series of barriers with support of the GEF funded UPPPRE project
- A lot still has to be done

Renewable Energy Dev'pts

- Micro Hydro formerly reserved to Churches and the mines scattered around the Country
- The key sizes ranging between 60 90kW
- Mini hydro common with the mines ranging from 1mW 5mW
- The newest at KCC installed capacity 8 -10mW

Renewable Energy Dev'pts

Efficient Biomass Use

- This has largely been the preserve of the NGO's attempts have been made to:-
 - Popularize, increase efficiency and disseminate cooking devices
 - Improve the environment via afforestation
- A lot still remains to be done

Private Sector Involvement in Electricity provision

Prior to passing the Electricity Act 1999 private sector Electricity provision was largely through "Auto-generation" based on petroleum generators the total capacity in 1997 standing at 70mW

Private Sector Involvement in Electricity provision

New IPP's

- Uganda Rural electrification Co ltd W Nile
- Mt Elgon Hydropower
- Hydromax Ltd Baseruka Hoima
- Kakira Sugar works planned 2.6mW /4.5mW
- Sugar Corporation of Uganda 2mW Installed
- Kinyara Sugar Works proposed 1.5mW
- Uganda Rural electrification Co Itd-Bushenyi
- Kilembe mines 3mW and Kasese Cobalt 8mW

Private Sector Involvement in Electricity provision

- Smaller Projects Micro hydros
 - Kisiizi Hospital 60kW installed planned 120kW
 - Kagando Hospital 60kW installed
 - Kuluva Hospital Nebbi 90kW
- Other independent Grids
 - Magale Hospital 37.5kW diesel genset powered minigrid

Assessment of PPP's

 Private participation in provision of power is still a new development therefore there are lessons to be learnt and experiences to be borrowed/shared

Sponsor: Magale Catholic Mission

- Diesel powered (37.5kVA) minigrid
 - Fuel consumption 700 L diesel Pm
 - Had an over capacity
 - Financial constraints
- Opportunity
 - Sell excess power to surrounding community
 - Decentralized system of governance (LC1)
 - Technical capacity
 - Committee

Charisma

- Low cost grid design
- Arrangements
 - Initially
 - Cost sharing the maintenance the mission 10 days a month & the community 20 days a month
 - After experience
 - Tariff based on fixed category payments one bulb UGX 3000, commercial 7000 – 12000 per mo
 - Institutions flat rate 80,000 per mo
 - Served 43 customers

- Growth
 - Month one (June 1999) 6 Connections
 - Month five (October 1999) 61 connections
 - Month nine (Feb 2000) 36 consumers 20 disconnections
- Operation
 - 7:00 10:00 pm daily
 - 3 phases 40 Amps; 12 Amps and 8Amps

- Trading centre consumed 75% of generation
 Had to meet 75% of the maintenance costs
- Tariff raise
 - Month six need for an increased tariff
 - Domestic 600018
 - Commercial 10000 20000

Benefits of the Mini-grid

- To the Hospital
 - Community contribution to health services
 - Increased hospital visitation
 - Higher staff retention
 - More non-resident medical staff (town power)
 - Job seekers
 - Increased medical services-Surgery, lighting etc
 - Reduced generator bill for hospital (March 2000)
 - Public health programs e.g. Video and TV progs

Benefits of the Mini-grid

- To the trading centre
 - Increased population and visitors
 - Increased food
 - Reversed migration
 - Increased and renovated infrastructure
 - Increased hours of business
 - Increased security
 - Better property and lodging rates
 - Battery and mobile phone charging stations

Benefits of the Mini-grid

- To the Institutions
 - Improved academic performance 40% pass rate
 - Today all schools have own gensets or PV systems

- Month 17 Collapse
 - Problems
 - Increased load and fuel prices; regular tariff hikes
 - Suspicion of the elec. Committee
 - Switch from energy efficient bulbs to incand.
 - Introduction of high power gadgets irons etc.
 - Trip switches shut down an entire phase and resulted in indignation by the "clean users"
 - Demand for compensation for supply fluctuations
 - Bill collection problems and Defaults
 - Demands for national tariff rate and a 24-hour service
 - Network depreciation

- New developments
 - Magale down sized its Genset to 3kVA
 - Installed a 325wp Solar PV system
- Other institutions
 - All purchased gensets
- Community
 - Lobbying the Gov't for a 30 km grid extension

Lessons learnt

- Based on Charisma
- Lack of legal and regulatory framework
- Need for tariff subsidy

 Hopefully the issues shall be covered under the ERT and other sector programs e.g. Power IV