
 V ersion 2
August 2007

Daily use of
TortoiseCVS

A guide to the commonly used
functions of the TortoiseCVS client for

source code management on the
CropForge collaborative software

development site

Copyright International Rice Research Institute 2007
http://www.irri.org

Licensed under Creative Commons Attribution-NonCommercial-ShareAlike 3.0
For full licensing information, see http://creativecommons.org/licenses/by-nc-sa/3.0/

This work was funded by the Generation Challenge Programme
http://www.generationcp.org

http://www.generationcp.org/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.irri.org/

CONTENTS

1. Introduction..3
2. Loading the private authentication key... 4
3. TortoiseCVS and Windows Explorer... 5
4. Updating your local copy from the CVS server..9
5. Committing your local changes to the CVS server...13
6. Adding a file or directory to the source code..17
7. Deleting a file or directory from the source code... 22
8. Tagging source code... 26
9. Branching source code..27
10. Switching between source code branches..28
11. Merging changes from a branch into main development............................. 29
12. Determining which files to put under version control.................................. 30
13. Recognizing and resolving edit conflicts... 31
15. Resources.. 32

DailyTortoiseCVS 2

1. Introduction

The Concurrent Versioning System (CVS) enables developers to work
concurrently by using the copy-modify-merge model. Developers download
a working copy of the source code from a CVS server, make changes, and
subsequently upload those changes into the CVS repository. The source code
is usually in a directory tree that contains the files that make up the software
project.

The main reasons for using a source code version control system like CVS are:
• The CVS repository serves as backup
• The CVS repository maintains a complete version history of every file
• The CVS repository facilitates multiple developers working

concurrently on the same project

This manual describes the basic interaction with a CropForge CVS repository
that is needed on a daily basis (e.g., update, commit, add, delete). It also
addresses some more advanced topics in source code management (e.g.,
tagging, branching, merging) and release management.

It is assumed that the TortoiseCVS software has already been installed on the
client machine and that the user has an account on CropForge. The user must
also be a developer in a project, and have either checked out an existing
module from that project, or uploaded a new module to that project.
Furthermore, it is assumed that the authentication software PuTTY has been
installed, that a pair of public and private keys have been generated, and that
the public key has been uploaded into the user’s CropForge account. These
issues are covered in separate manuals CodeOnCropForge.pdf and
BeginningTortoiseCVS.pdf.

DailyTortoiseCVS 3

http://cropforge.org/frs/download.php/225/BeginningTortoiseCVS.pdf
http://cropforge.org/frs/download.php/229/CodeOnCropForge.pdf

2. Loading the private authentication key

It is assumed that the PuTTY software is being used for authentication with
the CropForge server. The default PuTTY installation should have resulted in
a directory c:\putty. The public and private keys in the example below were
saved under the names private.ppk and public.ppk.

After starting the PAGENT.EXE program (PuTTY authentication agent), a
corresponding icon appears in the taskbar. Right-click on the icon, select the
option Add Key, and select the file containing your private key. In this
example, the private key is stored in the file c:\putty\private.ppk.

It is assumed that your public key has already been uploaded to the
CropForge server. Whenever authentication between you and the CropForge
server is needed, it will now be done automatically by the PAGENT software
using your locally loaded private key and your public key available on the
CropForge server.

DailyTortoiseCVS 4

3. TortoiseCVS and Windows Explorer

TortoiseCVS integrates itself into Windows Explorer and maintains additional
information for directories and files that are under version control. The most
noticeable difference is the changed appearance of icons for directories and
files that are under version control. Each directory under version control
contains a “hidden” subdirectory named CVS in which TortoiseCVS
maintains its administrative information.

TortoiseCVS uses the following icon overlays to display the CVS status of the
local files or folders within Explorer.

 Not Modified The local version of the file or folder is up-to-date with
the version in the remote CVS repository.

 Modified The local version of file or folder has been modified and
differs from the version in the remote CVS repository.

 Added
The file or folder has been added to the local copy of
the source code under CVS, but has not yet been
committed to the remote CVS repository.

 Conflict

The local file or folder has a conflict with the current
file or folder in the remote CVS repository. A conflict
occurs when two or more developers have changed the
same few lines of a file in parallel.

 Not in CVS The file or folder has not yet been added to the local
copy of the source code under CVS.

 Ignore The local file or folder is being ignored by CVS, thus it
will not be affected by CVS operations.

DailyTortoiseCVS 5

When right-clicking on a directory or file under CVS version control, the
Explorer menu shows additional options and a CVS sub-menu through which
the TortoiseCVS functionality is accessible. Depending on the right-click
context, i.e. selected files or folders, CVS operations can be performed on one
or more selected files or on one or more selected directories and the files and
sub-directories contained within.

In the example below, a CVS operation is performed on the entire source code
of the fstrcmp module.

The example below shows how a CVS operation can be performed on all
modules in a project. In a similar way, CVS actions can also be performed on
one or more selected files.

DailyTortoiseCVS 6

Windows Explorer can be configured to display the CVS file attributes, in
addition to the normal attributes shown. In a module directory that is under
CVS control, right-click on the file attributes title bar. A list of currently
activated and additionally available attributes is shown.

The More… option leads to the dialog where file attributes can be selected
and arranged. Select the four CVS-specific file attributes in addition to the
currently selected file attributes, then click the OK button.

DailyTortoiseCVS 7

Windows Explorer should now show the CVS file attributes in addition to the
default file attributes. These additional CVS file attributes are very helpful in
maintaining your local source code version. The above procedure needs to be
done for every module subdirectory.

