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Abstract: We investigate the possible existence of an inverse relationship (IR) between farm 
size and productivity in Philippine brackishwater pond aquaculture. The study is motivated by 
the fact that fish ponds have so far been exempted from the Comprehensive Agrarian Reform 
Laws and suggestions in the literature of inefficient management of fish farms. The analysis of 
technical efficiency is based on the estimation of a multi-product ray production function 
estimated in a stochastic frontier framework. There is some evidence of an IR but of only 
limited strength. Hence, it is unlikely that agrarian reform is the key to unlocking the 
productivity potential of brackishwater aquaculture in the Philippines. 
 

While global production of capture fisheries stagnated over the last decade, output from 

aquaculture expanded steadily.1 The FAO (2002) reports that global catch from capture 

fisheries barely returned in year 2000 to the level observed in the early 1990s at roughly 78 

million tonnes. Meanwhile, production growth in aquaculture took place at an average annual 

rate of 7.1% in the 1980s and 5.1% in the 1990s, which makes aquaculture one of the fastest 

growing food-producing sub-sectors (Ahmed and Lorica, 2002). This spectacular 

development has sometimes been described as a ‘blue revolution’, with the underlying idea 

that aquaculture could potentially solve some aspects of the world’s chronic hunger and 

malnutrition problems (Coull, 1993). While there is no arguing with the increase in 

aquaculture production, it is however necessary to acknowledge that this development has 

generated a number of social, environmental and economic problems. Hence, questions have 

been raised about the ecological impact of aquaculture, in particular with regard to 

biodiversity (Jana and Webster, 2003; Tisdell, 2003) and mangrove destruction (Primavera, 

2000); about the equity of its development (Primavera, 1997; Alauddin and Tisdell, 1998; 

Coull, 1993) and about its food security benefits (Naylor et al., 2000; Primavera, 1997).  

 

The Philippines conform to these general trends. Yap (1999) reports that aquaculture output 

in the country has grown at the average annual rate of 5.4% in the 1990s and that its share of 

total fisheries production keeps increasing. Yet, its development has had a detrimental effect 

on mangroves, resulted in the salinisation of previously productive agricultural land, 

generated conflicts over the use of natural resources (Yap, 1999) and some have even argued 

that it has been responsible for the marginalisation of some coastal communities and an 

increase in the rate of unemployment (Primavera, 1997). Against this background, the aim of 

this article consists in addressing one equity aspect of aquaculture development in the 

                                                 
1 As there is increasing doubts regarding the validity of Chinese fisheries statistics, our statements refer 
to the world excluding China. See FAO (2002) for a discussion of this issue. 
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Philippines that relates to the distribution of fishpond holdings2. We investigate whether there 

is any evidence of an inverse relationship (IR) between farm size and productivity in 

brackishwater aquaculture in order to evaluate the case, on efficiency ground, for reform of 

the existing tenurial system, land redistribution, or other policies aimed at improving the 

functioning of the land market.  

 

The study is motivated first by a common perception that the vast areas of Philippine 

brackishwaters3 represent a valuable resource that is not exploited optimally and is not 

contributing fully to the development process of coastal areas. We believe that it will make a 

contribution to an important and ongoing policy debate that emerges from the fact that, while 

the Philippines adopted several land reform laws in the late 1980s, aquaculture ponds have so 

far been exempted4. As a result, the distribution of holdings in brackishwater aquaculture 

remains very unequal as indicated by a Gini coefficient of 0.72 for the two regions that form 

the focus of our study5 and it is well-known that fish farms of more than a hundred hectares 

are not uncommon. Naturally, large fishpond owners and leaseholders believe that agrarian 

reform would, if anything, only worsen the severe problems of poverty and inequality in the 

communities where fish farming represents an important activity. Yap (1999) cites a telling 

extract from the newsletter of Negros Prawn Producers and Marketing Cooperative: 

  

“The implementation of the (land reform) law is liable to cause widespread strife among 

the landowners…. There is no showing that land reform will enliven the plight of the 

poor. Without undermining their capabilities, it is also doubtful whether they (the 

farmers) can put up the necessary capital to maximize land use. Having been used to 

having a landlord on whom to call in times of need, this plunge to independence may 

have a crippling effect.” 

 

This view stands in sharp contrast with the common belief in agriculture that small farmers 

tend to achieve higher productivity and efficiency levels than large farmers, i.e. that there 

usually is an IR, as demonstrated in Sen’s seminal paper (Sen, 1962)6. Besides, the experience 

of Thailand, where the extremely dynamic prawn industry is supported by relatively small 

                                                 
2 Although it is not always specified, our study relates only to brackishwater pond aquaculture.  
3 Yap (1999) reports that there are 239,323 hectares of brackiswater fishponds in the Philippines. The 
electronic data that we obtained from the Bureau of Agricultural Statistics gives a total harvested area 
of 415,272 hectares in year 2000. 
4 The most recent one is the Comprehensive Agrarian Reform Law (CARL) of 1988 that imposes land 
redistribution with a five hectare retention limit set on all agricultural land. 
5 Source of data: Bureau of Agricultural Statistics’ inventory of fishponds from 1997.  
6 A recent review of the IR literature is Fan and Chan-Kang (2003). It concludes to the lack of 
consensus on the validity of the IR hypothesis. 
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farmers (Yap, 1999), suggests that there is no particular impediment to the development of a 

competitive aquaculture sector based on smallholders. We therefore believe that testing the IR 

in Philippine brackishwater aquaculture will generate important policy insights; in particular, 

a strong IR would suggest that institutional changes leading to a more equal size distribution 

of holdings could increase both equity and efficiency.  

 

Our analysis is based on the analysis of a sample of 127 farms in two of the three main 

regions for brackishwater aquaculture in the Philippines and investigates the level and 

determinants, including farm size, of their technical efficiency. From a methodological 

standpoint, we believe that the article makes three contributions to the agricultural economics 

literature. First, we represent the technology by a ray production function first proposed by 

Löthgren (1997), which, to the best of our knowledge, has not been previously attempted on 

farming data. This approach presents several advantages that we explain in the next two 

sections. Second, we explore the properties of the output ray function which arise from its 

duality with both the minimum cost and maximum revenue functions. This is important in 

interpreting our estimations results, and could be useful in the future to use the model to 

analyse issues of allocative efficiency. Finally, we propose two approaches to quantify the 

explanatory power of the inefficiency effect variables in the Battese and Coelli (1995) 

stochastic frontier model. This is extremely useful in the empirical section to measure, in a 

way that is entirely consistent with the underlying frontier model, the strength of the IR 

relationship.  

 

The paper is organised as follows. The next two sections present the different approaches to 

the measurement of efficiency in polyculture systems, insisting on the advantages and 

properties of the ray production function. Section three presents the estimation strategy and 

proposes an approach to quantify the explanatory power of the inefficiency effect variables of 

the econometric model. The remaining sections discuss the data and empirical model, present 

the empirical results, and offer conclusions.  

