
4.0 INFLUENCE OF THE THERMAL ECOLOGY OF LOCUSTS 
AND GRASSHOPPERS ON THE SPATIAL VARIATION OF 
PERFORMANCE OF AN ENTOMOPATHOGEN.  
 
ABSTRACT 
1. A model has been developed to predict the performance of a Metarhizium–based 

biopesticide against locusts and grasshoppers.  Currently, the model is limited to 

predicting rate of mortality at site-specific locations.  The main aim of this chapter 

is to enhance the utility of this model by linking it with meteorological station data 

in a Geographic Information System (GIS) framework and use it to investigate the 

spatial variation in the performance of Metarhizium anisopliae var. acridum in 

controlling locusts and grasshoppers.  Examples of pathogen performance against 

five economically important pest species (Dociostaurus maroccanus in Spain, 

Locustana pardalina in South Africa, Oedaleus senegalensis in Niger, 

Nomadacris septemfasciata in Zambia and Chortoicetes terminifera in Australia) 

were used to illustrate the spatial variation in the rate of mortality within a 

country. 

2. Differences in daily mean maximum and minimum ambient temperatures 

recorded at the field site and at meteorological stations can vary by 5-15°C and 0-

9°C, respectively. Disparity in maximum temperature was overcome by capturing 

the spatial variations in the thermal ecology of locusts and grasshoppers through 

the recalibration of body temperatures to meteorological station data. Species-

specific body temperature models successfully described hourly body temperature 

(R2 > 0.56 – 0.87). GIS mortality estimates, when compared with observed field 

data, successfully predicted when 90% mortality would occur to within 5 days. 

3. The model was used to further test model accuracy against an additional four data 

sets for three of the above species and one new species, the Desert locust 

Schistocerca gregaria in Mauritania. Model predictions were also accurate to 

within 5 days. 

4. The GIS model can be used with confidence to investigate area-wide spatial 

variation in the performance of a biopesticide and used to assess management 

strategies of locust control. 
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4.1 Introduction 

In 1997, the FAO (Food and Agriculture Organisation of the United Nations) 

approved the use of Green Muscle®, Metarhizium anisopliae var. acridum-based 

biopesticide, for use in conservation and environmentally sensitive areas against 

locust and grasshopper pests in South Africa and the CILSS (Comité permanent Inter-

états pour la lutte contre la sécheresse dans le Sahel) countries (includes Burkina 

Faso, Mali, Mauritania, Niger, Senegal, Chad, Gambia, Cape-Verde and Guinea-

Bissau) (see Thomas et al., 2000 for overview). Operational use of this product, as an 

alternative to chemical pesticides, has however been minimal with some continuing 

field trials.  This can be attributed to both production constraints and the perception 

that the biological control agent is unreliable. 

Body temperature of the host critically determines the rate of Metarhizium 

development and hence, speed of kill by the pathogen against locusts and 

grasshoppers. This can lead to considerable variation in mortality rates across space 

and time.  For example, in environments with warms nights around 20-25oC (i.e. 

conducive for M. anisopliae growth), combined with relatively short days (limiting 

the number of thermoregulation hours by the locust), 50-100% mortality can be 

achieved in less than 15 days (e.g. Lomer et al., 1997b; Langewald et al., 1999; 

Hunter et al., 2001). On the other hand, in regions where day length is longer, 

providing considerable thermoregulatory opportunity for the host, and nights are cold 

(15oC at which pathogen growth is very slow), 50% mortality may take longer than 35 

days with some individuals surviving well into reproductive maturity (Arthurs & 

Thomas, 2000). Therefore the key to using the biopesticide effectively is to predict 

how the pathogen will perform across space and time. In Chapter 3, a model was 

developed to predict the performance of a Metarhizium–based biopesticide against 

locusts and grasshoppers.  Currently, the model is limited to predicting rate of 

mortality using data collected at site-specific locations.  This study extends the utility 

of this model using meteorological station data in a geographic information system 

(GIS) to investigate the spatial variation of pathogen-performance, against a number 

of economically important locust pest species that are currently the subject of on-

going field trials using Metarhizium–based biopesticides.  

Several studies have successfully mapped spatial and/or temporal abundance 

of vector-borne diseases and/or insect pest incidences using environmental data 
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through satellite images. For example, Rogers and Randolph (2000) illustrated 

changes in malaria distribution with climate change. Similarly, Voss and Dreiser 

(1994) successfully mapped locust habitats.  Remotely sensed data coupled with 

distribution of locust populations has been extensively used to describe environments 

favourable for the outbreak of several important locust and grasshopper species (see 

Nailand, 1993 for summary).  Many of these studies have mainly used vegetation 

classification or normalized differential vegetation index as proxies for temperature 

and soil moisture to describe known distribution of pests and diseases. However, the 

Metarhizium-performance model (see Chapter 3) is based on hourly pathogen 

development, a temporal scale for which the remotely sensed data are captured is too 

coarse a measure to provide accurate estimates. Patz et al., (1998) and Shaman et al., 

(2002) found that prediction of malaria transmission and mosquito abundance could 

be improved when simulated hourly meteorological data variables coupled with 

hydrological models were used. Here we use hourly temperature surfaces coupled 

with biological models to investigate spatial performance of the biopesticide in a GIS 

framework.  

In general, temperature is collected at meteorological stations that are 

geographically scattered throughout a region.  Numerous models predicting 

temperature across space (e.g. interpolation techniques predicting temperature at 

unsampled points between meteorological stations (see Collins & Bolstad, 1996; 

Jarvis & Stuart, 2001a, b for review)) and time (e.g. hourly intervals using a sine-

curve method (Parton & Logan, 1981)) have been developed.  The accuracy of these 

techniques can be variable and are largely influenced by the data [e.g. distribution of 

stations (clustered v.s. scattered points) and accuracy of the data itself], spatial 

variability of the landscape [(topography) (MacEachren & Davidson, 1987)], 

temporal scale (hourly v.s. daily v.s. monthly), spatial scale (regional v.s. continental), 

and computing power. 

