Low cost, non gel-based DNA marker technologies for marker assisted selection in rice

Currently, two obstacles for marker assisted selection (MAS) are the high cost for genotyping and limited sample throughput capacity. We are developing new alternative genotyping methods in a collaborative project between IRRI, CIMMYT and NARES partner institutions. Two methods are being developed as low cost approaches that can be adopted in laboratories with limited resources. Two other methods are being developed as high-throughput and cost-effective methods that could be utilized in core genotyping institutes. We are validating these methods using previously developed markers, characterized or cloned bacterial blight resistance genes (xa5, Xa7, and Xa21) in rice (Iyer and McCouch 2004; Porter et al. 2003, Song et al. 1995).

LOW COST (NON GEL-BASED) SIMPLE GENOTYPING METHODS

DOT BLOT GENOTYPING ASSAY

Methods adapted from Shirasawa et al. (2005).

PCR-ELISA DETECTION ASSAY

Methods adapted from Luk et al. (1997).

MICROARRAY-BASED GENOTYPING

Methods adapted from Ji et al. (2004) and Favrel et al. (2003).

FLUORESCENCE RESONANCE ENERGY TRANSFER (FRET)

Methods adapted from Ji et al. (2004).

LOW COST (NON GEL-BASED) SIMPLE GENOTYPING METHODS

DOT BLOT GENOTYPING ASSAY

Methods adapted from Shirasawa et al. (2005).

PCR-ELISA DETECTION ASSAY

Methods adapted from Luk et al. (1997).

MICROARRAY-BASED GENOTYPING

Methods adapted from Ji et al. (2004) and Favrel et al. (2003).

FLUORESCENCE RESONANCE ENERGY TRANSFER (FRET)

Methods adapted from Ji et al. (2004).

SUMMARY OF RESEARCH PROGRESS

PCR primers were used to amplify R and S alleles and spotted on to nylon membranes. Initial results indicated successful hybridization but a lack of specificity. DNA concentration for blotting, hybridization stringency and different incubation times of substrate detection are currently being optimized.

Gene sequence comparisons

Sequence comparisons have been made for Xa21 R and S alleles from donor and recipient parents, in order to design diagnostic allele-specific PCR primers and probes. Further sequence analysis of other target genes is also being performed.

PCR-ELISA detection assay

Allele-specific PCR primers have been developed for xa5. Results indicate that there was a good correlation between agarose gel results and absorbance values. However further optimization of reaction volumes and incubation times and temperatures is needed.

Microarray-based genotyping

PCR primers for xa5 and 12-mer allele-specific R and S xa5 probes (labeled with Alexa Fluor 546/647 dyes) have been designed. PCR amplification using DNA samples from recipient lines, in preparation for arraying, is currently underway.

REFERENCES


B.C.Y. Collard1, M.Y. Reveche1, E. Mercado1, J. Chen2, G. Carillo1, M. Bernardo1, J. Wu, E. Redouba2, P. Kadivel3, M. Bustamante4, V. Verdun1, M. Williamson5, and C.M. Vera Cruz1

1International Rice Research Institute, Metro Manila, Philippines; 2China National Rice Research Institute, Hangzhou, China; 3Philippines Rice Research Institute, Nueva Ecija, Philippines; 4National Rice Research Foundation, Hyderabad, India; 5CABIR, Bogor, Indonesia, IRRI, Agrigienes, France, CIMMYT, Mexico.