 

Measuring the productivity/efficiency of polyculture farms 

The IR literature started with the simple observation that yields, defined as output per unit of 

surface area, differed according to the size of farms. In this context, output is measured either 

in quantity or value terms and the negative relationship seemingly implies that reallocating 

land from large to small farms would result in a net increase in production. However, output 

per hectare is only a partial productivity indicator which cannot satisfactorily measure overall 

farm productivity (Jha, Chitkara and Gupta, 2000). Hence, farm A can achieve a higher 

yield than farm B not because it is more efficient in transforming inputs into outputs but 
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simply because it uses more fertilisers or pesticides. Furthermore, any introductory economics 

textbook makes it clear that economic optimality usually differs from yield maximisation. To 

address this concern, albeit only partially, one can investigate the relationship between gross 

margin and farm size, but this again fails to account for the input of primary factors, such as 

labour and machinery services, in comparing farm performance. There is also a concern that 

gross margins do not only reflect the productive ability of farm managers but also the price 

environment in which they operate (Coelli, Rahman and Thirtle, 2002). Hence, a farm can 

generate a high gross margin per hectare due to its proximity to a particular market rather than 

its productive performance. There is therefore a strong case to investigate the IR relationship 

within the confines of production economics, which can accommodate the multi-dimensional 

aspect of farm production. 

 

Aquaculture production in the study area involves the polyculture of prawns, fish (tilapia 

and/or milkfish) and crabs, which are produced simultaneously in the same ponds. This raises 

a number of interesting modelling issues that we now attempt to tackle. Obviously, all of the 

inputs, with the exception of the fry and fingerlings, are largely non-allocable, i.e. it is not 

possible to determine the amount of each input used in the production process of each 

individual output. Hence, land cannot be allocated to different productions, and neither can 

the feeds or the labour input used to exchange the pond water or maintain the mud dykes. 

This introduces a first linkage among the different outputs of the aquaculture farm. Second, it 

is necessary to recognize the possible jointness of production as it is likely that the different 

species interact with each other in the aquaculture pond. For instance, biologists and 

aquaculture experts often consider that the association prawn/tilapia in ponds tends to reduce 

the rate of prawn mortality because tilapias, through their filtering activity and consumption 

of organic matter lying at the bottom of the pond, improve the bacteriological quality of the 

pond water (Corre et al., 1999). If that is so, output of any single species depends not only on 

the inputs used in the production process of that species but also on the quantities of other 

species grown simultaneously in the pond. We therefore conclude that the production process 

relies on a truly multiple-output technology, and that it is not possible to specify different 

production functions for each output.   

 

There exist several possible avenues to measure efficiency in a multiple-output context. 

Maybe the most common approach involves the estimation of dual cost, revenue or profit 

functions (Löthgren, 2000). However, this group of methods relies on relatively restrictive 

behavioural assumptions of economic optimization, such as that of profit maximisation, 

which might not be expected to hold in developing country aquaculture as farmers are likely 

to adopt complex livelihood strategies in the face of multiple market failures. For instance, in 
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addition to expected returns, it is likely that the riskiness of alternative enterprises is taken 

into account by farm operators when formulating production plans because perfect insurance 

markets simply do not exist. Furthermore, estimation of these dual functions requires data on 

prices of inputs and/or outputs that present sufficient variability to allow the use of regression 

techniques. However, such variability is unfortunately often not present in cross-sectional 

data because input and output markets are relatively well integrated within regions. We 

therefore believe that a primal approach is better suited to the analysis of efficiency and 

productivity for this particular study. 

 

In a primal setting, a straightforward method of productivity/efficiency measurement consists 

in aggregating all outputs into a single index, which can in turn be used in the estimation of a 

production function/frontier. The method, suggested by Mundlak (1963) in the agricultural 

economics literature, has frequently been used in the study of efficiency in aquaculture (e.g., 

Karagianis, Katranidis & Tzouvelekas (2002) analyse seabass and sea bream production in 

Greece; Irz and McKenzie (2003) study polyculture systems in the Philippines; and Sharma 

and Leung (1998) as well as Sharma (1999) investigate the efficiency of carp polyculture 

systems in Nepal and Pakistan respectively). The single output index is usually obtained as 

the total weight of production, which, although not theoretically sound, seems acceptable for 

relatively similar products7.  

 

When the products are not close substitutes, however, it is necessary to use output prices to 

aggregate them. The simplest method consists in expressing output in value terms, but there is 

a concern that in that case the resulting index reflects not only output quantities but also the 

prices at which the farm products are sold. This general index number problem is partially 

circumvented by the use of superlative output indices, such as the Fischer index or Tornqvist-

Theil index, first proposed by Caves, Christensen and Diewert (1982) and presented in details 

in Coelli, Rao and Battese (1998) (chapters 4 and 5). However, even superlative indices 

measure output in a satisfactorily manner only under a number of restrictive assumptions, 

most notably that output markets are perfectly competitive. Also, estimating an aggregate 

production function implicitly imposes restrictions on the form of the underlying multi-

product technology. The very existence of an aggregate output index that can be built from 

output quantities and prices depends on the technology being separable in outputs and inputs 

(Orea, Alvarez and Morrison Paul, 2002). Hence, we believe that, given the complexity of the 

input-output relationship in aquaculture, it is desirable to use a framework of analysis that 

offers more flexibility in the representation of the multi-product technology.  
                                                 
7 That is how all of the studies mentioned above proceeded, with the exception of Irz and McKenzie 
(2003).  
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Fortunately, such a framework has recently become available with different ways of 

representing the technology. An intuitive idea consists in re-writing the transformation 

function so as to express one particular output as a function of the input vector and the 

quantities of all other outputs. There are two difficulties with this approach. First, the choice 

of output that is used as dependent variable in the regression analysis is arbitrary and this 

introduces an artificial asymmetry in the method. Second, and most problematic, is the fact 

that not only the technology parameters but also the efficiency scores depend on the particular 

output that is chosen as dependent variable. The efficiency scores are therefore output specific 

and there is no guarantee that the rankings obtained from alternative formulations of the 

model be consistent with each other, as is easily demonstrated in Figure 1 for the two-output 

case. The technology is represented by the production possibility frontier PP’. Farm A is 

clearly closer to the frontier than farm B when efficiency is measured according to a ‘fish’ 

orientation, but the reverse is true when a ‘prawn’ orientation to efficiency measurement is 

adopted. Furthermore, when a farm is not producing the output used as dependent variable in 

the regression, the interpretation of the efficiency scores becomes difficult8. 