Several studies have compared the effectiveness of different spatial 

interpolation techniques for predicting temperature (see Collins & Bolstad, 1996; 

Jarvis & Stuart, 2001a, b for reviews).  Jones and Gladkov (1999) created accurate 

monthly temperature surfaces using the inverse-distance-weighting (IDW) corrected 

by the lapse rate method at the continental level for Latin America and Africa.  These 

surfaces have subsequently been used in a number of agricultural applications (e.g. 
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guiding and investigating taxonomic and genetic variation of wild plants (Jones et al., 

1997; Jones & Gladkov, 1999)), and so form the basis of the method used here. 

Collecting hourly ambient temperatures across a range of microhabitats at 

different field sites can be time-consuming and expensive. Therefore models have 

been developed to predict temperatures based on daily minimum and maximum air 

temperature recorded at meteorological stations (e.g. Parton & Logan, 1981; 

Cesaraccio et al., 2001 for literature reviews).  Parton & Logan (1981) developed a 

sine-exponential model that produces accurate results of hourly temperatures within 

and between seasons (Wann et al., 1985) and has been extensively used for 

agricultural crop models (e.g. Porter et al., 2000).   However, an important 

consideration when using temperatures recorded at weather stations are that they may 

not be representative of temperatures of the microhabitat at the field site (Kennedy, 

1997; Bryant & Shreeve, 2002).  This variance can be attributed to the fact that air 

temperatures are recorded in protected environments (often Stevenson’s screen) at 

heights of 1-2m above the ground surface at meteorological stations, where 

temperatures are less variable than those found occurring nearer the soil surface 

(Arya, 1988; Kennedy, 1997), and tend to be relatively cooler than microhabitats 

occupied by most insects including locusts and grasshoppers.  For example, 

temperatures at the soil surface maybe 15-20°C hotter than air temperatures at 15cm 

and as much as 25-30°C at 150cm (height at which meteorological temperature data 

are recorded) above the soil surface (see Figure 1, data from Castuera, Southern 

Spain). This discrepancy can lead to gross inaccuracies when determining 

temperatures actually experienced by insects and thus, the outcome of processes 

dependent on temperature rate effects (e.g. distribution of insects (Bryant et al., 2002) 

and invasive species (Drake, 1994); global warming effects on disease risk (Harvell et 

al., 2002; Rogers & Randolph (2000)).  Incorrect predictions may be further 

accentuated when insects thermoregulate, maintaining their body temperatures at 

temperatures different to those recorded both in the field and at meteorological 

stations (see Chapter 2). 

Many ectotherms, including the majority of locusts and grasshoppers are able 

to maintain body temperatures that are independent from their surroundings (e.g. 

Digby, 1955; Heinrich, 1974; Uvarov, 1977; May, 1979 for reviews).  For example, 

Locustana pardalina (Walker), as with other economically important acridid species 
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(e.g. see Uvarov 1977; Chapter 2), is an active behavioural thermoregulator, able to 

regulate its body temperature close to 40°C for at least 8 hours of the day (Blanford & 

Thomas, 2000) and can result in body temperatures being as much as 10-15°C higher 

than ambient temperatures.  The thermal behaviour of L. pardalina, as with many 

insects, has been successfully described through the use of body temperature models, 

which capture changes in body temperature throughout the day in relation to ambient 

temperature and other environmental factors, such as solar radiation (e.g. Kemp, 

1986; Carruthers et al., 1992; Blanford & Thomas, 2000; Bryant et al., 2000; Chapter 

2).  Therefore, instead of concentrating on quantifying thermal features of different 

microhabitats, as proposed by Kennedy (1997), this study quantifies the known 

behaviour of several locust and grasshopper species in relation to ambient temperature 

recorded at meteorological stations, which can then be substituted into the 

Metarhizium-performance model to predict the rate of mortality by this biopesticide.  

 

4.2 Materials and Methods 

Overview 
This study investigates the spatial variation of mortality by M.  anisopliae var. 

acridum against five economically important pest species that are the subject of on-

going field trials.  The species investigated are: Locustana pardalina from the Karoo 

biome of South Africa; Oedaleus senegalensis from Sahelian Niger in West Africa; 

Nomadacris septemfasciata from southern Africa and currently being studied in both 

Tanzania and Zambia; Dociostaurus maroccanus from northern Africa and the 

Mediterranean basin’ and Chortoicetes terminifera from Southeastern Australia.  

Mortality predictions for Schistocerca gregaria in Mauritania will also be used to 

assess model accuracy.  Model simulations are run simultaneous to field trials 

conducted within each region and compared to observed mortality.  

 

4.2.1 Meteorological Station Data 
Daily minimum and maximum temperature data collected at meteorological 

stations around the world were obtained from the National Climate Data Center 

(NCDC) website (http://www.ncdc.noaa.gov/). Data points for all locations contained 

latitude, longitude, daily minimum temperature, daily maximum temperature and 

mean daily temperature.  Wind speed and total number of sunshine hours were not 

consistently recorded at all stations and were therefore eliminated.   
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All points were quality checked for missing data. Records were removed if 

both the daily mean and daily minimum (or maximum) temperature data were 

missing, otherwise for missing values the daily minimum or maximum temperature 

was calculated using the daily mean and daily minimum or maximum values. 

Meteorological stations were removed (i) when less than 7 days of temperature data 

was recorded during a single month and (ii) when 5 consecutive days of temperature 

data were missing. For days with missing minimum or maximum temperature values, 

new temperature values were estimated by interpolating between missing days.  

Meteorological station points were imported directly into a GIS system – ArcView 3.2 

(ESRITM).  

 
4.2.2 Simulated hourly temperature values 

The sine-exponential model proposed by Parton and Logan (1981) assumes 

that maximum temperature occurs during daylight hours and minimum temperature 

during the early hours of the morning (just before sunrise).  Daytime variations of 

temperature (Tday) are described by a truncated sine wave (Eq. 1), while nighttime 

temperatures (Tnight) are determined by an exponential function (Eq. 2).  
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Tmax is daily maximum temperature (°C), Tmin is daily minimum temperature 

(°C), Tsunset is the temperature recorded at sunset (°C), m is the number of hours after 

the occurrence of minimum temperature until sunset (h), n is the number of hours 

after sunset until the time of the minimum temperature (h), Z is the night length (h) 

and Y is the day length (h).  Time of sunrise and sunset vary seasonally and 

geographically.  These were calculated based on latitude, longitude, time zone and 

date, for each location using astronomical algorithms of Meeus (1999), programmed 

into Microsoft Excel v. 10.  

