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Since the determination of the Mycobacterium tuberculosis

genome sequence, various groups have used the genomic

information to identify and validate targets as the basis for the

development of new anti-tuberculosis agents. Validation might

include many components: demonstration of the biochemical

activity of the enzyme, determination of its crystal structure in

complex with an inhibitor or a substrate, confirmation of

essentiality, and the identification of potent growth inhibitors

either in vitro or in an infection model. If novel target validation

and subsequent inhibition are matched by an improved

understanding of disease biology, then new antibiotics could

have the potential to shorten the duration of therapy, prevent

resistance development and eliminate latent disease.
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Introduction
Tuberculosis (TB) remains one of the deadliest infectious

diseases for humans [1]. Approximately eight million

people develop active disease each year and between

two and three million cases of active disease result in

death [2,3]. This review (and Table 1) surveys several

newly identified targets as well as those that have been

revisited in the past few years, and the levels to which

they have been validated to demonstrate their potential

role in improving chemotherapy against TB.

Targeting cell wall biosynthesis
The mycobacterial cell wall is comprised of three cova-

lently linked macromolecules: peptidoglycan, arabinoga-

lactan and mycolic acids. Cell wall biosynthesis is a

particularly good source of molecular targets because

the biosynthetic enzymes do not have homologues in

the mammalian system. Currently used anti-TB drugs

include inhibitors of mycolic acids (isoniazid and ethio-

namide), arabinogalactan (ethambutol) and peptidogly-

can (cycloserine). One of the major issues, however, is
www.sciencedirect.com
whether inhibition of cell wall synthesis can reduce the

duration of therapy, as the known cell wall inhibitors do

not appear to shorten the duration of treatment for active

disease.

Peptidoglycan biosynthesis
Both alanine racemase (Alr) and D-Ala-D-Ala ligase are

targets of D-cycloserine, a second-line anti-TB drug.

These two enzymes catalyze the first and second com-

mitted steps in bacterial peptidoglycan biosynthesis. Alr

is a pyridoxal 50-phosphate-containing enzyme that cat-

alyzes the racemization of L-alanine into D-alanine, a

major component in the biosynthesis of peptidoglycan. A

recent report has described the crystal structure of Alr

from Mycobacterium tuberculosis, revealing conserved resi-

dues near the active site that could be incorporated into

the rational design of more specific inhibitors [4].

Arabinogalactan biosynthesis
Studies into the mechanism of action of ethambutol in

M. avium identified a gene cluster that conferred resis-

tance to this antibiotic when overexpressed [5]. Further

studies showed that the products of this gene cluster —

EmbA, EmbB and EmbC — are involved in the forma-

tion of the terminal hexaarabinofuranoside portion of

arabinogalactan, where mycolic acids are attached [6].

A recent study has identified AftA, a novel arabinofur-

anosyl transferase that catalyzes the addition of the first

key arabinofuranosyl residue to the galactan core, priming

it for subsequent modifications by the Emb proteins [7�].
This enzyme is not sensitive to inhibition by ethambutol

but has been shown to be essential for viability [8].

The first committed step in the synthesis of decaprenyl-

phosphoryl-D-arabinose, the lipid donor of mycobacterial

D-arabinofuranosyl residues during arabinogalactan bio-

synthesis, is the transfer of a 5-phosphoribosyl residue

from phosphoribose diphosphate to decaprenyl phos-

phate to form decaprenylphosphoryl–5-phosphoribose.

This step is catalyzed by a ribosyltransferase that has

recently been characterized and shown to be essential for

growth [9].

Other enzymes essential for arabinogalactan biosynthesis

have been identified, including UDP-galactopyranose

mutase (encoded by the M. tuberculosis glf gene) [10],

galactofuranosyl transferase [11] and dTDP-6-deoxy-L-

lyxo-4-hexulose reductase, the enzyme that catalyzes the

final step in the formation of dTDP-rhamnose. dTDP-

rhamnose is a product of four enzymes, RmlA–D, and a

recent report has demonstrated that both RmlB and

RmlC are essential for mycobacterial growth [12].
Current Opinion in Pharmacology 2006, 6:459–467
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Table 1

