## Rice and cooking banana transformation for nematode resistance (John Innes Centre - DFID)





#### Nematode Resistance programme (1995-2005)



Potato Rice Banana



- Rice & banana transformation
- Transgene delivery, integration, expression, stability

**IRRI** 

China – RRI



Nematode resistancePotato transformation



WARDA KARI

# **Banana transformation** John Innes Centre - DFID R8031



#### Strategy for banana transformation





Production of AAA Ugandan cooking banana plants from shoot tip cultures at John Innes Centre







John Innes Centre





#### Nursery (hydroponics)





#### Isolation of immature flowers





John Innes Centre



12 months

#### Production of embryogenic cell suspension cultures







John Innes Centre

3-6 months

3-6 months



# Regeneration of banana plants from embryogenic cell suspension cultures







#### Regeneration of transformed banana plants





# **Transformed banana plants** *(independent clones)*







#### GFP expression in transformed banana plants

Leaf

#### Stem

#### Root

John Innes Centre





#### GFP expression in transformed banana plants after 25 cycles of shoot tip culture (more than 2 years)





NA5













Since 2000



since 2002

#### Past Results



24 - 30 months



#### Transfer of technology to KARI-NARO (Kampala, Uganda)









John Innes Centre







# Banana transformation with cystatin genes for nematode resistance

**Bioassay (U. Leeds)** 





#### Future work:





- New banana nursery, embryogenic calli, embryogenic cell suspension
- Continue banana transformation (with UBI:CC?)
- Attend RF meeting in Nairobi, Jan 24-27<sup>th</sup> 2004



**Rice transformation** John Innes Centre DFID R8031 RF-DFID R7548

## Clean gene technology

## Root specific promoter



## Clean gene technology

## Root specific promoter





# Genotype independent rice transformation (particle bombardment - Immature embryos)



# High throughput rice transformation (Agrobacterium – callus derived from mature embryos)

John Innes Centre

#### **T-DNA integration in plants**







**T-DNA** 





—

John Innes Centre

#### **T-DNA** integration in plants



#### **T-DNA** integration in rice









#### Up to 50% multiloci integration Up to 50% backbone transfer

Vain et al. (2002) TAG Vain et al. (2004) TR

#### **Dual T-DNA integration**







**Dual T-DNA** 

integration

ALL BOR BOR

| G-S           | x 28 |
|---------------|------|
|               | x 1  |
|               | x 8  |
|               | x 1  |
|               | x 1  |
|               | x 2  |
| G G S         | x 1  |
| G-S G-S G     | x 3  |
| G-S G S       | x 3  |
| G-S G-S S     | x 1  |
| G-S G G       | x 4  |
| G-S S S       | x 1  |
| G-S G-S G-S   | x 1  |
|               | x 1  |
|               | x 1  |
|               | x 2  |
|               | x 2  |
| G-S G-S G-S G | x 1  |



John Innes Centre

Genotype

62 plant lines 127 loci



Afolabi et al. (2004) TAG



John Innes Centre



# • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

T₁

Progeny plants containing CC - free of selectable marker gene

- (no HPT-GFP)
- free of backbone (no NPTI)





John Innes Centre

98 independently transformed rice plant lines

"Clean gene" rice plants containing TUB::corn cystatin

John Innes Centre



| Clone<br>No. | Plant No. | PCR<br>cc | No. of<br>seeds |
|--------------|-----------|-----------|-----------------|
| NN1          | NBNN1454  | +         | 170             |
| NN2          | NBNN1455  | +         | 200+            |
| NN8          | NBNN1509  | +         | 11              |
| NN15         | NBNN1510  | +         | 374             |
| NN16         | NBNN1530  | +         | 182             |
| NN24         | NBNN1500  | +         | 29              |
| NN25         | NBNN1501  | +         | 78              |
| NN31         | NBNN1526  | +         | 387             |
| NN32         | NBNN1527  | +         | 132             |
| NN33         | NBNN1528  | +         | 129             |
| NN34         | NBNN1512  | +         | 182             |
| NN36         | NBNN1513  | +         | 63              |
| NN39         | NBNN1529  | +         | 7               |
| NN40         | NBNN1475  | +         | 283             |
| NN42         | NBNN1477  | +         | 200             |
| NN44         | NBNN1479  | +         | 100             |
| NN45         | NBNN1520  | +         | 54              |
| NN48         | NBNN1522  | +         | 149             |
| NN57         | NBNN1446  | +         | 294             |