 

For these reasons, the efficiency literature has moved away from the estimation of 

transformation functions. A first alternative that has become popular in recent years 

corresponds to the estimation of input or output distance functions (Coelli and Perelman, 

2000; Morrison Paul, Johnston and Frengley, 2000; Brümmer, Glauben and Thijssen, 2002; 

Irz and Hadley, 2003). The output distance function introduced by Shephard (1970) is defined 

formally from the output set P(x) by: 

Do (x,y)=Min{θ>0: y/θ ∈ P(x)}   (1) 

It measures the fraction of maximum achievable output y/θ  that the firm produces, given a 

vector of inputs x and the technology, and assuming that any increase in production would 

involve a proportional increase in all individual outputs. For any input-output combination 

(x,y) belonging to the technology set, the distance function takes a value no larger than unity, 

with a value of unity indicating technical efficiency. For instance, in Figure 1, farm C is 

clearly inefficient as its output vector does not lie on the border of the output set, and the 

resulting value of the distance function is equal to ratio OC/OCd. The output distance function 

gives directly the well-known Farrell (1957) output-based index of technical efficiency 

(Brummer, Glauben and Thijssen, 2002). The output distance function is always homogenous 

                                                 
8 This is a problem for the empirical application presented here as there is great heterogeneity within 
our sample with regard to the subset of the four species actually produced on the farm, as discussed in 
detail in the data section.  
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of degree one in outputs and inherits properties from the parent technology as detailed in Färe 

and Primont (1995).9

  

The last set of techniques available to investigate the efficiency of multi-output firms relies on 

the estimation of a ray frontier production function, first proposed by Lothgren (1997). His 

basic insight consists in expressing the output vector in polar coordinates, which makes it 

possible to represent the technology by a function relating the Euclidian norm of the output 

vector to the inputs and output mix, represented by the output polar coordinates. Formally, the 

output vector y of dimension M is expressed as: 

))(( ymyy θ=       (2) 

where y denotes the Euclidian norm of vector y ( ∑
=

=
M

i
iyy

1

2 ), θ(y)  is an (M-1) vector of 

polar coordinate angles of the output vector y, and the M functions mi: [0, π/2]M-1 →  [0,1] 

define the coordinates of the normalized output vector. This is illustrated in the two-output 

case in Figure 1. The output vector of farm C is expressed in terms of its norm, OC/OCr, and 

a single angle θc measuring the relative proportions of fish and prawn outputs, i.e. the output 

mix. The two functions mf and mp of the polar-coordinate angle θc simply define the (regular) 

coordinates of the  normalized output vector OCr obtained by radial projection of vector OC 

on the circle of radius 1. Formally, the (M-1) polar coordinate angles are obtained by applying 

recursively the following formulae (Löthgren, 1997):  
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where 1cossin 0 == Mθθ . Hence, the first angle θ1 is equal to )/(cos 1
1 yy− ; the second 

angle θ2 is equal to )sin/(cos 12
1 θyy−  and so on. Note that all (M-1) functions θ(y) are 

homogenous of degree zero in outputs, which simply reflects that they capture only the 

proportions of outputs in vector y. The coordinates of the normalized output vector are also 

easily recovered as: 
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This set up allows us to represent any technology by a multi-output ray production function 

f(x,θ(y)) as follows: 

                                                 
9 In particular, as described in Lovell et al. (1994), the output distance function is non-decreasing, 
positively linearly homogeneous and convex in y, and decreasing in x.  
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)}())((.:0max{))(,( xPymyxf ∈>= θρρθ    (5) 

This function gives the maximum norm of the output vector that the firm can produce, given a 

vector of inputs x and the existing technology, and assuming that any increase in production 

would involve a proportional increase in all individual outputs. Hence, any technology 

feasible input-output combination (x, y) is defined by the inequality yyxf ≥))(,( θ . In 

terms of Figure 1, the value of the ray production function is simply equal for farm C to the 

ratio OCd/OCr. Under the assumption of strong input disposability, the ray function is 

positively monotonic in inputs (Löthgren, 2000).  

 

In order to understand how the ray production function can be used to measure efficiency, it 

suffices to recognize that the ray production and output distance functions are closely related 

to each other. It follows from equation (5) that, for any observed output vector y, the radial 

frontier output vector is simply defined by f(x,θ(y)).m(θ(y)) so that the distance function is 

recovered as: 
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This is indeed observed in our graphical example, as ratio OC/OCd is obviously equal to 

OC/OCr divided by OCd/OCr. This relationship is most important because we know that 

virtually all the properties of a multi-output technology can be recovered from the distance 

function. For instance, Brummer, Glauben and Thijssen (2002) and Irz and Hadley (2003) use 

it to characterize technological change and productivity growth, while Kim (2000) derives 

measures of output substitutability from it. Equation (6) therefore implies that the same can be 

done from the ray production function. For our purpose, it is sufficient to recognize that 

output elasticities are easily derived from the ray production function as:  

 
))(,(

.))(;(
ln
ln

, yxf
x

x
yxf

x
y j

jj
xy j θ

θε
∂

∂
=

∂

∂
=   (7) 

This expression gives the percentage change in all outputs resulting from a one percent 

change in input j and is expected to take a positive value (Fousekis, 2000). Alternatively, 

Appendix 1 demonstrates that because the ray production function entertains some duality 

with both the maximum revenue and minimum cost functions, this elasticity can be 

interpreted as the revenue elasticity or the scale-adjusted cost share of input j. The scale 

elasticity follows immediately (Löthgren, 2000): 
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This elasticity should be compared to unity to establish whether the firm operates under 

decreasing, constant or increasing returns to scale. Finally, the derivatives with respect to the 

coordinate angles reflect the change in output norm when the output mix is changed along the 

production frontier. They therefore relate to the degree of substitutability of the different 

outputs, but in a rather indirect way as demonstrated in Appendix 1, where the expression for 

the marginal rate of transformation between any two outputs i and j is derived as: 
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 We note, however, that these derivatives are simultaneously equal to zero if and only if the 

PPF is, at the point of approximation, a perfect sphere in output space. Furthermore, this 

expression could easily be used to derive to Morishima-like elasticities of output substitution. 

 

We conclude from this analysis that, from a theoretical point of view, the ray production 

function and the output distance function are superior, as a basis for efficiency measurement 

of aquaculture farms, to the alternatives presented in the literature (dual functions, aggregate 

production functions and transformation functions).  

 

Implementation issues 

While from a theoretical point of view the output distance function and ray production 

function appear equally satisfactory for our purpose of measuring efficiency in aquaculture, 

the same does not hold from an empirical/econometric point of view10. A first issue relates to 

the fact that the distance function is linear homogenous in outputs. Imposing this property 

globally requires the use of a logarithmic functional form that cannot accommodate zero 

values on either inputs or outputs. In fact, all of the published papers on distance functions of 

which we are aware use a transcendental logarithmic functional form, in order to impose 

homogeneity while conferring sufficient flexibility to the parametric function. A common 

practice consists then in replacing zero values by ‘small numbers’ (see Morrison-Paul, 

Johnston and Frengley (2000) and Fousekis (2002) for two recent examples) but this seems 

highly unsatisfactory as the logarithmic function goes asymptotically to minus infinity at zero. 

In fact, Battese (1997) explores this problem in the context of a Cobb-Douglas production 

function to conclude that replacement of zero values by small numbers can seriously bias the 

                                                 
10 Note that distance functions can be used in a non-parametric setting in order to measure technical 
efficiency, as is the case for instance in Data Envelopment Analysis. Because these techniques do not 
account for noise, and production shocks seem important in aquaculture as indicated for instance by the 
levels and variability of mortality rates of prawns, we do not think that they are suitable for our 
purpose. We therefore focus our discussion on parametric techniques. 
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parameter estimates. Given that most farms in our sample do not produce all four outputs, this 

problem represents a major obstacle to the estimation of an output distance function on our 

data. 