Validated drug targets in Mycobacterium tuberculosis

Metabolic pathway Gene product Validation References

Knockout in

vitro growth

Human

homologue

Knockout

in vivo growth

Complexed with

crystal structure

Small-molecule

inhibitor

Cell wall biosynthesis

Peptidoglycan

biosynthesis

Alanine racemase Not viable None D-cycloserine D-cycloserine [4]

D-Ala-D-Ala ligase Not viable None D-cycloserine

Arabinogalactan

biosynthesis

EmbA–C EmbA–B not

viable

None Cofactor (PLP) Ethambutol [5,6]

AftA Not viable None [7�,8]

Phospho-

ribosyltransferase

Not viable None [9]

Galactofuraosyl

transferase

Not viable None [10]

dTDP-deoxy-

hexulose

reductase

Not viable None [11]

RmlA–D None [12]

Mycolic acid

biosynthesis

ENR (InhA) Not viable None Isoniazid [14,18,22]

AcpM Not viable None [15]

FabD Not viable None [15]

FabH Not viable None Lauroyl-CoA [16,20]

MabA Not viable None [17,21]

KasA Not viable None Thiolactomycin [19]

KasB Not viable None Thiolactomycin [19]

MmaA4 None Attenuated [23]

Pks13 Not viable None [25]

Acyl-AMP ligase Not viable None [26��]

FadD32 Not viable None [26��]

AccD4 Not viable None [26��]

AccA3 Not viable None [27�]

AccD5 Not viable None [27�]

AccE5 Not viable None [27�]

Amino acid

biosynthesis

LysA None Attenuated Lysine/coenzyme

PLP

[28,31]

LeuD None Attenuated [29]

TrpD None Attenuated [29]

ProC None Attenuated [29]

LeuA None Attenuated Substrate/product/

cofactor

Leucine [30]

Didydropicolinate

reductase

None Attenuated [32]

Shikimic acid

pathway

AroA, B, C, E, G,

K, Q

Not viable None [33–39]

Arginine

biosynthesis

ArgF Not viable None Substrate [40]

ArgA None Attenuated [41]

Branched-

chain amino

acid biosynthesis

Acetolactate

synthase

None [42,43]

Branched-chain

amino

acid

aminotransferase

Not viable None [44]

Cofactor biosynthesis

Folic acid

biosynthesis

Dihydropteroate

synthase

Not viable None Trimethoprim [45]

Dihydrofolate

reductase

Not viable Yes NADP/methotrexate/

trimethoprim

Trimethoprim [45–47]

Pantothenic acid

biosynthesis

PanB–PanE None PanCD

attenuated

[48]

CoA biosynthesis CoA (PanK) Not viable None [49]

Riboflavin

biosynthesis

LS, riboflavin

synthase

Not viable None Purinetrione inhibitors [51��]
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Table 1 (Continued )

Metabolic pathway Gene product Validation References

Knockout in

vitro growth

Human

homologue

Knockout

in vivo growth

Complexed with

crystal structure

Small-molecule

inhibitor

Reductive sulfur

assimilation

APS reductase Not viable None [52–54]

Mycothiol

biosynthesis

MshA–MshD Not viable? None Octylglucoside for

MshB/CoA and

acetyl CoA for MshD

[55–57]

Terpenoid

biosynthesis

IspC–H Not viable None Fosmidomycin for

IspC

Fosmidomycin [55,58]

DNA synthesis Ribonucleotide

reductase

Not viable Yes [59,60,64]

Thymidine

monophosphate

kinase

Not viable Yes 3-azidodeoxythymidine

monophosphate

3-azidodeoxythymidine

monophosphate

[65]

LigA Not viable None Glycosyl ureides

glycofuranosylated

diamines

[67,68��,

69��]

DNA gyrase Not viable Yes Fluoroquinolones [70,71]

Glyoxylate

shunt

Icl 1/2 None Attenuated Nitropropionate Nitropropionate [72,73��,74]

Malate synthase None Attenuated? [72]

Regulatory

proteins

GlnE Not viable None [75]

MtrA Not viable None [76]

IdeR Not viable None [77]

DosR Conditionally

impaired

None [78]

Menaquinone

biosynthesis

MenA-E and

MenH

Not viable? None [79]