Two parameters (where a is the lag coefficient for the maximum temperature 

and b is the night-time temperature coefficient) control the rate of temperature 
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increase and decrease. An additional parameter, c, determines the lag time of 

minimum temperature from the time of sunrise. 

  

4.2.2.1 Sine-curve parameters 
The rate at which temperature increases and decreases varies with height (both 

above the soil surface (see Figure 1) and elevation), vegetation and moisture. The 

parameters for the sine-curve (a, b and c) vary as a function of height, location, 

habitat (Reicosky et al., 1989) and day length. Incorrect parameterization can lead to 

inaccurate temperature estimates (see Figure 2), as illustrated by a number of studies 

(see Reicosky et al., 1989; Cesaraccio et al., 2001; Snyder et al., 2001).  For example, 

in Figure 2, a 10°C difference in predicted temperature can occur when using sine-

curve parameters that describe dry subtropical desert conditions as found in the 

Karoo, South Africa, with temperatures representative for humid tropical regions in 

Zambia or coastal zones.  Therefore parameters were selected that adequately describe 

the thermal qualities of the environment investigated. 

Parameters were derived by fitting sine-curves to daily minimum and 

maximum mean ambient temperatures collected at the field site.  These were 

determined from temperature data collected daily on loggers at the field site (see 

Section 2.2.3, Chapter 2). Parameters were then used with daily minimum and 

maximum meteorological station data to estimate hourly temperature.  

 

4.2.3 Error analysis 
Accuracy of fit for each location was assessed by comparing predicted with 

observed temperature curves by determining the absolute mean error (AME) (Eq. 3), 

which is defined as the sum of the absolute value of difference between observed and 

predicted temperature for a defined period of time, and the overall accuracy of the 

slope of the curve was determined by the root mean square error (RMS) (Eq. 4) (see 

Parton & Logan, 1981; Reicosky et al., 1989; Cesaraccio et al., 2001). 
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where N = total number of hourly observations, n = hourly observations, Xi
0 = 

predicted temperature for ith observation, and  Xi
s = observed temperature for the ith 

observation.  Small values of RMS and AME denote greater accuracy since they 

indicate that predicted temperatures closely resemble observed temperatures, while 

larger values indicate greater deviations of predictions from observed values.  

 
4.2.4 Interpolating daily minimum and maximum temperature 

Minimum and maximum temperature surfaces were created with a 10-km cell 

resolution, and an inverse-distance-interpolate (IDW) using the five nearest stations 

(Eq. 5). Temperature surfaces were standardised for elevation [Digital Elevation 

Model (DEM) downloaded from the USGS website (USGS, 1999)] using a lapse rate 

model (Eq. 6).  
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Tanew = Tamet - (L* h) [Eq 6] 

 
 
Where Tamet is the daily minimum or maximum temperature surface created using 

IDW, xi are the station points, xj are the points where the surface is to be interpolated, 

d-r is the distance weighting power of 2, L = lapse rate (6°C/1000m), h is the 

difference between the elevation at a location and the nearest meteorological station 

and Tanew is the corrected daily minimum and maximum temperature surface used to 

create hourly temperature surfaces (see Section 4.2.2). 

 

4.2.5 Recalibration of body temperature models 
In order to overcome differences in temperatures recorded in the field and at 

the meteorological station, body temperature models for the five study species 

(developed in Chapter 2) were recalibrated with meteorological station data. Ambient 

temperature was simulated at 1-minute intervals based on meteorological station 

minima and maxima. These simulated temperatures were matched to body 

temperatures taken at the same time and used to derive new body temperature models 

using a sigmoid model (see Section 2.2.2, Chapter 2; Section 3.2.2 (i), Chapter 3 for 
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methodology).   Model accuracy is compared with predictions of body temperature 

models from Chapter 2 (see Chapter 2, Tables 2a and 3).  For this study body 

temperature models for L. pardalina, D. maroccanus, N. septemfasciata, O. 

senegalensis, C. terminifera and Generic Model A were recalibrated and used to 

investigate the performance of M. anisopliae var. acridum in the field.  Body 

temperature model for S. gregaria is not available therefore since this species is 

known to thermoregulate, maintaining body temperatures in the range of 38-40°C 

(Stower & Griffith, 1966), the generalised body temperature model (Model A) (see 

Chapter 2) was used to predict body temperatures for this species in the field. 

 

4.2.6 Predicting the rate at which 90% mortality by Metarhizium anisopliae var. 

acridum will occur 

Predicted locust body temperatures were substituted into the Metarhizium-

performance model (see Chapter 3). Daily pathogen growth was calculated for each 

grid cell and evaluated for mortality events. Mortality occurred when the accumulated 

pathogen growth equalled 1 (equivalent to 90% population reduction). Grid cells 

containing a mortality event were assigned the day number after application, where 

the first 24 hours is considered day 0. Simulations were run for a total of 30 days with 

exception to L. pardalina, which was run for a total of 60 days.  Start dates for each 

simulation were in accordance with field trials.  Accuracy of model predictions for L. 

pardalina, O. senegalensis, and N. septemfasciata were compared with empirical field 

trial data (see Chapter 3, Table 3).  For cases where empirical field trial data were 

absent, such as D. maroccanus, model predictions using meteorological station data 

were compared with those made using the field data (see Chapter 3, Table 4). 

 

4.3 Results 

4.3.1 Meteorological versus field daily minimum and maximum temperatures 
Meteorological stations were within 5-50km of the field site for all cases with 

exception of Castuera, Spain, where the closest source of climate data was 110 km 

and Zambia where climate data was only available from Lusaka airport, 

approximately 220 km from Namwala the field site. 

