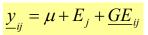


Multi-environment (multi-trait) QTL mapping using mixed models

Applications to drought stress trials in maize and wheat

M Malosetti¹, KL Mathews², J-M Ribaut³, MP Reynolds³, J Crossa³, SC Chapman² & FA van Eeuwijk ¹ ¹ Wageningen University, the Netherlands; ² CSIRO, Australia; ³ CIMMYT, Mexico


QTL analysis based on mixed models

- Greater flexibility to model complex data (with GxE and multiple traits and environments) than standard QTL mapping procedures
- More realistic models by accounting for heterogeneity of variances and correlations for trait-environment combinations
- Easily extendable: more complex interaction models (epistasis) and inclusion of climatic info

QTL detection approach

- Find an appropriate model for the variance-covariance structure (VCOV) in the data, i.e., accounting for heterogenity of variances and correlations in the linear mixed model
- Model QTLs in relation to genetic predictors (QTL genotype probabilities given marker information) within the model of step 1

1. Find appropriate VCOV

Schematic representation of VCOV models (variances in the diagonal, covariances off diagonals). Different colours means different values, white means = 0). Below number of parameters, deviance and LR with simpler model.

compo		diagonal	Unstruc (FA1 / F	
Model	# p:	arameters	deviance	LR
DIAG	6		14084	
VEAL		12	12040	125

18

XFA1

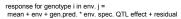
u^ż mean E_i: environment effect GE_{ij}: polygenic effect (GGE) + error

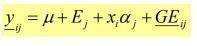
<u>y</u>_{ii}: response

Based on a loglikelihood ratio (LR) tests the most suitable VCOV is chosen.

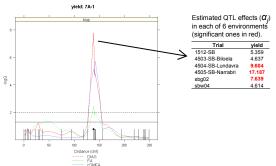
2. Creating genetic predictors from marker data:

30


13919

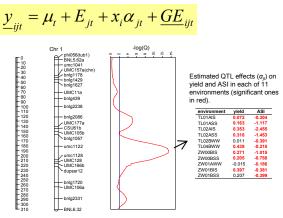

Genetic predictors
$$x_i : QQ \rightarrow x_i = 1$$

 $Qq \rightarrow x_i = 0$
 $qq \rightarrow x_i = -1$


Illustration with two examples

- Multi-environment QTL mapping
 Wheat yield in 6 environments (Australia)
- Multi-trait multi-environment QTL mapping
 Maize: 2 traits (yield and ASI), 11 environments (Mexico and Zimbabwe)

Multi-environment QTL mapping (wheat)



Test profile for a QTL effect in at least 1 of the environments

Multi-trait multi-environment QTL mapping (maize)

response for genotype i, env. j, and trait t = trait mean + trait *env + gen.pred. * (env.- trait) spec. QTL effect + residual

Test profile for a QTL effect for at least 1 trait in at least 1 environment

Conclusion

- We developed a mixed model framework for studying many forms of QTLxE that does not require specialized software
- The present mixed model framework that we employ contains
 - > Powerful test for QTLxE
 - Modelling of QTLxE in relation to environmental characterizations
 - Modelling of QTLxE for multiple traits (= changing genetic correlation across environments)