 

The second issue arises from the fact that the value of the distance function is unobservable so 

that an expression of the form D=f(x,y) is not estimable directly by standard regression 

techniques. Following Lovell et al. (1994), this problem is usually circumvented by 

modifying the regression equation based on the homogeneity properties of the distance 

function. However, it is feared that this clever transformation of the estimable equation might 

lead to possible endogeneity of the regressors (Grosskopf et al., 1997; Löthgren, 2000).  

 

By contrast, no homogeneity restriction needs be imposed on the ray production function, 

which can therefore be represented by non-logarithmic functional forms and hence 

accommodate zero values. Furthermore, it is also believed that the endogeneity problem 

highlighted above for the distance function does not apply to the ray production function 

(Löthgren, 2000). Hence, we choose to pursue our investigation of efficiency of aquaculture 

farms in the Philippines based on the estimation of a ray production function. 

 

Estimation Strategy 

The estimation of firm-level efficiency scores from a ray production function follows the 

stochastic frontier methodology initially proposed by Aigner, Lovell and Schmidt (1977). 

Accordingly, a scalar-valued composed error term is introduced in the empirical ray 

production function11: 

uvyxfy −+= ));(,( βθ     (10) 

where β is a vector of  parameters to be estimated; v is a symmetric random variable that is 

independently and identically distributed across individuals; and u is a non-negative random 

variable. This specification recognizes the fact that production is first affected by random 

shocks and measurement errors, which are captured by the disturbance term v. However, the 

productive performance of farms is also determined by the quality of managerial decisions 

and it is likely that some farmers make mistakes, i.e., that they are technically inefficient. This 

is formally captured by the random variable u that describes the deviation of the norm of the 

observed output vector y from the maximum achievable norm , which is 

conditional on the exogenous shock v.  

veyxf ));(,( βθ

 

                                                 
11 Notice that the error term is introduced in an additive rather than multiplicative way because, as 
explained earlier, we do not want to use a logarithmic functional form due to the ‘zero value’ problem. 
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Given a parameterisation of the ray production function and distributional assumptions on the 

random terms, equation (10) can be estimated by the maximum likelihood methods that have 

now become commonplace in the stochastic frontier literature12. All models consider that the 

random error term v follows a normal distribution N(0,σ2
v) but differ with respect to the 

distribution of inefficiencies u. A first generation of models considers that this term is 

identically and independently distributed, following a half-normal distribution (Aigner, Lovell 

and Schmidt, 1977), truncated normal (Stevenson, 1980) or gamma (Greene, 1990) 

distribution. However, by assuming that inefficiencies are identically distributed, all of these 

models implicitly assume that there is no relationship between efficiency and farm-specific 

characteristics, as was first noted by Kumbhakar, Gush and McGuckin (1991). Consequently, 

they are obviously ill-suited to the analysis of the inverse relationship.  

 

Fortunately, several models have been developed to simultaneously measure inefficiencies 

and identify their farm-level determinants. We adopt the formulation of Battese and Coelli 

(1995) who relax the assumption of identically distributed inefficiency terms by considering 

that ui is obtained by truncation at zero of a normal variable N(µi; σu
2) where:13

δµ ii z=     (11) 

The term zi denotes a vector of potential determinants of inefficiencies, including farm size, 

while δ is a vector of parameters to be estimated. Note that because the inefficiency effects 

enter the model in a highly non-linear way, there is no identification problem when using the 

same variable in the specification of the ray production function and as an inefficiency 

effect14. The likelihood function is derived algebraically as in Battese in Coelli (1993) and it 

can then be maximised numerically to produce estimates of both the ray production function 

and the vector of parameters δ. Further, while the individual inefficiency levels are not 

directly observable, the method allows for calculation of their predictors by applying the 

procedure first proposed by Jondrow et al. (1982). As the expressions for these predictors are 

presented in Battese and Coelli (1993) only for the multiplicative model, while ours is 

additive, they are worth reporting here. First, the conditional expectation of the inefficiency 

term u given a total residual e=v-u is derived from the expression of the conditional density 

function of u given e derived in full in Battese and Coelli (1993): 

                                                 
12 See  Coelli, Rao and Battese (1998) for an introductory presentation of this literature and Kumbhakar 
and Lovell (2000) for a more detailed and technical one. 
13 The individual subscript i was ignored up to this point for notational clarity. 
14 An example of a stochastic production frontier where land appears both as an input and as an 
inefficiency effect is Ngwenya, Battese and Fleming (1997), cited on page 212 of Coelli, Rao and 
Battese (1998). The issue of identification is also discussed in Battese and Coelli (1995) where a time 
trend is used to capture both technological change and inefficiency change over time. 
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These expressions express mathematically that the random variable u, conditional on e, is 

simply obtained by truncation at zero of the normal variable N(µ*,σ*
2). The Farell output-

oriented efficiency score follows immediately: 
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where denotes the fitted output norm and is the estimated residual. 
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Next we turn to the issue of quantifying the explanatory power of the inefficiency effects 

introduced in vector z, which is motivated by our primary aim of exploring the robustness of 

any potential IR in Philippine aquaculture. This problem has been largely ignored in the 

literature, as the only attempt at tackling it of which we are aware is Pascoe and Coglan 

(2002) who, on a fisheries model, develop a procedure to isolate the variation in inefficiencies 

attributable to the inefficient effect variables. The procedure simply involves regressing the 

estimated technical efficiency scores against the variables introduced as inefficiency effects 

by ordinary least squares. This approach is ad hoc and seems unsatisfactory because it fails to 

recognize the highly non-linear way in which the inefficiency effects enter our model. From 

equation (11), it is evident that the mean of the normal variable truncated at zero to model 

inefficiencies is a linear function of the z variables but this implies that the relationship 

between predicted efficiencies (14) and the z variables takes a complex non-linear form. We 

therefore prefer to investigate this question differently. 

 

A first approach compares the full specification of the model to a restricted one where this 

variable is dropped from vector z in equation (11). The comparison is based on the 

decomposition of the total variance term e into its random shock and inefficiency components 

u and v. Coelli (1995) establishes that the relative contribution of inefficiency to the variance 

of the error is given by: 

 γ*=γ/[γ+(1-γ)π/(π-2)]      (15) 
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where parameter γ=σu
2/(σu

2+σv
2). This quantity captures the variation in production not 

accounted for by physical factors that is attributed to inefficiencies rather than random 

shocks. Hence, the difference between this quantity for the full model and the restricted 

model gives us directly a measure, in percentage terms, of the explanatory power of the 

inefficiency effect zi. 