Figures 3a-d illustrates the distribution of meteorological stations with data 

available within each of the regions.  In Niger, stations were located to the south of 

  63



the country along the border of Nigeria, Benin and Burkina Faso with little to no data 

available to the north and east of the country.  In Zambia, meteorological data were 

only available from one source – Lusaka airport, which may not be representative of 

the wetland areas of the field site.  To further add to this problem, no data were 

available to the north and west of the country, from surrounding countries such as 

Angola, Democratic Republic of Congo, and Tanzania.  Data were available for 

Zimbabwe and Malawi. In comparison, in South Africa, Spain and Australia, 

meteorological stations were distributed relatively evenly throughout the country.  

Stations tended to be sparsely distributed in regions that were mountainous and lowly 

populated and more clustered in locations with higher populations.   Interpolated 

temperature surfaces contained banding effects in regions where meteorological 

stations were sparsely distributed. 

Mean daily minimum and maximum temperatures recorded at the field sites 

and at the nearest meteorological station varied. Differences in mean daily maximum 

temperature varied in excess of 15°C while daily mean minimum temperatures varied 

between 0-7°C (see Figure 4).  Variations in daily mean maximum temperatures were 

greatest in Australia, where temperatures recorded in the field were ~40°C in 

comparison to ~25°C recorded at the meteorological station, resulting in a ~15°C 

difference.  Daily mean minimum temperature differences were greatest in Australia 

and South Africa and were found to vary by as much as 6-8°C  Differences between 

temperatures recorded at the field site and at meteorological stations were smallest 

(e.g. 0-3°C) during days when diurnal temperature ranges in the field were also small 

(e.g. Ta < 11°C). 

 
4.3.2 Simulation of hourly minimum and maximum field temperatures  

Humid zones, such as in Zambia and during the wet season in Niger, where 

mean minimum temperatures remain at or close to 20°C, followed a u-shaped pattern 

of heating and cooling (see Figures 5a-b). Temperatures in the field increased and 

decreased rapidly in the mornings (1.0-2.5°C/hr) and afternoons (1.2-1.5°C/hr), 

reaching maximum temperature between 12:00-14:00 hours. After sunset (between 

18:00-19:00hr) temperatures were found to decrease a total of ~1-5°C (0.1-0.4°C/hr) 

until the time of minimum temperature, approximately 5 am.  In comparison, 

temperature patterns in semi-arid desert regions, such as in the Karoo, South Africa, 

Central-western Spain and Southeastern Australia (see Figures 5c-e) were more 
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variable. Temperatures increased rapidly in the mornings at a rate of 2.7-3.7°C/hr 

reaching maximum temperatures between 12:00-14:00 hours and decreased at a rate 

of 1.2-1.6°C/hr in the afternoon until the time of sunset. However, unlike Zambia and 

Niger, temperatures continued to decrease rapidly (7-11°C in total: 0.6-0.9°C/hr in the 

Karoo; 11-16°C in total: 1.0-1.6°C/hr in Spain; and 4-7°C in total: 0.4-0.6°C.hr in 

Australia) until the time of minimum temperature, again at 5 am.  

Different rate of temperature increase and decrease between the environments 

were successfully captured using three sine-curves. These include warm zones with 

minimum ambient temperatures remaining close to and above 20°C (a=1, b=5, c=-

0.1) (see Figures 5a-b); semi-arid desert environments with minimum temperatures 

less than 20°C and a day length of 12-13 hours (a=1, b=1, c=-0.1) (see Figures 5c, 

5e), as illustrated in South Africa and Australia. For regions where day lengths were 

extended and in excess of 14 hours, such as in Spain, a different set of parameters 

were required (a=2.2, b=2.5, c=-0.1) (see Figure 5d).  

Table 1 shows the mean statistics obtained by comparing hourly temperature 

estimates with observed hourly temperature data for each of the locations.  In general, 

the sine-curve parameters adequately captured temperature fluctuations, with a slope 

(b) of the regression line close to 1.0 and intercepts ranging from -0.641 (Niger) and 

1.394 (South Africa). The R2 value ranged from a low 0.84 for Zambia to 0.98 for 

Niger.  Root mean square errors (RMS) were smallest for Niger (1.096) and largest 

for Spain (2.291) followed by Zambia (1.963) (Table 1).  Greatest absolute hourly 

mean error (AME) occurred in Spain (AME ~1.6°C (Table 1)) but remained small in 

Niger (AME < 1°C).   

For Niger, errors were greatest mid-morning (~10:00 am) and during the 

afternoon and early evening (Figure 5a).  In Zambia deviations between observed and 

predicted temperatures were greatest during times of precipitation (e.g. Day 1) and 

cloud-cover (Day 3), otherwise simulated temperatures adequately captured 

temperature fluctuations (see Days 2 and 4) (Figure 5b).  In South Africa errors were 

consistently high in the morning and during times when temperatures dropped 

possibly due to precipitation (e.g. Day 1) (see Figure 5c). In Spain errors were 

greatest shortly after sunrise and late afternoon until the time of sunset (Figure 5d).   

For Australia, errors were greatest at or close to sunset (Figure 5e).    
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4.3.3 Re-calibrated body temperature models 
Daily diurnal range in meteorological ambient temperature was less than field 

derived ambient measurements (e.g. 16-32°C vs. 11-43°C in South Africa; 24-34°C 

vs. 23-41°C in Niger), which resulted in an increased range of body temperatures 

occurring for a single ambient temperature (see Figures 1a, b, d, e, Chapter 2 vs. 

Figures 6a-d). Body temperature parameter estimates for each of the five species and 

the generalised body temperature model (Model A) are shown in Table 2 with R2 

ranging from 0.56 to 0.87.   

In general, the re-calibrated body temperature models adequately captured 

hourly body temperature fluctuations for each of the four species, with a slope (b) of 

the regression line close to 1.0 (0.859 – 1.003) and intercepts ranging from -0.226 (O. 

senegalensis, Niger) to 4.244 (L. pardalina, South Africa). The R2 value ranged from 

a 0.70 for N. septemfasciata, Zambia, to 0.92 for C. terminifera, Australia.  Body 

temperature estimates against meteorological temperatures found that all species, 

including generic Model A, had an absolute mean error (AME) within 2.4°C (1.85°C 

(D. maroccanus) to 2.32°C (N. septemfasciata) (Table 3)).  Root mean square errors 

(RMS) were within 3.2°C with greatest errors for C. terminifera (RMS ~ 3.15°C) and 

smallest errors for O. senegalensis (RMS ~ 2.78) (Table 3).   