Stringent response RelMTB None Attenuated [80–83]

ATP synthesis ATP synthase Yes R207910 [84��]

‘?’ indicates that a result is not yet confirmed.
Fatty acid biosynthesis
M. tuberculosis contains both type I (FAS I) and type II

(FAS II) fatty acid biosynthetic pathways, which is

unique to this genus [13]. FAS I is responsible for the

de novo synthesis of C16-C26 fatty acids. The FAS II

system extends these fatty acids up to C56 to make

precursors of mycolic acids, which are essential for

growth. Whereas FAS II consists of several distinct

enzymes, all of the FAS I enzyme activities reside on a

single multifunctional enzyme. The mammalian system

is similar to the FAS I configuration, making the FAS II

system distinct to microbes.

The enoyl acyl carrier protein reductase (ENR) catalyzes

the final enzymatic step in the elongation cycle of the

FAS II pathway. The M. tuberculosis ENR is InhA, the

target of the first-line drug isoniazid (INH) [14]. Other

essential FAS II enzymes in M. tuberculosis have been well

characterized [15–19], and crystal structures have been

determined for FabH [20], MabA [21] and InhA [22].

A gene cluster that encodes four closely related

methyltransferases that introduce modifications in the

meromycolate chain of the pathogenic M. tuberculosis
complex has been characterized. A mutant of one of
www.sciencedirect.com
these methyltranferases, mmaA4, was shown to be atte-

nuated in a mouse model of infection [23]. All four

enzymes are closely related and share a common cofac-

tor, S-adenosyl methionine. Analogues of S-adenosyl

methionine have been successfully synthesized and

are effective inhibitors of bacterial and fungal methyl-

transferases [24].

Pks13, the enzyme that catalyzes the final condensation

step in mycolic acid biosynthesis, has been described and

shown to be essential for mycobacterial growth [25].

Recently, three enzymes — the acyl-AMP ligase,

FadD32, and the AccD4-containing acyl-coenzyme A

(CoA) carboxylase — which catalyze the final steps in

producing the substrates for the ligase have been

described and also shown to be essential for mycobacter-

ial growth [26��].

Mycocerosic acids are found uniquely in the cell wall of

pathogenic mycobacteria, and their biosynthesis is essen-

tial for growth and pathogenesis. The biosynthesis of the

unique precursor methylmalonyl-CoA is an attractive

potential drug target, as an essential acyl-CoA carboxylase

from M. tuberculosis involved in the synthesis of methyl-

malonyl-CoA has been identified [27�].
Current Opinion in Pharmacology 2006, 6:459–467
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Targeting amino acid biosynthesis
M. tuberculosis auxotrophs have been described that are

attenuated in mouse infection models, including mutants

in the biosynthesis of lysine (lysA) [28], proline ( proC),

tryptophan (trpD) and leucine (leuD) [29]. The structures

of both LeuA [30] and LysA in complex with the coen-

zyme pyridoxal 50-phosphate (PLP) and the product

lysine, as well as in complex with lysine only [31], have

been solved. Amino acid biosynthesis should yield impor-

tant antibiotic targets if the organism is unable to sca-

venge for nutrients from the human host. Another

attractive target in lysine biosynthesis is the enzyme

dihydrodipicolinate reductase, for which potent inhibitors

have been identified [32]. This is a particularly important

pathway because, although lysine is required for protein

synthesis, its precursor, meso-diaminopimelic acid, is

incorporated into peptidoglycan.

The shikimate pathway is an attractive target for anti-

biotic development because it is absent from mammals

despite being essential in algae, higher plants, fungi and

bacteria. The pathway consists of seven enzymatic reac-

tions designated AroG, AroB, AroQ, AroE, AroK, AroA

and AroC, and the product of the pathway — chorismate

— is the main intermediate in the biosynthesis of aro-

matic amino acids and other metabolites, including folic

acid and quinones. The whole pathway is essential in

M. tuberculosis [33], and the aroK gene could only be

disrupted in the presence of a functional copy elsewhere

on the chromosome. AroE [34] and AroA [35] have been

characterized in detail; furthermore, the structures of

AroQ [36], AroC [37] and AroK [38] in complex with

shikimic acid, revealing the amino acid residues involved

in binding this substrate [39], have been determined.

