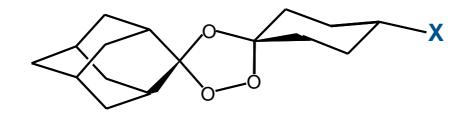


Synthetic Peroxides: A Viable Alternative to Artemisinins for the Treatment of Uncomplicated Malaria?

ASTMH Conference, November 5, 2007

Susan A. Charman Monash University, Australia



Why do we need a new class of peroxides?

- The clinical utility of peroxide antimalarials is well established; recent alarming reports of ACT treatment failures
- Fully synthetic peroxides would provide a substantial benefit in relation to cost and availability relative to artemisinins
- Design of new peroxides, with improved properties, could:
 - (i) provide more convenient dosing regimens
 - (ii) help to limit the 'fallout' if artemisinin resistance develops
 - (iii) possibly, remove the current contraindication in pregnancy

Synthetic Peroxides

1,2,4-trioxolanes (secondary ozonides)

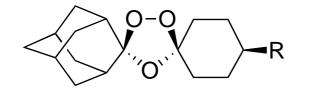
- Potent inhibitors of *P. falciparum in vitro* (IC₅₀ < 2 nM) and *P. berghei in vivo* (single dose ED₉₀ < 5 mg/kg)
- Effective against all blood stages of the parasite with rapid onset of action
- Peroxide bond is required for biological activity
- Fe(II) reactivity is a necessary, but insufficient, requirement for antimalarial activity
- 100-fold less potent than artemisinin in inhibiting *Pf*ATP6

Objectives of the Synthetic Peroxide Project

- First Generation OZ project aimed to:
 - identify a new class of fully synthetic peroxides
 - more potent than the available semi-synthetic artemisinins
 - low cost when used in combination
 - 3-day treatment regimen when used in combination

Objectives of the Synthetic Peroxide Project

- First Generation OZ project aimed to:
 - identify a new class of fully synthetic peroxides
 - more potent than the available semi-synthetic artemisinins
 - low cost when used in combination
 - 3-day treatment regimen when used in combination
- Next Generation OZ project aimed to extend these goals:
 - provide a single-dose oral cure (in combination) for patients with uncomplicated *P. falciparum* malaria
 - potential for prophylactic treatment and intermittent preventative treatment in pregnant women and infants (IPTp and IPTi)



To Achieve Next Generation Goals....

- First generation OZ:
 - significantly improved biopharmaceutical properties compared to artemisinins, but overall exposure still limited
- Single dose oral cure and prophylaxis would require:
 - dramatic increase in the exposure profile following oral administration...but without sacrificing potency
 - understand the mechanisms of *in vivo* clearance
 - structural design modifications to reduce clearance and increase the half life

Suspected Clearance Mechanisms

First Generation OZ

Blood-mediated clearance

- in vitro studies in blood
- inherent instability
 of peroxide bond required
 for activity

CYP450-mediated clearance

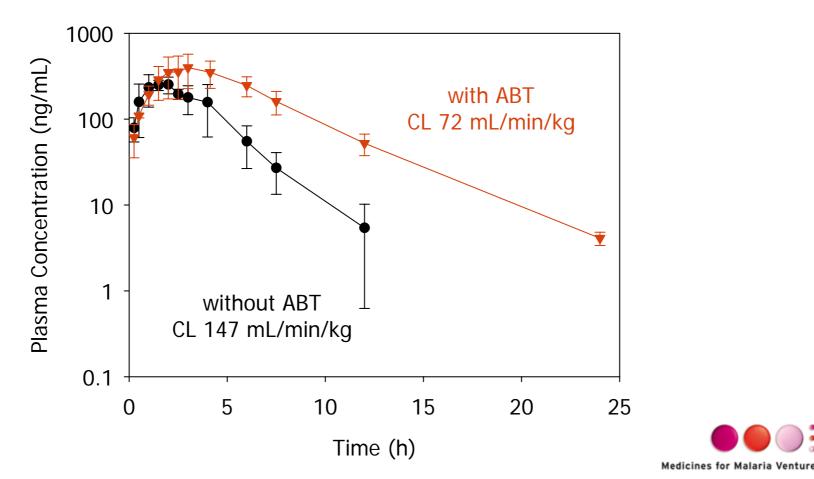
- *in vitro* studies in hepatic microsomes
- in vivo PK studies in rats