Figure 7a-d illustrates simulated body temperatures based on temperatures 

collected at the field site to recalibrated body temperature estimates based on 

simulated meteorological station temperatures.  Differences in body temperature 

estimates during daylight hours were greatest for N. septemfasciata, due to cloud 

cover and the occurrence of precipitation at the field site (Figure 7b); while for O. 

senegalensis, recalibrated body temperature estimates under-predicted maximum 

body temperatures throughout daylight hours by 3-5°C (see Days 1, 2, and 4, Figure 

7a). Recalibrated body temperature estimates for both L. pardalina and D. 

maroccanus, during daylight hours, were similar to those predicted at the field site 

(Figure 7c-d) with the greatest errors occurring between the hours of sunrise and 12-

noon.  Body temperature estimates for C. terminifera had a tendency to 

underestimated daytime maximum body temperatures by 3-5°C.    

Disparity between night-time body temperature estimates using 

meteorological station data and field data can vary by as little as 1-2°C (e.g. Day 2 

(Figure 7a); Day 3 (Figure 7d)) to as much as 5-6°C (e.g. Day 1 and 2 (Figure 7c)).  

  66



This can be attributed to differences in night time temperatures recorded at the field 

site and at the meteorological station. 

 

4.3.4 Pathogen-performance 
Mapped outputs clearly illustrate spatial variation in the performance of M. 

anisopliae var. acridum in achieving 90% mortality within each country (see Figures 

8a-e). The rate at which 90% mortality was predicted to take ranged from as little as 

10 days in some regions within each country and could take in excess of 30 days in 

others.  For example, in South Africa, during the field season of 1998, 90% mortality 

against L. pardalina was predicted to occur the fastest (< 20 days) in areas near the 

coast and to the south of the Drakensberg mountains (Figure 8c) with slower rate of 

mortality (> 30 days) occurring in the central and western regions of the country.  

Throughout the main locust problem areas in the semi-desert shrub lands of the 

Karoo, mortality was predicted to take as little as 21-25 days, in the areas near 

Upington, Marydale and Prieska; 26-29 days near Britstown and in excess of 30 days 

near Brandvlei and Vanwyksvley; resulting in a 9 day difference between the locust 

regions.  Mortality predictions, when compared with field trial results found that the 

model under-predicted the rate of mortality by 29 days (Table 4).  

In comparison, mortality against O. senegalensis was predicted to occur 

substantially faster throughout Niger with the speed of kill varying by 11 days (range 

10 – 20 days) (Figure 8a).  Mortality was found to occur fastest in the southern 

regions, close to borders of Burkino Faso, Benin and Nigeria, and became 

progressively slower to the North of the country.  In Maine-Saroa, 90% mortality was 

predicted to occur in 16 and 15 days during 1996 and 1997, respectively.  When 

compared with field trial results model predictions underestimated time to death by 5 

days during 1996 and was in agreement during 1997 (Table 4). 

 The time taken to achieve 90% mortality against D. maroccanus was variable 

across Spain, ranging from 11 days to in excess of 30 days during 2000 (Figure 8d).  

Mortality was predicted to take as little as 11-15 days in the south, near Almeria, 

North of the Sistema central, along the coast of the Atlantic Ocean, and East of 

Zaragoza.  Throughout the northern regions mortality estimates were predominately 

found to take between 16 and 20 days while in the southern and parts of the 

northeastern region mortality was predicted to take in excess of 30 days.  This final 
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region included three of the four locust outbreak regions (e.g. Castuera, Ciudad Real 

and Zaragoza).  At this time it is unclear how accurate mortality predictions are since 

field trial results are currently unavailable.  However, when compared with mortality 

estimates made using site-specific data earlier (see Chapter 3) the GIS model was able 

to predict mortality to within 2 days (see Table 4). 

 Simulations against N. septemfasciata in Zambia indicated that control for this 

entire region would be relatively quick with mortality predictions taking less than 11 

days (Figure 8b).  This pattern suggests M. anisopliae var. acridum could be used 

throughout this region with great success.  GIS mortality predictions when compared 

with observed field mortality at the 90% level were found to underestimate the rate of 

mortality by 2 days.  

 Throughout Australia the rate of predicted mortality against C. terminifera 

was predominantly found to take between 26-29 days (throughout the central northern 

regions) and in excess of 30 days throughout the south.  Along the eastern region 

mortality was found to be more varied, with mortality taking between 11 and 25 days 

with large areas falling in the 11-15 day category. In the locust areas of Hay and 

Hillston, mortality was predicted to take 18 and 22 days respectively.  When 

compared with mortality observed in the field, the model underestimated the rate of 

mortality by 1 day for Hay (Table 4). 

Table 5 illustrates the accuracy of the temperature-dependent Metarhizium-

performance model when further tested against three of the above species (e.g. O. 

senegalensis (1995), L. pardalina (1995) and N. septemfasciata (1997)) and one 

additional species (S. gregaria (1995)). Mortality predictions were accurate to within 

5 days; ranging between 0 (N. septemfasciata) to 5 (L. pardalina) days.  For S. 

gregaria mortality predictions were found to resemble those found in the field with an 

error of 2 days. 

 

4.4 Discussion 

Growing concerns of the impact of climate change on natural and managed 

ecosystems has lead to increased use of climate mapping techniques to investigate 

ecology of animal, plants and humans to potential risk of parasites and disease (see 

Clark et al., 2001; Sutherst, 2001 for overview).   Improved understandings of 

population dynamics of pests and transmission of diseases can be achieved through 
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the analysis of processes at various scales (e.g. field level to continental to global) 

within a landscape. Geographic Information Systems (GIS) coupled with remotely 

sensed data, environmental and socio-economic information are increasingly being 

used to visualise, explore and analyse existing and potential area-wide problems 

across spatial and temporal scales to provide, not only, an improved understanding of 

the processes contributing to population and disease dynamics (see Hajek et al., 1993; 

Brewster et al., 1999; Weseloh, 2003); but also used for research and implementation 

of control (e.g. Malaria information system in South Africa (Martin et al., 2002); 

monitoring and forecasting (e.g. Desert locust (Healey et al., 1996) and for assessing 

risk of establishment of new introduced species (Sutherst, 1991)). 