Arginine biosynthesis was shown to be essential in

M. tuberculosis, as an ArgF mutant requiring exogenous

L-arginine for growth in vitro had reduced virulence in

immunodeficient SCID mice and was highly attenuated

in immunocompetent mice, suggesting that L-arginine

availability is restricted in vivo [40]. A recent study has

identified ArgA, an essential enzyme that catalyzes the

conversion of L-glutamate to a-N-acetyl-L-glutamate,

the initial step in L-arginine biosynthesis [41].

Plants and bacteria synthesize branched-chain amino

acids such as leucine, isoleucine and valine that are

essential for growth. Acetolactate synthase (ALS) cata-

lyzes the first step in the biosynthesis of branched-chain

amino acids [42]. ALS is essential for growth, and inhi-

bitors of plant ALS are used as herbicides [43].

The unique pathway that recycles methionine from

methylthioadenosine, a byproduct of polyamine bio-

synthesis, is also important for growth. The final step

of the methionine regeneration process is the transamina-

tion of ketomethiobutyrate to methionine; this step can
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be catalyzed by an aspartate, tyrosine or branched-chain

amino acid aminotransferase. The M. tuberculosis enzyme

has been cloned, expressed and demonstrated to be a

branched-chain amino acid aminotranferase that is inhib-

ited by aminooxy compounds which also inhibit bacterial

growth in vitro [44].

Targeting cofactor biosynthesis
Folate derivatives are cofactors utilized in the biosynth-

esis of essential molecules including purines, pyrimidines

and amino acids. Whereas bacteria synthesize folate de
novo, mammals must assimilate preformed folate deriva-

tives through an active transport system. Two enzymes

of the folate biosynthesis pathway — dihydropteroate

synthase and dihydrofolate reductase — are the validated

targets of the widely used antibacterial sulfonamide drug

trimethoprim [45]. An inhibitor of dihydrofolate reduc-

tase, WR99210, also possesses whole-cell activity against

M. tuberculosis [46]. Three crystal structures of ternary

complexes of M. tuberculosis dihydrofolate reductase with

NADP and three different inhibitors (methotrexate, tri-

methoprim and WR99210) were determined, as well as

the binary complex with NADP [47].

Pantothenate (vitamin B5) is involed in CoA biosynthesis

and is also attached to acyl carrier proteins for the purpose

of coordinating acyl groups during fatty acid biosynthesis.

The four enzymes in pantothenate biosynthesis (Pan B–E)

are good targets for antibiotic discovery, but in organisms

such as Escherichia coli, which are capable of assimilating

pantothenate from the environment through a membrane-

bound pantothenate permease (PanF), these enzymes are

not essential for growth. However, there are no Pan F

homologs in M. tuberculosis, and a panCD deletion mutant

was attenuated in a mouse model of infection [48].

CoA is an essential cofactor in lipid biosynthesis, and

enzymes involved in its biosynthesis are attractive targets.

Pantothenate kinase (PanK) is essential for growth and

catalyzes the first step of CoA biosynthesis. This enzyme

from M. tuberculosis in complex with a derivative of the

feedback inhibitor, CoA, has been crystallized and its

structure solved [49].

Genomic analysis studies have suggested that the ribo-

flavin (vitamin B2) biosynthesis pathway is essential in

M. tuberculosis [50]. Lumazine synthase (LS) catalyzes the

penultimate step of riboflavin biosynthesis, and a recent

study has performed structure determination for the

M. tuberculosis LS, made a comparison with previously

known structures of LSs from different species, and

performed calorimetric binding studies of novel purine-

trione inhibitors [51��], thus validating LS as a target for

anti-TB drug discovery.

Reduced sulfur is required by algae, plants, fungi and

bacteria for the biosynthesis of essential biomolecules
www.sciencedirect.com
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such as cysteine, CoA and methionine. Bacteria possess a

reductive sulfur assimilation pathway that converts inor-

ganic sulfate into sulfide, the oxidation state required for

biomolecular synthesis; humans do not have a similar

pathway. Adenosine-50-phosphosulphate (APS) reductase

catalyzes the first committed step of reductive sulfur

assimilation [52], and was shown to be essential in

M. bovis [53]. A recent study has described the reaction

mechanism for APS reductase, paving the way to inhibi-

tion studies [54].

