Farmer's livelihoods
What role for grain protection?

Farmers throughout sub-Saharan Africa suffer serious losses to their stored produce due to insect damage. For many families, these losses threaten household food security, for others they may force early sales at lower prices.

Understanding grain storage issues is particularly difficult because of their private nature. In the case of field crops or livestock it is possible to get a feel for what is happening from direct observation. The same is not true for storage practices. While they are initially characterised by discreet activities, mostly undertaken in public (e.g. threshing, winnowing, treating), they typically culminate in secluded storage and/or sale arrangements. Perhaps because post-harvest activities are directly linked to household food security and survival, and/or to profit and well-being, their undertaking tends to be a much more private affair, with quantities and qualities of grain stored neither readily disclosed by farmers, nor obvious to others.

Although the situation remains unclear, it is known that some farmers protect their grain by mixing in ash or plant materials, or funds allowing, purchase synthetic pesticides. Others store their grain untreated. However the effectiveness of both ash and plant materials is highly variable, and as much as a third of a sack of ash may need to be mixed with a sack of grain. Use of synthetic pesticides also has its problems: many farmers are not following the recommendations for their use; and unsuspicious traders are selling fake or expired products. Non-treatment is not an option for longer term storage as the grain becomes heavily damaged. Not surprisingly, farmers are demanding better options for improved grain protection.

With this demand in mind, researchers decided to explore whether diatomaceous earths (DEs – see box) could meet the demands of these small-scale farmers. Trials initiated in Zimbabwe in 1996 confirmed laboratory studies that the DEs, Protect-It and Dryacide, were effective grain protectants for small-scale on-farm storage. Further work to evaluate these insect dusts was initiated in Tanzania where the devastating larger grain borer (LGB, Prostephanus truncatus, du Roi) is already widespread. Research trials were set up in Shinyanga, Dodoma and Manyara regions to test and compare the efficacy of a number of different grain protectants (including African DEs) in these different agro-ecological zones. These comparative trials have been run for two consecutive 10-month storage seasons during 2002–2004, and a third season is underway. The treated commodities include maize, sorghum and beans.

What are diatomaceous earths?

Diatomaceous earths (DEs) are soft whitish powders formed from the fossils of tiny planktons which lived in oceans, rivers and lakes. After processing - mining, grinding and drying - these powders can be mixed with grain to kill insect pests. When DEs come into contact with insects they absorb the wax from the cuticle of the insect which then loses water, dehydrates and dies. DEs have extremely low toxicity to mammals and are therefore very safe to mix with food. In industry they are used as filters to help clarify fruit juices, beers, wine, pharmaceuticals, and as fillers in paints, plastics, coating agents in fertilisers amongst many other things. In addition to the imported commercial DE products, there is the potential for exploiting local deposits both in Tanzania and the region.
This research shows that grain treated with DEs and stored for a 10-month period was least affected by insect damage (see graph). Grain treated with traditional treatments or left untreated over the same period was severely damaged. The synthetic pesticides, bought from a registered stockist and applied as recommended were also effective. These findings were corroborated by farmers who used their own criteria to assess the quality of the differently treated stored grain. Selected farmers ran trials in their own homes, which also confirmed the effectiveness of DEs.

In addition to their efficacy there is also a need to determine for whom DEs will be most acceptable. To this end, the researchers have been exploring the diverse circumstances and post-harvest needs of different households. The research has shown that the quantities of grain to be stored and sold, and treatment practices, differed enormously between households in the same location. Confirmation of the diversity of the rural client-base highlights the importance for service providers to tailor recommendations to the needs of different households as opposed to using a ‘one-size-fits-all’ approach.

Those farmers who have been involved in using DEs would like to be able to purchase and use these effective grain protectants. The Ministry of Agriculture and Food Security is keen to see these safe grain protectants available in Tanzania. The challenge for the private sector is to develop this business opportunity through importation, distribution and marketing of the DE products and/or exploitation of the local DE deposits for commercial purposes.

As with any product that is to be used in contact with food stuffs, DEs will need to be officially registered with the Tropical Pesticides Research Institute (TPRI) before they are made available to the general public. TPRI have been actively involved in the research programme and are also keen that farmers are given the choice to protect their stored food using an effective, safe and non-organophosphate-based grain protectant.

The sooner this happens, the sooner farmers like Catherine (see box) will not have to fear the destruction of their grain by insect pests.

Please visit our website: www.nri.org/d6/ or contact

William Riwa, Plant Health Services, Ministry of Agriculture and Food Security, P.O. Box 9071, Dar Es Salaam, Tanzania. E-mail: wriwa052@yahoo.com

Brighton Mvumi, Department of Soil Science & Agricultural Engineering, University of Zimbabwe, P.O. Box MP167, Mount Pleasant, Harare, Zimbabwe. E-mail: mvumbim@agric.uw.ac.zw

Tanya Stathers or Mike Morris, Natural Resources Institute, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK. E-mail: t.e.stathers@gre.ac.uk m.j.morris@gre.ac.uk

This document is a product of project R8179 funded by the Crop Post-Harvest Research Programme of the UK Department for International Development (DFID). The views expressed are not necessarily those of DFID.