Relative contribution of these processes was unknown

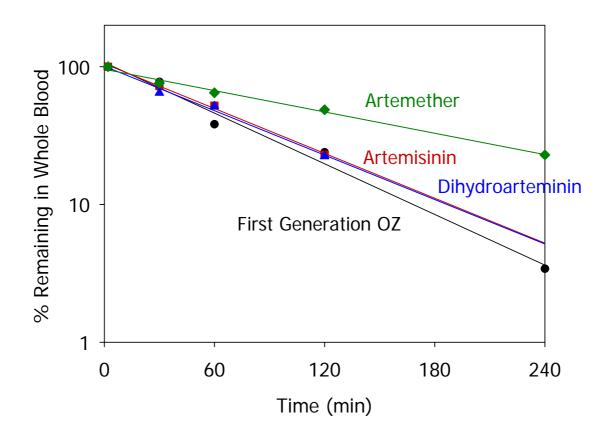
Clearance Mechanisms of First Generation OZ

determine contribution of CYP450 metabolism

administer an irreversible CYP inhibitor (ABT)


1-Aminobenzotriazole

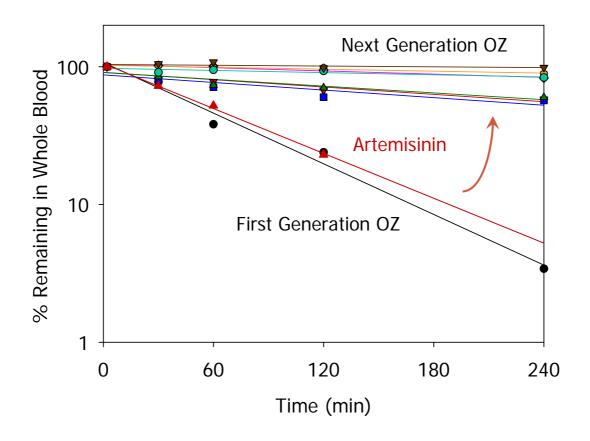
- irreversible inhibitor of Cytochrome P450 enzymes
- safe in animals at doses up to 100 mg/kg
- for compounds highly metabolised by CYP enzymes, there is a substantial reduction (80-90%) in *in vivo* clearance following pre-dosing with ABT



Clearance Mechanisms of First Generation OZ

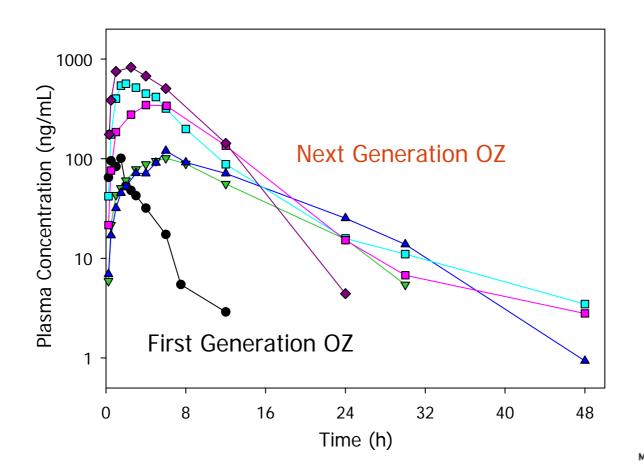
Oral administration of first generation OZ (30 mg/kg PO) \pm pre-dose with ABT (100 mg/kg PO) in rats

Relatively rapid degradation of first generation OZ and Artemisinins in rat whole blood *in vitro* (37°C)


CYP450 metabolism

 blocking known site of metabolism adversely affected activity Blood instability

- cleavage of peroxide, and subsequent formation of free radicals required for activity
- could we reduce blood instability without sacrificing potency?



Structural changes led to a significant increase in rat blood stability *in vitro* (37°C)

Substantial decrease in clearance and increase in exposure profile in rats (each dosed at 10 mg/kg PO)

But what about antimalarial activity?