Targeting mycothiol biosynthesis
M. tuberculosis synthesizes mycothiol in a multistep pro-

cess involving four enzymatic reactions designated MshA,

MshB, MshC and MshD for protection against the dama-

ging effects of reactive oxygen species. This pathway is

absent in humans. Targeted disruption of MshC yielded

no colonies unless a second copy of the gene was sup-

plied, an indication of essentiality [55]. The structures for

both MshB, a metal-dependent deacetylase that catalyses

the second step in mycothiol synthesis [56], and MshD,

the mycothiol synthase that catalyzes the last step [57],

have been determined.

Targeting terpenoid biosynthesis
Whereas mammals exclusively use the mevalonate path-

way for synthesis of terpenoids, many pathogenic bac-

teria, including M. tuberculosis, utilize the non-mevalonate

pathway, making this pathway a good source of novel

targets. The non-mevalonate pathway is catalyzed by a

sequence of enzymes (IspC–H). Four of these enzymes,

IspC–F, have been crystallized and their three-dimen-

sional structures determined [58]. This pathway still

awaits validation in M. tuberculosis.

Targeting DNA synthesis
Ribonucleotide reductases (RNRs) catalyze the first com-

mitted step in DNA synthesis, reducing ribonucleotides to

deoxynucleotides, and are essential for bacterial growth.

There are two classes of RNR in M. tuberculosis: class Ib and

class II. Class Ib RNRs consists of two subunits, the large

subunit R1 and the small subunit R2; both subunits are

required for catalytic activity. Extensive genetic, biochem-

ical and biophysical characterization of M. tuberculosis RNR

[59] has revealed several major differences between the M.
tuberculosis and the mammalian enzymes [60], including

the observations that R1 lacks an allosteric regulatory site

for dATP [61]; R2 manifests a weak magnetic interaction

between the radical and the iron center compared with its

homologues; and the M. tuberculosis R2 tyrosyl radical is not

hydrogen bonded, but instead is stably held in a hydro-

phobic pocket where it is difficult to scavenge [62,63]. The

crystal structure for the M. tuberculosis small subunit of

RNR has been solved [64].

Thymidine monophosphate kinase (TMPK) is an essential

enzyme that catalyses the conversion of dTMP to dTDP.
www.sciencedirect.com
This step is common to both de novo biosynthesis and the

salvage pathway. The structure of the M. tuberculosis
enzyme has been determined [65], and it shows important

differences from the mammalian enzyme. As opposed

to the human and other TMPKs, catalysis by the

M. tuberculosis TMPK necessitates the transient binding

of a magnesium ion coordinating the phosphate acceptor

[66]. Also, 30-azidodeoxythymidine monophosphate is a

competitive inhibitor of M. tuberculosis TMPK, whereas it is

a substrate for human and other TMPKs [66].

DNA ligases are important for DNA replication and repair,

whereby they catalyze the formation of phosphodiester

linkages between adjacent double-stranded DNA termini.

DNA ligases are classified as either NAD+- or ATP-depen-

dent, depending upon their specific cofactor. Whereas

ATP-dependent ligases are widely distributed in all spe-

cies, NAD+-dependent ligases (LigA) are only found in

some viruses and in eubacteria. M. tuberculosis LigA is

essential for growth [67]. A recent study reported the

crystal structure of M. tuberculosis LigA with bound

AMP, and this structure was used to guide computational

approaches that identified glycosly ureides as novel inhi-

bitors of LigA that distinguished between NAD+- and

ATP-dependent ligases [68��]. Glycofuranosylated dia-

mine-based inhibitors were identified that also distin-

guished between the two types of ligases, and had some

anti-TB activity [69��].

Genome analysis has revealed that in M. tuberculosis
DNA gyrase is the only type II topoisomerase [70].

DNA gyrase has been validated as a target for anti-

TB drug discovery, as its inhibition by fluoroquinolones

results in highly mycobactericidal activity; this com-

pound class has been used to treat multiple-drug-resis-

tant TB. The M. tuberculosis enzyme has recently been

overexpressed and purified, and is currently being used

in in vitro inhibition assays to direct structure–activity

relationships in the development of novel and more

potent inhibitors [71].

