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/QTL analysis based on mixed models \ Multi-environment QTL mapping (wheat)

o Greater flexibility to model complex data (with GxE and
multiple traits and environments) than standard QTL T oy b o bpec. QTL effect + residual
mapping procedures

» More realistic models by accounting for heterogeneity of y =u+ Ej + xiO{j + @l]
variances and correlations for trait-environment Y
combinations .

» Easily extendable: more complex interaction models s s ‘ ‘ Estimated QTL effects (A1)
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1. Find an appropriate model for the variance-covariance structure 4 R [ sbwod 4614

(VCOV) in the data, i.e., accounting for heterogenity of variances and
correlations in the linear mixed model

2. Model QTLs in relation to genetic predictors (QTL genotype
probabilities given marker information) within the model of step 1
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mlustration with two examples N\ m _ _
o Multi-environment QTL mapping o We developed a mixed model framework for studying
o Wheat yield in 6 environments many forms of QTLXE that does not require specialized
(Australia) software .
= The present mixed model framework that we employ
o Multi-trait multi-environment QTL mapping con\ta::r:s ful test for QTLXE
o Maize: 2 traits (yield and ASI), 11 > Foweriul testfor WILxE ,
environments (Mexico and Zimbabwe) > Modelling of QTLXE in relation to environmental
k / characterizations
> Modelling of QTLXE for multiple traits (= changing

k genetic correlation across environments)




