Novel Inhibitors of Malarial Dihydrofolate Reductase (DHFR)

ASTMH Conference, November 5, 2007

Yongyuth Yuthavong
BIOTEC, Thailand
Project Rationale

• Malarial DHFR is a validated target for antimalarials

• Resistance to DHFR inhibitors due to a limited number of known single point mutations within the active site of the plasmodial DHFR enzyme

• Project Aims:
 – Design, synthesize and develop new antifolates exploiting structural knowledge of inhibitor binding to mutant enzyme
 – Identify activity and ADME limitations of inhibitor scaffolds
 – Optimize new scaffolds and leads for oral delivery and pre-clinical development
P. falciparum DHFR-TS

Medicines for Malaria Venture
Substrate and inhibitor binding, PfDHFR

Asn108
DHF
WR99210
Pyr
Pyr30 (m-Cl)

S1
S2
S3
S4

CH3
Ala16
Asp54
Structural Design Approaches

Pyrimethamine
well known DHFR inhibitor, but issues of resistance and toxicity to sulfa component

Cycloguanil
rigid triazine not active against mutant form of the enzyme

WR99210
flexible triazine required for activity against mutant enzyme, but low oral BA

Beginning with WR99210, optimise four sub-sites to enhance binding/activity and oral bioavailability
Iterative Approach For Design-Based DHFR Inhibitors

- Assessment against Selection Matrix
- Exploratory rat toxicology
- Secondary activity evaluation (*in vivo*)
- Initial *in vivo* activity and ADME studies supporting lead optimisation
- Structural biology
- Identification of ADME limitations of inhibitors
- New chemistry concepts
- Primary *in vitro* activity screening (*K*_i* and *I*_C_{50}*)
- Computational chemistry, co-crystal structures and refinement of QSAR

Medicines for Malaria Venture
Activity Screening Approach

Primary

\[K_i \text{ against WT and QM enzymes of } Pf\text{DHFR} \]

\[IC_{50} \text{ against WT and QM of } Pf\text{DHFR in cultured parasites} \]

Mouse *in vivo* study

% parasite inhibition after 4 x 30 mg/kg PO in *P. chabaudi* AS

Secondary

Mouse *in vivo* study

ED\(_{50} / ED_{90}\) 4 daily PO doses in *P. berghei* ANKA

Compounds with >80% inhibition progressed

Tertiary

Mouse *in vivo* study

ED\(_{50} / ED_{90}\) 3 daily PO doses in *P. falciparum* SCID model

Mouse *in vivo* study

ED\(_{50} / ED_{90}\) 4 daily PO doses in *P. chabaudi* AS

Medicines for Malaria Venture
Data Summary for Series 1

<table>
<thead>
<tr>
<th>Compound</th>
<th>K_i QM (nM)</th>
<th>IC_{50} QM $P. falciparum$ (nM)</th>
<th>Oral ED_{90} $P. chabaudi$ (mg/kg) (Pyr-sens)</th>
<th>Oral BA in rats (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WR99210</td>
<td>1.9</td>
<td>18</td>
<td>74.2</td>
<td><1</td>
</tr>
<tr>
<td>Pyrimethamine</td>
<td>385</td>
<td>>100,000</td>
<td>1.37</td>
<td>100</td>
</tr>
<tr>
<td>65 (series 1)</td>
<td>5.0</td>
<td>3,492</td>
<td>1.5</td>
<td>83</td>
</tr>
</tbody>
</table>

- Good K_i, but reduced *in vitro* potency relative to WR99210
- Good *in vivo* efficacy in *P. chabaudi* infected mice
- Substantial increase in oral bioavailability relative to WR99210
- But ….. issues with synthesis and starting material
Data Summary for Series 2

<table>
<thead>
<tr>
<th>Compound</th>
<th>IC$_{50}$ WT (nM)</th>
<th>IC$_{50}$ QM (nM)</th>
<th>Oral ED$_{90}$ P. chabaudi (mg/kg) (Pyr-sens)</th>
<th>Oral BA in rats (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrimethamine</td>
<td>79</td>
<td>>100,000</td>
<td>1.37</td>
<td>100</td>
</tr>
<tr>
<td>65 (series 1)</td>
<td>229</td>
<td>3,492</td>
<td>1.5</td>
<td>83</td>
</tr>
<tr>
<td>111 (series 2)</td>
<td>150</td>
<td>4830</td>
<td>7.3</td>
<td>19</td>
</tr>
<tr>
<td>135 (series 2)</td>
<td>1.6</td>
<td>39</td>
<td>5.2</td>
<td>7</td>
</tr>
</tbody>
</table>

- Series 2 launched to improve binding and address issues in series 1
- Reduced *in vivo* potency and reduced oral bioavailability for series 2 compounds relative to series 1
Data Summary for Series 3

<table>
<thead>
<tr>
<th>Compound</th>
<th>IC_{50} WT (nM)</th>
<th>IC_{50} QM (nM)</th>
<th>Oral ED$_{90}$ $P. chabaudi$ (mg/kg) (Pyr-sens)</th>
<th>Oral BA in rats (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrimethamine</td>
<td>79</td>
<td>>100,000</td>
<td>1.37</td>
<td>100</td>
</tr>
<tr>
<td>65 (series 1)</td>
<td>229</td>
<td>3,492</td>
<td>1.5</td>
<td>83</td>
</tr>
<tr>
<td>111 (series 2)</td>
<td>150</td>
<td>4830</td>
<td>7.3</td>
<td>19</td>
</tr>
<tr>
<td>135 (series 2)</td>
<td>1.6</td>
<td>39</td>
<td>5.2</td>
<td>7</td>
</tr>
<tr>
<td>113 (series 3)</td>
<td>4.1</td>
<td>50</td>
<td>0.01</td>
<td>2</td>
</tr>
</tbody>
</table>