| Clone<br>No. | Plant No. | PCR<br>cc | No. of<br>seeds |
|--------------|-----------|-----------|-----------------|
| NN61         | NBNN1486  | +         | 193             |
| NN62         | NBNN1450  | +         | 219             |
| NN67         | NBNN1453  | +         | 224             |
| NN80         | NBNN1467  | +         | 226             |
| NN85         | NBNN1494  | +         | 348             |
| NN92         | NBNN1499  | +         | 135             |
| NN96         | NBNN1536  | +         | 133             |
| NN71         | NBNN1481  | +         | 119             |
| NN98         | NBNN1537  | +         | 240             |
| NN100        | NBNN1503  | +         | 200+            |
| NN106        | NBNN1517  | +         | 175             |
| NN108        | NBNN1518  | +         | 152             |
| NN109        | NBNN1506  | +         | 134             |
| NN113        | NBNN1473  | +         | 328             |
| NN114        | NBNN1474  | +         | 172             |
| NN120        | NBNN1534  | +         | 476             |
| NN121        | NBNN1505  | +         | 106             |
| NN126        | NBNN1535  | +         | 119             |
| NN130        | NBNN1491  | +         | 234             |

#### **38 Co-T lines**

#### "Clean gene" rice plants containing TUB::corn cystatin

DNA

**PCR** 

#### For each Co-T plant line



Progeny plants GFP-

**T**<sub>1</sub>



CC+, HPT-, NPTI-



John Innes Centre

#### **BATCH 1:**

12 plant lines (1161 seeds)2 lines silenced for *gfp*4 lines producing CGT plants

```
1061 plants (T<sub>1</sub>)
190 plants GFP-
175 plants DNA extraction
97 plants CC+
72 plants CC+ HPT-
16 plants CC+ HPT- NPTI-
```

Bioassay at Leeds U.

#### BATCH 2:

25 plant lines (2388 seeds) 5 lines silenced for *gfp ongoing* 

1988 plants (T<sub>1</sub>) 417 plants **GFP-**370 plants DNA extraction ongoing ongoing ongoing

To Leeds U. Dec 13<sup>th</sup> 2004

### Clean gene technology

# Root specific promoter





Expression pattern of root-specific promoters in rice

John Innes Centre



## Clean gene technology

## Root specific promoter



#### Future work:

- Molecular analysis / homzygous lines of "clean gene" rice plants resistant to nematodes
- Further root-specific promoter testing?
- Expression of PsMTA:gus & ARSK:gus in the presence of nematodes?



- Molecular (& bioassay) of RYMV-MPI plants from R7415
- Design of new binary vectors

# Design of new binary vectors +**M** cystatin **GFP** W antibiotic<sup>R</sup>

#### **Group in Crop Genetics Department**

<u>Current members</u>: B. Worland (DFID) A. Derevier (DFID) P. Vain (DFID)

J.W. Snape (JIC)

<u>Past members</u>: A. Afolabi (DFID - RF) S. Ross (DFID)



#### Funding:





#### Models of possible T-DNA linkages

4







Theoretical Segregation ratios

#### **Dual T-DNA integration**



- Segregation of transgene phenotype should not be used to estimate loci number (30% of loci undetected) or T-DNA linkage
- Clean gene technology ~ 10% of loci (71% coTrans. x 28% coExp. X 43% single T-DNA loci)
- Multiple T-DNA copies often results from the integration of different T-DNA molecules
- New opportunity to study true random T-DNA integration
- **Backbone transfer** (53-66% of loci +antibiotic<sup>R</sup> gene)

#### Backbone transfer in rice



bar gus oLB oRB npt1

- Frequent in rice: 53-66% of loci (+antibiotic<sup>R</sup> gene)
- in 7% of 1C lines, in 47% of 2C+ lines
- Different types of integration:





#### Progeny plants GFP-PCR: *hph*-, *gfp*- & cc+

John Innes Centre



 $\mathbf{T}_1$