 

We would also like to be able to measure the strength of the relationship between any zi 

variable and technical efficiency by calculating a standard elasticity but once again, the 

literature seems to have ignored this issue. From equations (12) and (13), one can derive the 

responsiveness of the conditional predictor of u to a change in any inefficiency effect 

variable: 
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Using this expression in equation (14) defining the efficiency score, one obtains: 
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This elasticity gives the percentage change in efficiency resulting from a unit percentage 

change in the inefficiency effect variable zi. Note that it depends not only on the parameter 

estimates but also on the data so that it can be estimated at any sample point or at the sample 

mean. The empirical section of the paper uses this expression to derive what we call the 

technical efficiency elasticity of farm size. Alternatively, Kumbhakar and Lovell (2002) 

propose to use the mode of the distribution of u given e as predictor of the inefficiency 

variable, which gives for our model: 
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The resulting elasticity of technical efficiency with respect to any inefficiency effect variable 

follows immediately: 
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Data and estimable model 

The two main regions of the Philippines for brackishwater pond aquaculture were selected for 

this particular study. Region three covers the central part of the northern island of Luzon and 

has brackishwater fish ponds in the four provinces of Pampanga, Bulacan, Bataan and 

Zambales. Region six is located in the Western Visayas, central Philippines, and includes the 
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provinces of Iloilo, Capiz, Negros Occidental and Aklan. The sample was stratified by farm 

size and by province, based on census data from 1997 provided by the Bureau of Agricultural 

Statistics. Production and socio-economic data were then collected by interviews with farm 

operators and caretakers (salaried supervisors). A total of more than 150 farms were initially 

surveyed but several observations were dropped because of inconsistencies and/or missing 

values, so that our analysis is based on a sample of 127 individuals.  

 

Table 1 presents the summary statistics of the production variables. Starting with the land 

input, it is apparent from our data that the farms in the study area are relatively large, with an 

average surface area of more than eleven hectares15. Further, land is also unequally 

distributed, ranging from one tenth of a hectare for the smallest farm to 130 hectares for the 

largest, and the Gini coefficient of land concentration for our sample is equal to 0.67. This 

heterogeneity in farm size gives some relevance to the investigation of the IR pursued in this 

paper. Table 1 also informs us about the type of aquaculture practiced by the farms in the 

sample. First, in monetary terms, the main intermediate input corresponds to the seeds (“fry”  

for prawns, “juveniles” for crabs and “fingerlings” for milkfish and tilapia), followed by the 

feeds and, finally, fertilisers. This simple fact reflects the extensive nature of brackishwater 

aquaculture in the Philippines, as even in semi-intensive production systems, the feeds 

account for the major share of cash costs. Also, the substantial cost of fertilisers reveals that 

farm operators attempt to bolster the natural productivity of aquaculture ponds, while the 

production process in intensive aquaculture relies solely on the provision of feeds from an 

external source for the growth of the cultivated species. Finally, the summary statistics also 

suggest that labour represents an important cost of production, as the wage rate for farm 

labour is approximately 150 PhP/day in region 3 and 100 PhP/day in region 6, so that the total 

wage bills exceeds, on average, the cost of any individual intermediate input. 

 

With respect to outputs, milkfish is the dominant production in volume. This is not surprising 

as the polyculture production system described here represents a recent evolution of the 

traditional milkfish monoculture system (Chong et al., 1984). The average milkfish yield of 

less than 500kg per hectare confirms the extensive nature of the production process. The 

volumes produced of the other species appear relatively small compared to that of milkfish 

but the relative importance of the species is different in value terms. Given that prawns fetch a 

price nearly ten times as high as that of milkfish per weight unit, they actually represent the 

                                                 
15 This can be compared to an average size of prawn farms in Thailand of only 2.16 hectares (Yap, 
1999). 
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dominant production in terms of revenue share16. This price differential is explained in part by 

the fact that milkfish and tilapia are consumed domestically, while an important proportion of 

the prawns are exported to the high-income markets of Japan and the United States. However, 

notice that crabs, which are also exclusively sold on domestic markets, also receive high 

prices and are therefore important productions in economic terms.  

 

Finally, Table 1 also suggests that the farms in the sample choose different associations of 

species, as average output for each species differs whether it is computed on the whole 

sample of farms or on the sub-sample with a strictly positive output for that particular species. 

Figure 2 represents the distribution of the number of species grown on the farm and brings 

two valuable insights. First, a large majority of farms do indeed practice the polyculture of at 

least two species, hence justifying our earlier discussion on multi-product technologies. And 

second, the association of all four species is only adopted by a relatively small fraction of the 

sample farms, implying that there is a large number of zero output values in the sample.  

 

We choose a quadratic functional form as a first step in estimating the output ray function 

defined in equation (7): 
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where the vector w includes each of the (M-1) polar coordinate angles θ(y) and  the  K inputs, 

and D is a regional dummy taking a value of unity for the farms located in region 6.17 The 

quadratic production function is a flexible functional form in the sense that it can serve as a 

local second-order approximation to any unknown production function. This specification 

therefore gives flexibility to the model which can accommodate zero values on both inputs 

and outputs.  

 

The empirical specification includes the three following inputs: land and labour, defined as in 

Table 1 as the total surface area of the aquaculture farm and the number of man days of 

labour used on the farm; and intermediate inputs, expressed in value terms, and hence 

representing an aggregate of the feed, fry/fingerling and fertiliser inputs. On the output side, 

all four productions were used to define the three polar coordinate angles for tilapia, crabs and 

prawns. The last step in specifying the model consists of choosing the inefficiency effects that 

enter equation (11). The literature suggests at that level that one should choose variables 

                                                 
16 The average prices per kilogram for our sample are 45PhP for milkfish, 31PhP for tilapia, 412PhP 
for prawns and 210 PhP for crabs. 
17 We introduce the regional dummy because the preliminary OLS regressions discussed below suggest 
that there might be technological differences between the two regions.  
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susceptible of influencing the adoption of particular management practices or the 

determinants of their adoption (Irz and McKenzie, 2003). Given the focus of this paper on the 

IR relationship, farm size is included as it is our aim to establish whether small and large 

farms adopt different management practices that lead to differences in efficiency. It is also 

possible that management differs across regions, and we therefore include the regional 

dummy as well as inefficiency effect. Other variables, such as training and experience of the 

operator, probably have an influence on efficiency but our data unfortunately does not allow 

for their inclusion.  

 

Empirical Results 

Partial productivity indicators 

We start our analysis of the IR relationship by investigating the relationship between farm 

size and land productivity. Although imperfect as outlined earlier, partial productivity 

indicators have played an important role in the development of the IR literature and are 

therefore worth reporting. Table 2 presents the results of three OLS regressions relating a 

measure of land productivity to farm size and, in order to account for possible regional 

effects, a regional dummy taking a value of unity for the farms located in region 6. The first 

regression uses the crudest possible measure of land productivity, i.e. harvest weight per 

hectare, and the results seemingly indicate a significant and positive relationship between 

farm size and productivity.  

 

However, it makes little sense to add weights of species that fetch widely different prices and 

the second regression tackles this problem by measuring land productivity in terms of revenue 

per hectare. The regression, which represents the equivalent of those presented in the 

influential paper of Berry and Cline (1979), has a surprisingly large explanatory power, as 

indicated by a R-square value of 0.42. Further, it reveals a significant and negative 

relationship between farm size and revenue per hectare. The coefficient of the farm size 

variable is easily interpreted as an elasticity and indicates that a 10% increase in farm size 

results in a 2.2% decrease in revenue per hectare. Finally, the coefficient of the regional 

dummy is also negative and significant, indicating that farms tend to be substantially less 

productive in region 6 than in region 3.  