- Significant increase in *in vitro* and *in vivo* potency for series 3
- High clearance, low oral bioavailability still an issue
Data Summary for Series 3

<table>
<thead>
<tr>
<th>Compound</th>
<th>In Vivo oral ED\textsubscript{90} (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\textit{P. chabaudi AS} (Pyr sensitive)</td>
</tr>
<tr>
<td>Pyrimethamine</td>
<td>0.9</td>
</tr>
<tr>
<td>65 (series 1)</td>
<td>1.5</td>
</tr>
<tr>
<td>113 (series 3)</td>
<td>0.01</td>
</tr>
</tbody>
</table>

- 113 is highly active in all strains, and considerably more active than 65 against \textit{P. berghei ANKA}
- 113 is also more active than pyrimethamine against \textit{P. falciparum} in SCID mice
Data Summary for Series 3

<table>
<thead>
<tr>
<th>Compound</th>
<th>IC$_{50}$ WT (nM)</th>
<th>IC$_{50}$ QM (nM)</th>
<th>Oral ED$_{90}$\n$P. chabaudi$ AS (mg/kg)</th>
<th>Oral BA in rats (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>113 (series 3)</td>
<td>4.1</td>
<td>50</td>
<td>0.01</td>
<td>2</td>
</tr>
<tr>
<td>149 (series 3)</td>
<td>3</td>
<td>18</td>
<td>0.02</td>
<td>16</td>
</tr>
<tr>
<td>153 (series 3)</td>
<td>0.2</td>
<td>5</td>
<td>0.013</td>
<td>28</td>
</tr>
<tr>
<td>154 (series 3)</td>
<td>3</td>
<td>23</td>
<td>0.043</td>
<td>8.4</td>
</tr>
<tr>
<td>157 (series 3)</td>
<td>2</td>
<td>36</td>
<td>0.012</td>
<td>26</td>
</tr>
</tbody>
</table>

- Highly potent *in vivo* activity and markedly improved oral bioavailability across the series
In vivo Oral Efficacy against *P. chabaudi* AS:
Series 3 Comparison with Conventional Drugs

<table>
<thead>
<tr>
<th>Compound</th>
<th>ED$_{50}$ (mg/kg)</th>
<th>ED$_{90}$ (mg/kg)</th>
<th>ED$_{99}$ (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>113 (series 3)</td>
<td>0.014</td>
<td>0.023</td>
<td>0.042</td>
</tr>
<tr>
<td>149 (series 3)</td>
<td>0.016</td>
<td>0.034</td>
<td>0.078</td>
</tr>
<tr>
<td>153 (series 3)</td>
<td>0.007</td>
<td>0.017</td>
<td>0.045</td>
</tr>
<tr>
<td>154 (series 3)</td>
<td>0.030</td>
<td>0.052</td>
<td>0.248</td>
</tr>
<tr>
<td>157 (series 3)</td>
<td>0.013</td>
<td>0.026</td>
<td>0.054</td>
</tr>
<tr>
<td>Artesunate</td>
<td>3.80</td>
<td>8.74</td>
<td>21.68</td>
</tr>
<tr>
<td>Mefloquine</td>
<td>2.48</td>
<td>5.26</td>
<td>11.97</td>
</tr>
<tr>
<td>Chloroquine</td>
<td>4.02</td>
<td>6.01</td>
<td>9.33</td>
</tr>
<tr>
<td>Atovaquone</td>
<td>0.044</td>
<td>0.067</td>
<td>0.11</td>
</tr>
<tr>
<td>Pyrimethamine</td>
<td>0.34</td>
<td>1.28</td>
<td>5.33</td>
</tr>
</tbody>
</table>
Project Milestones

2005
- Prodrug approach not required for oral efficacy
- Structural features limiting oral efficacy of WR99210 identified
- Change in chemistry focus and identify key leads

2006
- Candidate nomination
- Pre-clinical studies
- Backup program initiated

2007
- Toxicology studies
 - Dog PK
 - Comparison to selection matrix

2008+
- Enhancement of potency and ADME of new series
Overall Summary

• Validated target supported by strong structural biology

• Chemistry is tractable, relatively straightforward, low COGs

• Highly potent enzyme inhibitors; inhibition of parasite growth at nM concentrations, against wild-type and multiple mutants

• Prototype for drug development from a validated target: unique workaround to preserve a validated target for design of new therapeutic agents
The DHFR Project Team

• Chemical synthesis, structural biology, compound design, \textit{in vitro} testing
 BIOTEC; Chulalongkorn University
 (Sumalee Kamchonwongpaisan, Tirayut Vilaivan, Bongkoch Tarnchompoo, Chawanee Thongphanchang, Penchit Chitnumsub, Chairat Uthaipibull Yongyuth Yuthavong)

• \textit{In vitro} and \textit{in vivo} biological evaluation and mechanistic studies
 London School of Hygiene and Tropical Medicine
 (Livia Vivas, Emily Bongard)

• ADME, lead optimisation and compound profiling
 Monash University (Susan Charman, Danielle McLennan, Karen White, Bill Charman)

• Program advice and management
 David Matthews (ESAC member, discovery support)
 Sarah Arbe-Barnes (Fulcrum Pharma, project support)