Targeting the glyoxylate shunt
Isocitrate lyase (ICL) catalyzes the first step in the

glyoxylate shunt, a carbon assimilatory pathway that

allows the net synthesis of C4 dicarboxylic acids from

C2 compounds such as acetate. In M. tuberculosis, the

glyoxylate cycle is comprised of a single gene encoding

malate synthase, but two genes encoding ICL [72]. The

smaller gene encodes Icl1, an enzyme closely related to

ICLs in other eubacteria; the larger gene encodes Icl2, a

protein more homologous to eukaryotic isocitrate lyases.

A recent study found that deletion of both icl1 and icl2
resulted in complete impairment of mycobacterial intra-

cellular replication and rapid elimination from the lungs

[73��]. The structure of ICL from M. tuberculosis has been

solved in complex with the inhibitors 3-nitropropionate

and 3-bromopyruvate [74].
Current Opinion in Pharmacology 2006, 6:459–467
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Targeting regulatory proteins
Three regulatory proteins have been shown to be essential

for growth of M. tuberculosis, including GlnE [75], MtrA [76]

and IdeR [77], which encode the regulator of glutamine

synthetase, a response regulator of a two-component reg-

ulator pair, and an iron-responsive regulator, respectively.

Another two-component regulator, DosR, is essential for

growth under conditions of low oxygen [78]. Inhibiting a

regulatory protein would have the added downstream

effect of disrupting a whole network of proteins under

the influence of the regulator, giving one inhibitor a

pleotropic effect.

Inhibiting menaquinone biosynthesis
If menaquinone is indeed the only quinone in

M. tuberculosis, as current evidence suggests, its bio-

synthesis is essential for growth. Menaquinone bio-

synthesis has been studied in detail in E. coli [79],

where the pathway is catalyzed by a series of enzymes

including MenF, MenD, MenC, MenE, MenB, MenA

and MenG. This pathway is not present in humans, who

cannot synthesize menaquinone and must obtain it from

diet or from gut-dwelling bacteria. The M. tuberculosis
homologs of MenA–E and MenH have been described

and their respective genes are clustered in one region of

the genome.

Targeting the stringent response enzyme
The bacterial stringent response is characterized by a

decrease in ribosomal RNA, transfer RNA and protein

synthesis, modified RNA polymerase activities, dimin-

ished activity of some transport systems and decreased

carbohydrate, amino acid and phospholipid metabolism.

The stringent response is mediated by the rapid accu-

mulation of hyper phosphorylated guanosine [(p)ppGpp],

which interacts with RNA polymerase [80] and alters its

interaction with mRNA through mechanisms that are

still poorly understood. In M. tuberculosis, synthesis and

hydrolysis of (p)ppGpp is carried out by a single enzyme,

RelMtb, [81]. The contribution of the stringent response

and (p)ppGpp in M. tuberculosis cultures and in an animal

infection model has been reported [82,83] suggesting

that it is important during infection. The stringent

response is presumably critical for adaptation to in vivo
conditions.

Targeting ATP biosynthesis
The recent discovery of an ATP synthase inhibitor

(R207910) validates ATP biosynthesis as a target for

antibiotic discovery [84��].

Conclusions
The resilience of M. tuberculosis is manifest in the require-

ment for half a year of treatment with multiple drugs for

active TB. This extended treatment leads to poor com-

pliance, which promotes resistance development. The

various antibiotics that constitute first- and second-line
Current Opinion in Pharmacology 2006, 6:459–467
drugs for TB therapy target only a small number of essen-

tial functions in the organism; identification of further

pathways that are required for bacterial growth should

provide more (novel) targets for the rational design of

effective antibiotics that shorten therapy and eliminate

drug-resistant strains. The preceding discussion and

Table 1 extend the list of target pathways with several

enzymes that have been validated to varying degrees, from

the demonstration of essentiality for growth to the identi-

fication of compounds that inhibit bacterial growth in vitro
and/or during infection. As more targets are validated, a

pattern will hopefully emerge that correlates the inhibited

pathway with the shortening of therapy, and targets will be

prioritized accordingly.
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