# Using local knowledge as a basis for planning ruminant diets in the mid hills of Nepal D. Subba<sup>1</sup>, P. Thorne<sup>2</sup> and F.L. Sinclair<sup>3</sup>

#### The problem

Requirement to deliver information tailored to farmers' individual needs are not well catered for by conventional extension methodologies.

## The solution

Tools that can generate extension material (Fig. 3) customised to specific sets of local circumstances (Fig. 2).

# The mechanism

Software running on interpreted local knowledge of nutritive value, integrated with a biological model of animal nutrition (Fig. 1).

| -                        |                      |   |                       |                  |             |          |                                                                                                                | 1 |
|--------------------------|----------------------|---|-----------------------|------------------|-------------|----------|----------------------------------------------------------------------------------------------------------------|---|
| Fodder Tree Selectio     | n and Use - Nepal    |   |                       |                  |             |          |                                                                                                                |   |
| <b>1</b> 🔊               |                      |   |                       |                  |             |          |                                                                                                                |   |
| Selection Criteria       |                      |   | Rank Uses Curr        | rent Selection R | ation   Spe | pecies I | Descriptions Management Notes                                                                                  |   |
| Site altitude (m.a.s.l.) | 1500                 | 2 | Species<br>Bato siris | Overall score    |             | T        | This page displays a list of possible species ranked<br>according to how well each fits the selection criteria |   |
| Soil colour              | Black (kalo)         | • | Rai Khanyu            | 60.5             |             | ð        | and the relative importance of the intended uses.                                                              |   |
| Soil texture             | Loam (dumuth, pango) | • | Sanopate Neba         | ai 59.7          |             | b        | thigh score indicates a species that is more likely to<br>be suited to the internded use.                      |   |
| Aspect                   | Sunny                | • | Khasre Khanyu         | 53.4             | -           | T        | These score are percentages so suitability may be<br>mited if the absolute score of a highly ranked species    |   |
| Month                    | February             | ⊡ | Gogun                 | 34.1             |             | is       | s low (< 40).                                                                                                  |   |
|                          | February             |   | Bhimsenpati           | 33.8             |             |          |                                                                                                                |   |
|                          | April                |   | Painyu                | 30.2             |             |          |                                                                                                                |   |
|                          | May                  |   | Lute Khanyu           | 27.7             |             |          |                                                                                                                | 2 |
|                          | July                 |   | Chile Khanyu          | 19.5             | -           |          |                                                                                                                |   |
|                          | August<br>September  | - | Amliso                | 6.45             |             |          |                                                                                                                |   |

Figure 1. Selecting fodder trees for local circumstances

#### Acknowledgements:

This poster is an output of a research project funded by the United Kingdom Department for International Development (DFID) for the benefit of developing countries. The views expressed are not necessarily those of DFID. R7637 Livestock Production Programme. Stirling Thorne Associates



| the second s |                                         |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------------|
|                                                                                                                |                                         |
| lank.Uses Current Selection Reton                                                                              | Species Descriptions   Management Notes |
| Ration                                                                                                         | Tree fodder use                         |
| F Test 1                                                                                                       | Feed Quently                            |
| Test2                                                                                                          | Bedahar 2                               |
|                                                                                                                | UThulopate Nebaro 2.5 💉                 |
|                                                                                                                | Other heads                             |
|                                                                                                                | Feed Ountity                            |
|                                                                                                                | Mate gran 1                             |
| and a ball at a ball of a ball                                                                                 | Tenace grasses 3                        |
|                                                                                                                |                                         |
| Bodyweight (kg)                                                                                                | Target milk yield 0/dea/                |
|                                                                                                                |                                         |
|                                                                                                                | 1.1                                     |
|                                                                                                                | 23 itres / day                          |
|                                                                                                                |                                         |
|                                                                                                                |                                         |
| -                                                                                                              |                                         |
|                                                                                                                |                                         |
|                                                                                                                |                                         |
|                                                                                                                |                                         |
|                                                                                                                |                                         |



Figure 2. Incorporating fodder from different species in a ration

Figure 3. Tailored extension output (also available in *Nepali*)

# The benefits of using local knowledge

 overcomes problems of data availability because farmer's knowledge accounts for variability,

 avoids bias arising from assumptions inherent in perspectives of conventional animal scientists,

 generates greater impact because farmers objectives, which are implicit in their evaluation of fodder, are addressed directly.



### Contacts:

<sup>1</sup> Agricultural Research Station, Pakhribas, Dhankuta, Nepal <sup>2</sup> Stirling Thorne Associates, UK

<sup>3</sup> School of Agricultural and Forest Sciences, University of Wales, Bangor, Wales, UK