 

The last regression accounts for differences in use of intermediate inputs when comparing 

farms as it measures land productivity by gross margin per hectare18. It does confirm to some 

                                                 
18 Note that for this regression, the dependent variable is the level of the gross margin and not its 
logarithm. This is so because some farms have negative gross margins which prohibits the use of a log-
log functional form for this regression. 
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extent the results of the previous regression but in a much weaker way. In particular, the 

negative relationship land productivity-farm size persists, with an elasticity of -0.18, but with 

only a modest level of statistical significance; the explanatory power of the regression 

declines to a mere 13%; and it transpires once again that land productivity in region 3 is 

significantly higher than in region 6.  

 

The difference in results between the two first regressions imply that, on a per hectare basis, 

larger farms tend to produce more in weight but less in value terms than smaller ones. Hence, 

it is likely that larger farms tend to choose output combinations with greater emphasis on 

lower value species (tilapia, milkfish). The difference in results between the two last 

regressions indicates that the higher revenue per hectare achieved by smaller farms, is, to a 

large extent, explained by a more intensive use of intermediate inputs. All in all, we conclude 

from this simple analysis that there is clear evidence of a negative relationship between 

intensity of land use and farm size but only weak evidence of an inverse relationship between 

land productivity and farm size. 

 

Specification tests and the structure of the technology 

The general specification of the stochastic frontier described above was tested against a 

number of simpler alternatives in order to gain some insights into the structure of the 

technology and inefficiencies. A second objective is to define a more parsimonious 

specification as the full model requires estimation of a relatively large number of parameters 

given the sample size19. The results of likelihood ratio tests are presented in Table 320.  

 

First, we test the composed error specification against the hypothesis of absence of 

inefficiencies by comparing the log-likelihood of our model against that obtained by standard 

OLS regression. The likelihood ratio statistic of 39.2 exceeds by far its critical value and we 

therefore conclude to the presence of substantial inefficiencies across our sample farms21. 

From a methodological angle, this result implies that the modelling of the technological 

relationship between inputs and outputs as a stochastic ray production function rather than a 

deterministic one is strongly supported by our data.  

 

                                                 
19 The total number of parameters in specification (20) is equal to 34, for a sample size of 127.  
20 The test statistic is LR=-2*{ln(L(H0))-ln(L(H1))}, where L(H0) and L(H1) denote the values of the 
likelihood function under the null and alternative hypotheses (Battese and Coelli, 1998). 
21 Note that the null hypothesis includes the restriction σu=0. As  this parameter is necessarily positive, 
the test statistic follows a mixed chi-square distribution, the critical values of which are found in Kodde 
and Palm (1986).  
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The second test investigates the explanatory power of the two variables introduced as 

inefficiency effects in our specification. It is also strongly rejected, implying that the regional 

dummy and farm size variables have, jointly, a statistically significant influence on efficiency. 

The third test considers the null hypothesis that the regional effects, introduced into the model 

through the regional dummy in the ray production function and in the inefficiency effect 

component of the model (11), are inexistent. The hypothesis is accepted as dropping these 

two variables from the model results in a decrease in the likelihood function of only 0.8, 

which is marginal. This absence of regional effects in the ray production function stands in 

sharp contrast to the results obtained earlier based on partial productivity indicators. There is 

no inconsistency here, however, because the ray production function can accommodate 

possible differences in output mix across regions, while partial productivity indicators fail to 

do so22. Next, the explanatory power of farm size on inefficiencies is tested and the null 

hypothesis of no farm-size effect is strongly rejected. We therefore conclude from these four 

tests that the regional dummy variable can be dropped from the specification of the model, 

while farm size as an inefficient effect should be retained. 

 

The last two tests investigate the structure of the technology. Most interesting is the question 

of whether inputs and outputs are separable, which is tested by comparing our model to a 

restricted version where the parameters of all cross-terms between inputs and polar 

coordinates angles in (20) are set equal to zero. The null hypothesis is rejected at any sensible 

level of significance, which implies that it would not be possible to aggregate consistently the 

four outputs into a single index. This is why the ray production frontier is used rather than a 

frontier production function, which requires output aggregation prior to estimation. Finally, 

the last test considers the null hypothesis that the parameters associated with all the cross-

terms among inputs and among polar coordinate angles are equal to zero. It is strongly 

rejected. 

 

Altogether, we conclude from this series of tests that there are substantial inefficiencies 

among the sample farms, which are partially explained by farm size. However, regional 

effects are not present, and the regional dummy is therefore dropped from the model’s 

specification. Further simplification of the specification is not possible as the tests indicate 

that the technology is truly multi-product and the relationship among inputs and outputs is a 

complex one. 

                                                 
22 In terms of figure 1, the efficiency of farm C is measured radially, which means that this farm is 
implicitly compared to farms with a similar output mix. By contrast, gross margin or revenue per 
hectare measures fail to account for possible differences in output combinations when comparing 
farms. 
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The results of the maximum likelihood estimation for our preferred specification are 

presented in Table 4. We note that many of the coefficients present relatively low levels of 

statistical significance but this should be expected as there is a high level of collinearity 

among the covariates23. The individual parameters of the technology are not directly 

interpretable and we therefore compute in Table 5 the elasticities of the production ray 

function at the sample mean, together with their standard errors. Most straightforward to 

interpret are the input elasticities described in equation (7). First, there is a significant and 

positive relationship between land input and production, as a one percent increase in farm size 

results in a 0.58% increase in all outputs. Hence, land stands out as a key production factor 

which can be explained by the extensive nature of the technology. Second, the elasticity with 

respect to intermediate inputs is also highly significant, with a one percent increase in that 

aggregate resulting in a 0.36% increase in production. Finally, the elasticity with respect to 

labour is very small, negative and not statistically significant, which means that the model 

fails to capture a positive relationship between labour input and production. There are several 

possible explanations for this negative result. One relates to the difficulty of measuring labour 

input properly, in particular as far as farm operators are concerned. We had to make 

sometimes crude assumptions in building the labour variable24, which might explain in part 

this statistically insignificant elasticity. Second, the labour variable presents a high degree of 

collinearity with  the other inputs, which can be explained by the fact that most farm operators 

seem to adhere to the rule of thumb ‘one care taker for ten hectares’. Finally, we note that the 

finding of a negative and/or insignificant labour elasticity, although paradoxical, represents an 

empirical regularity (Whiteman, 1999). The scale elasticity (8) is obtained by summation of 

all three input elasticities to give a value of 0.92, with a standard error of 0.11. Hence, the 

technology exhibits slightly decreasing returns to scale at the sample mean but the hypothesis 

of constant returns to scale cannot be rejected. 

 

On the output side, the elasticities of the ray function with respect to the polar coordinate 

angles are more difficult to interpret. We note, however, that the last elasticity is large and 

strongly significant, which implies that the PPF, at the sample mean, differs significantly 

from a perfect sphere. We conclude that the representation of the technology that we obtain 

appears reasonably consistent with theoretical expectations and provides an ex-post 

                                                 
23 This is not unusual when using flexible functional forms. For instance, in the full translog 
specification of his model, Löthgren (2000) reports only five significant coefficients (5%) from a total 
of 21 in the specification of the technology. 
24 For instance, we had to assume that the operator was either working full time or half-time on the 
farm, which probably does not reflect the heterogeneity of situations regarding the labour contribution 
of the operator. 
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justification for the ray production function approach that was chosen over the standard 

estimation of an aggregate production function. 