The methods presented here provide a basis for predicting the dynamic 

changes in efficacy of a biopesticide and is designed to predict the rate of mortality by 

M. anisopliae var. acridum against locusts and grasshoppers.  The main aim of this 

work was to increase the utility of the M. anisopliae var. acridum biopesticide model 

by linking it to meteorological station data and moving beyond site-specific 

predictions. To this end, the model was incorporated into a GIS framework that 

enabled predictions to be made at a regional scale and enabled for the model to be 

further tested against an additional four data sets including one new species (1x O. 

senegalensis, 1x L. pardalina, 1x N. septemfasciata and 1x S. gregaria). Model 

predictions, at the 90% level, were found to be accurate to within 5 days for 8 of the 

10 of the cases. Errors for the remaining cases had a tendency to underestimate the 

speed of kill, thus predicting that the rate of mortality would be achieved at a faster 

rate than actually was observed in the field. Three potential sources of errors were 

identified.  These include; the availability and reliability of meteorological station 

data; errors associated with the simulation of daytime temperatures; errors associated 

with the recalibration of body temperature models. 

Climate data recordings throughout the different regions varied spatially and 

temporally with some regions consistently containing reliable data (e.g. Spain and 

Australia) and others not (e.g. throughout much of Africa). This may be due to limited 

resources (i.e. lack of funds) and political instability (e.g. The Democratic Republic of 

the Congo and Angola).  Thus, errors associated with daily minimum and maximum 

temperature surfaces can be attributed to several factors, such as accuracy of the raw 

data itself, missing temperature records and the result of interpolating between 
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sparsely distributed station networks.  Errors may further be accentuated in 

environments with highly changeable weather patterns (i.e. resulting in highly 

fluctuating temperature changes) and/or regions that have variable topography (i.e. 

due to changes in inversion and lapse rates (see Collins & Bolstad, 1996 for 

overview)).  In regions where weather patterns are more stable (i.e. temperatures 

continually oscillate between a set-point (e.g. 20°C to 35°C in Niger or Zambia)) and 

topography is similar, interpolating between a sparsely distributed network of stations 

may be less problematic. 

Differences in maximum temperatures recorded at the meteorological station 

and at the field site were overcome through the use of recalibrated body temperature 

models; instead differences in minimum temperatures was found to have the greatest 

effect on the accuracy of model outcomes, as illustrated in South Africa against 

Locustana pardalina during 1998.  Initial model simulation predicted mortality would 

take 30 days, under estimating the speed of kill by 29 days.  When the data was 

analysed more closely it was found that a 5-6°C difference in minimum temperature, 

(see Figure 8c on Days 1 and 2), resulting in the promotion of a warm night (~18-

20°C) instead of a cold night (10-15°), for a total of 7 days, affected the initiation of 

the second temperature-dependent delay term of the model (see Chapter 3).  However, 

when the relevant days for South Africa were amended to mimic cold nights, the same 

as the minimum temperatures recorded at the field site, instead of a warm night, as 

originally indicated by the meteorological station data, model predictions improved. 

Mortality was predicted to take 53 days (a 1 day difference when compared with 

mortality estimates in Chapter 3, Table 4), which resulted in a 6 day error instead of 

30.  Although, differences in minimum temperatures were also high in Australia they 

resulted in the expression of a cold night to one that was colder (i.e. Ta = 16°C to 

Ta=8°C), hence, in this case the second delay term would have already been invoked 

and further night-time cooling would make no additional difference. Minimum 

temperatures have also been shown to be crucial in the accuracy of other climate 

based phenology model predictions (Jarvis & Stuart, 2001c; Jarvis & Collier, 2002).  

Recalibrated body temperature models were most accurate for L. pardalina, D. 

maroccanus and C. terminifera. For O. senegalensis maximum body temperatures 

achieved throughout daylight hours tended to be underestimated resulting in 

differences in model and field mortality estimates in 1995 and 1996. There are a 
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number of potential sources of error for this species. The number of body 

temperatures recorded for O. senegalensis is fewer than that for the other three species 

above (see Chapter 2). They were also recorded over a much shorter period of time (4 

days as opposed to a minimum of 10 days) over a smaller range of ambient 

temperatures (Blanford et al., 1998). The higher Tinfl for O. senegalensis indicates that 

maximal body temperatures and the initial delay term in the performance model (the 

second delay term is never invoked for O. senegalensis because of the warm nights), 

will not occur until relatively high ambient temperatures. This is likely to result in the 

variation in model output to field recorded mortality (Table 4 and 5).  

Although, the availability of reliable data in some regions is a limitation, it 

should not discourage the use of this model to identify potential areas where this 

biopesticide can be used.  There is a sufficient body of evidence whereby GIS has and 

is currently being used to identify “hotspots” critically in need of aid using climate 

data that are at the same resolution and/or at a coarser temporal and spatial scale.  For 

example, targeting critical malaria areas most in need of bed nets (see Craig et al., 

1999; Martin et al., 2002); predicting potential geographical distribution of non-

indigenous pests (see Baker et al., 2000); vulnerability of human and animal health to 

parasites (Sutherst, 2001); and conservation of ecological niches (Peterson et al.,1999, 

2002). 

The spatial model presented here has several advantages over single point site-

specific evaluations.  It allows for multi-point analyses to be made simultaneously 

with mapped outputs illustrating the spatial variability in the virulence of M. 

anisopliae var. acridum in controlling locusts and grasshoppers.  Thus, allowing for 

pathogen performance assessments to be made between discrete locust and 

grasshopper populations within the same region, as illustrated in Spain and South 

Africa.  The models are linked to meteorological station data, thereby capturing 

thermal ecology of the host and, thus overcoming differences in temperatures 

recorded at meteorological stations from those occurring at the field site.  Not only 

can these models be used to make accurate predictions [also illustrated in the work by 

Bryant et al., 2002 on the distribution of butterflies] but they can be used to 

investigate pathogen performance against the same species in different geographic 

locations (e.g. N. septemfasciata in Zambia and Mozambique) and against new and 

existing pest species, that are known active behavioural thermoregulators with similar 
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preferred body temperatures to L. pardalina or C. terminifera or D. maroccanus, such 

as S. gregaria in Mauritania.  