Single 30 mg/kg oral dose to mice (*P. berghei*)

Compound (mg/kg)	Survival (d), Cure (%)	
Artesunate	9 d, 0%	
Artemether	9 d, 0%	
Chloroquine	10 d, 0%	
Mefloquine	22 d, 0%	
First Generation OZ	11 d, 0%	
No treatment	6 d, 0%	

Limited survival; no cures with artemisinin derivatives, conventional drugs or First Generation OZ

But what about antimalarial activity?

Single 30 mg/kg oral dose to mice (*P. berghei*)

Compound (mg/kg)	Survival (d), Cure (%)	Compound (mg/kg)	Survival (d), Cure (%)
Artesunate	9 d, 0%	OZ401	25 d, 64%
Artemether	9 d, 0%	OZ439	>30 d, 100%
Chloroquine	10 d, 0%	OZ460	25 d, 60%
Mefloquine	22 d, 0%	OZ461	>30 d, 100%
First Generation OZ	11 d, 0%	OZ464	>30 d, 100%
No treatment	6 d, 0%	OZ466	>30 d, 100%
Survival and 100% cure for Next Generation OZ		OZ482	>30 d, 100%
		OZ485	25 d, 40%
		OZ493	>30 d, 100%

Single 30 mg/kg oral dose 24 h prior to *P. berghei* infection (mice)

Compound (mg/kg)	Survival (d), Prophylaxis (%)	
Artesunate	7 d, 0%	
Artemether	not tested	
Chloroquine	7 d, 0%	
Mefloquine	27 d, 60%	
First Generation OZ	7 d, 0%	
No treatment	6 d, 0%	

Only mefloquine has prophylactic properties

Single 30 mg/kg oral dose 24 h prior to *P. berghei* infection (mice)

Compound (mg/kg)	Survival (d), Prophylaxis (%)	Compound (mg/kg)	Survival (d), Prophylaxis (%)
Artesunate	7 d, 0%	OZ401	25 d, 60%
Artemether	not tested	OZ439	>30 d, 100%
Chloroquine	7 d, 0%	OZ460	24 d, 60%
Mefloquine	27 d, 60%	OZ461	>30 d, 100%
First Generation OZ	7 d, 0%	OZ464	24 d, 60%
No treatment	6 d, 0%	OZ466	>30 d, 100%
Three next generation OZ are 100% prophylactic and all are equivalent to mefloquine		OZ482	24 d, 60%
		OZ485	24 d, 60%
		OZ493	24 d, 60%

Characteristics of Next Generation OZ

- Specific structural design concepts of the next generation OZ have resulted in:
 - improved stability in blood...without compromising biological activity
 - reduced *in vivo* clearance, prolongation of half-life and increased exposure in rats (as well as mice and dogs)...and better oral bioavailability
 - enhanced biological activity in a well-established mouse model of malaria
 - excellent prophylactic activity in mice exceeds that of the benchmark chemoprophylactic mefloquine

Steps Forward...

- Chemistry: straightforward synthesis, low COG confirmed characterisation of different salt forms on-going metabolite synthesis planned expertise in process chemistry/scale up planned
- Efficacy: Aotus P. falciparum monkey model on-going synergism/antagonism studies on-going cross resistance studies on-going
- ADME: PK properties in mice, rats, dogs completed
 in vitro metabolism, CYP inhibition near completion
 PK studies with potential partner drugs planned
- Toxicology: exploratory toxicity studies in rats completed safety pharmacology studies on-going exploratory embryotoxicity studies on-going
- Selection of development candidate planned for 1H 2008

The Synthetic Peroxide Discovery Team

Project Management Fulcrum Pharma London (S. Arbe-Barnes) 1. ★ afety Assessment ute, Roche, Basilea **Medicinal/Synthetic** el **University of Net** Medicines for Malaria Venture I. Matile, H. Urwyler) Omaha (J. Vennerstrom, Y MMV, ESAC Dr Carl Craft Dr Win Gutteridge **ADME, Compound Profiling**

Monash University Melbourne (S. Charman, B. Charman)