 

Inefficiencies and the inverse relationship 

The likelihood ratio tests established that inefficiencies in our sample were statistically 

significant, and that is confirmed by the fact that parameter γ in Table 4 has a large t-ratio. 

The mean efficiency score for the sample is equal to 0.37,25 which is very low and implies 

that the sample farms could potentially increase production 2.7 times without any increase in 

inputs or change in technology. This finding confirms that of Irz and McKenzie (2003) and 

suggests that there is considerable room for managerial improvement of the farms in the study 

area. It represents an empirical validation of Yap’s contention that many brackishwater ponds 

are ‘underdeveloped and under-productive’ (Yap, 1999). It can also be explained by the fact 

that extensive production systems have not been the focus of much research and extension 

activity in the Philippines, which stands in sharp contrast with the situation of the semi-

intensive systems of tilapia production in fresh water that have benefited from large R&D 

investment. The interviews carried out with farmers confirmed that formal extension services 

are simply not regarded as an important source of technical information by the operators of 

extensive farms. Finally, it is also necessary to recognize that the extensive production 

systems considered here are intrinsically complex and offer numerous opportunities for 

farmers to make mistakes. This is so because these systems are open, due to the frequent 

exchange of the pond’s water, which limits the farmer’s control of the production process. 

Furthermore, the production process depends on the natural productivity of the pond, which 

itself relates to the populations of various plankton and filamentous algae species that are 

difficult to manage and sensitive to temperature, salinity, soil conditions and the chemical and 

nutrient composition of the culture water (Arfi and Guiral, 1994).26 The situation is very 

different in intensive production where the growth of the target species depends primarily on 

the feeds brought from outside of the farm and the pond has little biological function beyond 

the provision of oxygen to the fish/crustaceans (Kautsky et al., 2000)27.  

 

Figure 3 presents the frequency distribution of efficiency scores and indicates a high level of 

heterogeneity within the sample. The distribution is very flat, as reflected by a standard error 

of 0.26, and is spread over the whole possible range, from a minimum of zero to a maximum 
                                                 
25 In the additive model presented here, the predicted efficiency scores can take negative values, which 
is theoretically impossible. We therefore replaced negative values by zeros when that occurred (in only 
a few cases) prior to calculating this average. 
26 We are thankful to Pierre Morrisens for this idea. 
27 An analogy with agriculture might be useful here. Extensive aquaculture, like organic farming, 
seems to be management intensive while intensive aquaculture, like conventional farming, tends to rely 
on the application of standard technological packages that leave little initiative to the farmer. 
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of 0.97. We now turn to the direct analysis of the IR relationship by investigating whether 

these large variations in technical efficiency scores are related to farm size. The likelihood 

ratio tests already demonstrated the existence of a significant relationship between farm size 

and efficiency, which can also be seen in Table 4 by the large t-ratio of parameter δa. 

Furthermore, note that this parameter takes a strictly positive sign, indicating that larger 

farms in our sample are less efficient than smaller ones. Hence, we conclude to the existence 

of a statistically significant IR in Philippine brackishwater aquaculture. We would like, 

however, to go further in identifying the strength of this relationship, which cannot be 

established directly from the parameter estimates and we now implement for that purpose the 

two approaches discussed in the methodological section. 

 

Our first contention was that a natural way of investigating the explanatory power of farm 

size as an inefficiency effect consists of comparing the full model to a restricted version 

where farm size is dropped as an inefficiency effect. We find that for the full specification, 

inefficiencies account for 86% of the total variance term, implying that the bulk of the 

variation in production not accounted for by physical factors is attributed to inefficiencies 

rather than random shocks (i.e., what Pascoe and Coglan (2002) referred to as luck). For the 

restricted model, where farm size is dropped from the z vector, inefficiencies account for only 

73% of the total variance term. It is therefore logical to conclude that variations in production 

not accounted for by inputs are attributable to random shocks for 14%; farm size for 13%; and 

unexplained inefficiencies for 73%. This implies that the IR, although statistically significant, 

appears to be of only limited quantitative importance.  

 

Next, we compute the efficiency elasticity of farm size corresponding to equation (17) and 

obtain a value of -0.137 at the sample mean. This indicates that a 10% increase in farm size 

decreases the level of farm-level efficiency by a modest 1.4% for the average farm and 

confirms the previous result of an IR of only limited strength. When farm-level efficiency is 

predicted by the mode of the distribution of u given e, as in equation (18), the efficiency 

elasticity at the sample mean takes the same value at the three-digit level. The results are 

therefore robust to the choice of predictor used to infer farm-level efficiency scores.  

 

From a methodological point of view, it is also interesting to compare our results to those 

obtained by application of the procedure suggested by Pascoe and Coglan (2002) to quantify 

the explanatory power of the inefficiency effect variables. When regressing by OLS the 

efficiency scores against the logarithm of farm size, we obtain results that are simply 

inconsistent with the first-stage maximum-likelihood estimation. The estimated efficiency 

elasticity of farm size at the sample mean is 0.24, with a t-ratio of 3.52, and the R-square for 
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this regression is only 9%. Clearly, the sign of the elasticity is inconsistent with that of 

parameter δa in Table 4. Furthermore, these results suggest that farm size explains only 7.7% 

(=0.09*0.86) of the variation in outputs not accounted for by physical inputs, while we find a 

value almost twice as large. Hence, we conclude that this procedure, which is not consistent 

with the underlying model of efficiency measurement, can lead to erroneous conclusions 

regarding both the direction and the strength of the relationship between inefficiency effect 

variables and efficiency scores. We therefore believe that our methodological contribution is 

important in deriving the policy implications of the popular Battese and Coelli (1995) model. 

 

Discussion and conclusion 

This paper uses a stochastic ray production function in order to investigate a potential inverse 

relationship in Philippines brackishwater aquaculture, based on a cross-section of 127 farms. 

The novelty of our approach is threefold: at a theoretical level, we derive the dual properties 

of the ray production function, which are useful in interpreting the parameter estimates; at an 

econometric level, we offer two different approaches to quantity the explanatory power of the 

inefficiency effects, including farm size, that are introduced in the model; and at an empirical 

level, ours is the first attempt to model a farming technology by a ray production function. 

 

The estimated multi-product technology is not separable in inputs and outputs, implying that 

our approach is superior to the estimation of a stochastic production function, which requires 

the aggregation of outputs into a single index. Returns to scale are slightly decreasing at the 

sample mean but the CRS hypothesis cannot be rejected. The distribution of efficiency score 

is spread out over the whole possible range with an average value of 0.37, which is extremely 

low. Large potential productivity gains are therefore achievable in the study area, without any 

change in the technology, output mix or input combination. Is land redistribution or an 

improvement in the functioning of the land market a key to achieving these efficiency gains? 