The models can be used to investigate the average performance of the 

pathogen within a region based on historical data.  Mortality predictions can be used 

to investigate the potential use of this biopesticide in new regions, such as in Spain, 

where Metarhizium is currently being investigated, as an alternative to chemical 

pesticides against D. maroccanus (see Chapter 1 and Chapter 5).  The Metarhizium–

based biopesticide has not yet been extensively used in this region, so the model could 

be used to perform a prospective analysis to determine likely efficacy and identify 

management strategies that will allow for the successful uptake of this product. 
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Tables and Figures 

 
Table 1: Summary of overall accuracy between observed and estimated hourly 
temperatures derived using daily minimum and maximum temperatures collected at 
the field site for four locations: Niger, Zambia, South Africa, Spain and Australia. The 
intercept (a) and the slope (b) of the regression line, coefficient of determination (R2), 
absolute mean error (AME) and root mean square error (RMS). 
 

Country Field Temperature  
 a b R2 AME±(SE) 

(°C) 
RMS (°C) 

Niger -0.641 1.035 0.98 0.816 (0.281) 1.096 
      
Zambia -0.410 1.057 0.84 1.251 (0.279) 1.963 
      
South Africa  1.394 0.958 0.96 1.317 (0.320) 1.759 
      
Spain  1.285 0.975 0.95 1.661 (0.391) 2.291 
      
Australia 0.756 0.971 0.97 1.147 (0.089) 1.578 
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Table 2: Body temperature model parameter estimates for the sigmoid method (and 
asymptotic standard errors) for Locustana pardalina, Dociostaurus maroccanus, 
Oedaleus senegalensis, Nomadacris septemfasciata, Chortoicetes terminifera and 
Model A. Parameter estimates are based on simulated meteorological ambient 
temperature. 
 

Species Habitat Daily 
diurnal 

temperature 
range 

Station Name 
(No.)  

Country 

Model parameters 

    Tmax 
(±SE) 

T_infl 
(±SE) 

s 
(±SE) 

R2

L. pardalina Short-grass, 
exposed 
soil surface 

16-32°C Marydale 
(685270) 

South Africa 

40.662 
(0.348) 

22.778 
(0.216) 

-6.964 
(0.481) 

0.60 

        
D. maroccanus Short-grass, 

exposed 
soil surface 

16-32°C Badajoz 
(83300) 
Spain 

40.179 
(0.234) 

19.934 
(0.152) 

-5.97 
(0.238) 

0.87 

        
O. senegalensis Short-grass, 

exposed 
soil 
surfaces 

24-34°C Maine-Saroa 
(610960) 

Niger 

41.975 
(0.773) 

29.634 
(0.533) 

-8.456 
(1.174) 

0.56 

        
N. septemfasciata Humid 

areas, long-
grass 
wetlands 

20-28°C Lusaka 
(676650) 
Zambia 

37.355 
(0.449) 

26.604 
(0.798) 

-3.952 
(0.510) 

0.63 

        
C. terminifera Short-grass, 

exposed 
soil surface 

11-31°C Hay 
(946980) 
Australia 

41.179 
(0.456) 

19.416 
(0.162) 

-7.542 
(0.559) 

0.73 

        

Model A Short-grass, 
exposed 
soil surface 

11-32°C As above for  
L. pardalina, 
D. maroccanus, 
C. terminifera  

39.194 
(0.175) 

21.330 
(0.106) 

-7.994 
(0.341) 

0.64 
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Table 3: Summary of overall accuracy of species-specific body temperatures between 
estimated hourly body temperatures derived using temperatures collected at the field 
site and simulated hourly temperatures from daily minimum and maximum 
meteorological temperatures (parameters obtained from Table 2) for five species: O. 
senegalensis (Niger), N. septemfasciata (Zambia), L. pardalina (South Africa), D. 
maroccanus (Spain), C. terminifera (Australia) and the generalised Model A. The 
intercept (a) and the slope (b) of the regression line, coefficient of determination (R2), 
absolute mean error (AME) and root mean square error (RMS) are reported. 
 

Species 
Country 

Field Temperature  

 a b R2 AME±(SE) 
(°C) 

RMS (°C) 

O. senegalensis  
Niger 

-0.226 0.947 0.90 2.168 (0.083) 2.783 

      
N. septemfasciata 
Zambia 

0.932 0.925 0.70 2.320 (0.181) 2.859 

      
L. pardalina 
South Africa  

4.244 0.859 0.88 2.022 (0.122) 2.960 

      
D. maroccanus 
Spain  

0.260 1.003 0.90 1.853 (0.101) 2.894 

      
C. terminifera  
Australia 

1.345 0.888 0.92 2.272 (0.129) 3.152 

      
Model A 2.424 0.902 0.88 2.150 (0.052) 3.016 
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Table 4: Comparison of Metarhizium anisopliae var. acridum predictions made using 
meteorological station data in a GIS and mortality recorded in the field for locations 
where site-specific field temperature data were collected. The species include: 
Oedaleus senegalensis (1996, 1997), Locustana pardalina (1998), Dociostaurus 
maroccanus (2000), Nomadacris septemfasciata (2001) and Chortoicetes terminifera 
(2000). 

Species 90% Mortality 
(Days) 

Source 

 Observed 
Field  
ST90

GIS 
ST90

Residual 
(Observed – GIS) 

 

O. senegalensis      
1996 21 16 -5 Langewald et al., 1999 
1997 15 15 0 Langewald et al., 1999 
     
L. pardalina     
1998 59 30 -29 Arthurs & Thomas, 2000 
     
D. maroccanus     
2000 41  43 2 Based on model predictions 

using field data - see 
Chapter 3 

N. septemfasciata     
2001 10 10 0 Pers comm. Elliot, S.L, 

Imperial College (see 
Chapter 3) 

C. terminifera     
2000 19 18 -1 Pers. Comm. David Hunter, 

Australian Plague Locust 
Commission. Agriculture, 
Fisheries and Forestry – 
Australia 

Note: Residuals that are positive suggest that the model predicts a slower speed of kill and negative 
suggests that the model under predicts a faster speed of kill. 
 