Our analysis reveals that it is probably not the case. We find that there clearly exists a 

significant inverse relationship between farm size and productivity, but that the strength of 

this relationship is limited. Farm size explains only 13% of the variability in outputs not 

accounted for by physical inputs, against 73% for unidentified factors, and 14% for random 

shocks. The elasticities that we derive indicate that when farm size doubles, efficiency 

decreases only by a modest 14%. It is therefore likely that application of the land reform laws 

to brackishwater fish ponds, which so far have secured exemptions via intense political 

lobbying by the pond owners and lease holders, does not constitute a panacea to unlock the 

productive potential of these areas. There might be legitimate reasons, on equity grounds, to 

call for the removal of these exemptions, but the efficiency case for this policy carries only 

limited weight. We know that the cost of implementing land redistribution programs is always 
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high, and that is likely to be particularly so in the Philippines where issues of corruption, 

weak law enforcement and slow-moving bureaucracy in coastal areas are well documented 

(Primavera, 2000).  

 

Although this is an important result for policy formulation, it is unfortunately a negative one 

as we are left with the conclusion that variations in efficiency relate to unexplained factors. 

The best we can do at this level is therefore to speculate on the underlying reasons leading to 

the poor average technical performance of the farms. Here, we believe that the lack of R&D 

investment in brackishwater aquaculture is a key constraint to the production and productivity 

growth of the sector. Even aquaculture specialists recognize the difficulty to manage these 

systems, and it therefore seems that there is a need to generate knowledge before even 

considering investment in extension services. It remains to be shown that such investments 

are economically desirable, but our results suggest that the potential gains from improved 

farm management are very large. 
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Figure 1: Alternative representations of a multi-output technology. 
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Figure 2: Distribution of Number of Species Grown on the Farm 
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Figure 3: Frequency distribution of efficiency scores 
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Table 1: Summary statistics*

Variable Mean Mean 
producers** Std Dev. Std Dev. 

Producers** Minimum Maximum 

              
OUTPUTS              
Milkfish (Kg) 4,356 5,075 1,098 13,339 0 80,000 
Tilapia (Kg) 674 2,950 230 4,886 0 25,600 
Prawns (Kg) 691 1,111 202 2,832 0 22,240 
Crabs (Kg) 311 878 79 1,330 0 8,000 
              
INPUTS             
Land (ha) 11.5 - 1.9 - 0.1 130.0 
Labour (man days) 1,160 - 220 - 187 26,312 
Feeds (Pesos) 95,259 - 39,617 - 0 4,420,893 
Fert (Pesos) 33,578 - 5,867 - 0 403,260 
Fry/fingerlings 
(Pesos) 183,770 - 46,518 - 0 4,140,000 

* All variables are expressed on a per year basis. 
**  Mean and standard deviation computed over the sub-sample of farms producing a positive quantity 
of the product. 
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Table 2: Inverse relationship based on partial productivity measures 

  Dependent Variable 

  
Log(harvest weight 

per hectare) 
Log(harvest value per 

hectare) 
Gross Margin per 

hectare 
Regressors:       
    
Constant 6.52 11.60 90,940 
 (37.32) (71.78) (6.78) 
    
Log(Farm size) 0.87 -0.22 -8,953 
 (11.91) (-3.30) (-1.60) 
    
Regional 
Dummy -0.85 -1.69 -63,528 
 (-4.04) (-8.69) (-3.93) 
        
R2 0.55 0.42 0.13 

 

Table 3: Specification tests 

  Log-likelihood LR statistic Critical Value Outcome 
Null Hypothesis     5% 1%   
      
1 No inefficiencies -113.0 39.2 8.8 12.5 Reject 
2 No inefficiency effects -104.3 21.9 6.0 9.2 Reject 
3 No regional effects -94.1 1.6 6.0 9.2 Accept 
4 No farm size effect -100.0 13.4 3.8 6.6 Reject 
5 Input-output separability -195.2 203.8 16.9 21.7 Reject 
6 No cross-terms -136.2 85.7 12.6 16.8 Reject 
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Table 4: estimation results of ray production frontier 

Parameter Estimate t-ratio 
Ray frontier   
α0 0.569 0.68 
αa 0.018 0.01 
αl 0.965 0.83 
αi -0.890 -1.40 
αθt -0.685 -0.64 
αθc 0.417 0.36 
αθp -0.858 -1.87 
βaa 0.047 1.27 
βll 0.001 0.08 
βii -0.092 -13.76 
βθtθt 0.140 0.20 
βθcθc -0.320 -0.48 
βθpθp 0.448 2.00 
βal 0.034 0.98 
βai 0.403 11.72 
βaθt -0.689 -0.69 
βaθc 0.588 0.34 
βaθp 0.998 1.88 
βli -0.218 -5.16 
βlθt 0.103 0.11 
βlθc -0.920 -0.86 
βlθp -0.031 -0.09 
βiθt 0.843 1.53 
βiθc 0.580 0.69 
βiθp 0.368 1.14 
βθtθc 0.120 0.22 
βθtθp 0.084 0.27 
βθcθp 0.066 0.24 
   
Inefficiency Model  
δ0 -2.356 -2.26 
δa 2.292 4.43 
   
Variance Parameters  
σ2=σu

2+σv
2 1.052 3.02 

γ=σu
2/σ2 0.944 32.46 

   
Log-likelihood -94.147   

Subscript notations: a=land input, l=labour inputs, i=intermediate inputs, (θt, θc, θp)=three polar 
coordinate angles corresponding to tilapia, crabs and prawns respectively; α0 and δo are the constant 
parameters.  
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Table 5: Elasticities of estimated ray production function (at sample mean) 

Elasticity w.r.t. Estimate t-ratio 

Land 0.58 4.51 

Labour -0.03 -0.43 
Intermediate 
Inputs 0.36 7.90 

θt 0.03 0.12 

θc 0.08 0.34 

θp 0.61 7.37 
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Appendix 1: Dual properties of the ray production function 

 

The revenue maximisation problem can be written in terms of the ray function as: 

yyxfpyMaxxpR
y

≥= ))(,(:)(),( θ    (A.1) 

This constrained optimisation problem is solved by introducing the following Lagrangian: 
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The first order conditions are: 
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which are more conveniently written as: 
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Multiplying (A.5) by yj and summing over all outputs, one obtains: 
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The first term of this sum can be re-written as j
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This expression means that the Lagrange multiplier is simply the unit value of the norm. 

Applying the envelop theorem to the original problem (A.2) therefore gives us: 
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Hence, the elastictities of the revenue function and output ray function with respect to any 

input k are equal and are expected to be positive. We also use (A.9) to rewrite (A.3): 
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It follows that the marginal rate of transformation between two outputs is: 
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It can also be written in terms of log derivatives as: 
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Suppose all the derivatives of the ray function with respect to the angles are equal to 0. This 

implies that the marginal of transformation becomes: 
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The previous expression can only be valid if the PPF is perfectly approximated in the plane 

(yi;yj) by a circle. Hence, the restriction that all derivatives of the ray production function with 

respect to the (M-1) angles are equal to zero means that the PPF is a perfect sphere of 

dimension M.  

 

The ray function also shares some dual properties with the minimum cost function. We 

proceed as before to rewrite the Lagrangian of the cost minimisation problem: 
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The FOCs are: 
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Multiplying (A.15) by xk and summing over all inputs gives:  
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It follows from (A.16) that: 
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The elasticity of the ray function with respect to any input xk is therefore interpreted as the 

scale-adjusted (optimal) cost share of that input. 
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