Table 5: Comparison of Metarhizium anisopliae var. acridum predictions made using 
meteorological station data in a GIS and mortality recorded in the field for Oedaleus 
senegalensis during 1995, Locustana pardalina during 1995, Schistocerca gregaria 
during 1995 and Nomadacris septemfasciata during 1997. 

Species 90% Mortality 
(Days) 

Source 

 Observed 
Field  
ST90

GIS  
ST90

Residual 
(Observed – GIS) 

 

O. senegalensis     
Niger, 1995 21(80%) 16 -5 Kooyman et al., 1997 
     
L. pardalina     
South Africa, 1995 20 25 5 Price et al., 1997 
     
S. gregaria     
Mauritania, 1995 15 17 2 Langewald et al.,1997 
N. septemfasciata     
Mozambique, 1997 9 9.5 0.5 Price et al., 1999 

Note: Residuals that are positive suggest that the model predicts a slower speed of kill and negative 
suggests that the model under predicts a faster speed of kill. 
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Figure 1: Change in ambient temperature over height in comparison to temperatures recorded at the closest meteorological station.  
Ambient temperature at the soil surface (───), mean ambient temperature (───), ambient temperature at 30cm above the soil surface 
(-----), and simulated hourly temperature (─▲─▲─) using the Parton & Logan (1981) model with parameters representative of ambient 
temperature at 1.5m above the soil surface (a = 1.8, b=2.2, c=0.88 (Reicosky et al., 1989)). 
 
 

0

10

20

30

40

50

60

0:00 6:00 12:00 18:00 0:00 6:00 12:00 18:00 0:00 6:00 12:00 18:00 0:00 6:00 12:00 18:00 0:00 6:00 12:00 18:00 0:00

Hour of Day

A
m

bi
en

t T
em

pe
ra

tu
re

 (C
)

 
 

  77



Figure 2: Simulated daily temperature (minimum temperature = 10°C; maximum 
temperature = 40°C) using two sine-curve parameters representative of two different 
environments.  Temperatures in environment A (───) with day length of 12hrs are 
described using parameters (a=2.5, b=2.2, c=-0.1), while those in environment B 
(───), with a day length of 12hrs are described using parameters (a=1, b=5, c=-0.1). 
The potential error of temperature estimation between the two environments is 
illustrated     ( ).  
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Figure 3: Maps illustrating the topography and distribution of meteorological 
stations, as a function of the total number of days missing temperature data for a 
single month, throughout the study regions; (a) West Africa (including Niger, Benin 
and Mauritania); (b) Southern Africa (including Zambia, Mozambique and South 
Africa); (c) Spain and (d) Australia.   

Figure 3: Maps illustrating the topography and distribution of meteorological 
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single month, throughout the study regions; (a) West Africa (including Niger, Benin 
and Mauritania); (b) Southern Africa (including Zambia, Mozambique and South 
Africa); (c) Spain and (d) Australia.   
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Figure 4: Difference in daily minimum (x-axis) and maximum temperature (y-axis) 
between the field site and the nearest meteorological station.  Points represent 
differences in temperatures recorded in Niger, South Africa, Zambia, Spain and 
Australia. Positive values indicate that the temperatures recorded at the field site were 
greater than those at the meteorological station. Negative values indicate that 
temperatures recorded at the meteorological station were greater than those at the field 
site. 

Figure 4: Difference in daily minimum (x-axis) and maximum temperature (y-axis) 
between the field site and the nearest meteorological station.  Points represent 
differences in temperatures recorded in Niger, South Africa, Zambia, Spain and 
Australia. Positive values indicate that the temperatures recorded at the field site were 
greater than those at the meteorological station. Negative values indicate that 
temperatures recorded at the meteorological station were greater than those at the field 
site. 
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Figure 5: Mean hourly ambient temperature collected over four days at the field site 
(____) are plotted against simulated hourly ambient temperatures derived using daily 
minimum and maximum ambient temperatures collected at the field site (───) and 
simulated hourly temperatures derived using minimum and maximum temperature 
collected at a meteorological station (-----). Simulated temperatures were derived 
using sine-curve parameters: (a) Niger (a=1, b=5, c=-0.1), (b) Zambia (a=1, b=5, c=-
0.1), (c) South Africa (a=1, b=1, c=-0.1), (d) Spain (a=2.5, b=2.2, c=-0.1), (e) 
Australia (same as South Africa). 
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Figure 6: Distribution of body temperatures (Tb) against ambient temperatures (Ta) 
for (a) Oedaleus senegalensis, (b) Nomadacris septemfasciata, (c) Locustana 
pardalina, (d) Dociostaurus maroccanus and (e) Chortoicetes terminifera. The 
straight line (───) shows a null model for no active thermoregulation whereby Tb = 
Ta.  Best-fit body temperature regression curves (───) for individual species were 
derived using the parameters in Table 2. 
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Figure 7:  Mean hourly ambient temperature collected over four days at the field site 
(- - - -) is plotted with the predicted hourly body temperatures (────) using 
parameters from Chapter 2.  For comparison, simulated hourly ambient temperatures 
derived using daily minimum and maximum ambient temperatures collected at 
meteorological stations (□□) and recalibrated hourly body temperature 
predictions (─▲─▲─) from Table 2 for (a) Oedaleus senegalensis, (b) Nomadacris 
septemfasciata (c) Locustana pardalina, (d) Dociostaurus maroccanus, and (e) 
Chortoicetes terminifera. 
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Figure 8: Mapped outputs illustrating the time taken to achieve 90% mortality by 
Metarhizium anisopliae var. acridum against (a) Oedaleus senegalensis in Niger. 
Simulations were run for 30 days starting on 17th August 1996; (b) Nomadacris 
septemfasciata in Zambia. Simulations were run for 20 days starting on 10th February, 
2001; (c) Locustana pardalina in South Africa. Simulation was started on 25th 
February 1998 and run for 60 days; (d) Dociostaurus maroccanus in Spain. 
Simulations were run for 30 days starting on 25th May, 2000 and (e) Chortoicetes 
terminifera in Australia. Simulation was run for days starting on 7th November, 2000. 
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