DailyTortoiseCVS 8

4. Updating your local copy from the CVS server

This action can be performed on one or more selected files, or on one or more
selected directories and the files and sub-directories contained within.

An update merges the differences that have occurred in the remote CVS
repository since your last update into your current local copy of the source
code. The local TortoiseCVS client transmits the current local revision
numbers to the remote CVS server, which then generates the differences
between those revisions and the latest revisions available on the remote
server. These differences will be applied to your current local source code
files. Such differences are usually the edits that other developers have made
to the source code, and committed to the remote CVS repository.

It is important to note that an update does not copy and overwrite entire
source code files, but that it merges changes. The utilities behind this process
are called diff and patch and their use is described in more detail here:
http://drupal.org/diffandpatch.

The diff-patch process is used by developers who do not have the right to
commit changes to a remote CVS repository. Such developers would use the
diff utility to create a patch file from the current CVS repository version of a
file and their version of the same file. This patch file - accompanied by commit
rights - is then submitted to a developer who will now be able to apply,
review, and commit changes to the remote CVS repository.

The following diagram shows the different states of a source code file in the
local copy (left) of the source code and in the remote CVS repository (right),
before a CVS update. Note that the local revision number is still at 1.1,
although changes have been made in the file (green box). Since the local
changes have not been committed to the remote CVS repository, the revision
number has remained unchanged.

Another developer has made changes to the file (red box) and committed
these changes to the remote repository. This commit has created a new
revision (1.2) of the source code file in the remote CVS repository.

DailyTortoiseCVS 9

http://drupal.org/diffandpatch

The update process transfers the changes derived between revision 1.1 and
revision 1.2 on the remote CVS repository to the local copy. This update
process causes also a change in the revision number in the local copy.

The following screenshots show the CVS update process as done in
TortoiseCVS.

DailyTortoiseCVS

Change in local copy but
not committed to remote

CVS repository

Change made by other
developer and committed

to the CVS repository.

Local copy of the
source code file.

Remote source code file
in the CVS repository.

revision 1.1

revision 1.1

revision 1.2

Change in local copy but
not committed to remote

CVS repository

Change made by other
developer and committed

to the CVS repository.

Local copy of the
source code file.

Remote source code file
in the CVS repository.

revision 1.2

revision 1.1

revision 1.2

Change made by other
developer and updated
from CVS repository. update

10

The module documentation in the project spellcheck contains a changed file
(similar.readme) in the local copy. This change has not been committed to the
remote CVS repository, as indicated by the icon overlay. In this example, we
have selected the module directory to be updated, not only the file that we
know has changed locally. If the file userguide.html has been changed by
another user in the remote CVS repository, it will also be updated by this
process.

The update process generates a message window that shows the details of the
communication between the CVS client and the CVS server, as well as the
actions performed.

According to the message, there was a revision 1.2 of the file similar.readme
in the remote CVS repository. Revisions 1.1 and 1.2 of this file were retrieved
on the remote CVS repository, and their difference was merged into the local
copy of the file. Note that the file userguide.html has not been updated, since
there was apparently no new revision of this file in the remote CVS
repository.

DailyTortoiseCVS 11

After the update, the local copy of the file now shows the revision number 1.2.
The overlay icon still indicates that the file similar.readme has been changed
locally and is not yet in sync with the remote CVS repository. Note that the
file userguide.html has remained at revision 1.1.

At this stage, we have incorporated the changes made by other developers
into our local copy of the source code, but we have not yet uploaded
(committed) our changes to the remote CVS repository. A commit operation
must be performed in order to upload these changes (see Section 5:
Committing your local changes to the CVS server).

DailyTortoiseCVS 12

5. Committing your local changes to the CVS server

This action can be performed on one or more selected files, or one or more
selected directories and the files and subdirectories contained within.

A commit merges the changes that were made in your local copy of the
source code into the remote CVS repository. The commit process first
compares the local revision number of each affected file with the latest
revision number of the corresponding file in the remote CVS repository. If the
revision numbers are the same, the commit process proceeds. Otherwise, an
update process is performed first. This sequence ensures that commits are
only performed on files that have the same revision numbers.

The diagram below shows the different states of a source code file in the local
copy (left) of the source code and in the remote CVS repository (right), before
a CVS commit. Note that the local revision number is the same as the latest
revision number in the remote CVS repository. We assume that an update has
already been performed that merged the changes made by another developer
(red box) into your local copy of the file. In the exceptional case that you are
the only developer committing changes to a remote CVS repository, you will
never have to perform updates, but only commits.

After the commit process has verified that your local revision number is the
same as the latest revision number of the corresponding file in the remote
CVS repository, your local changes (green box) are merged into the
corresponding file in the remote CVS repository. The commit process causes

DailyTortoiseCVS

Change in local copy but
not committed to remote

CVS repository

Change made by other
developer. Committed to

the CVS repository.

Local copy of the
source code file.

Remote source code file
in the CVS repository.

revision 1.2

revision 1.1

revision 1.2

Change made by other
developer and updated
from CVS repository.

13

an increment in the revision numbers in your local copy as well as in the
remote CVS repository. After a successful commit, the remote copy is the
same as your local copy. Other developers will now have to update their local
versions before being able to commit their latest changes.

The following screenshots show the CVS commit process as done in
TortoiseCVS.

The module documentation in the project spellcheck contains a changed file
(similar.readme) in the local copy. This change has not been committed to the
remote CVS repository, as indicated by the icon overlay. In this example, we
have selected the module directory to be committed, not only the file that we
know has changed locally. If other files in the module had been changed as
well, they would be committed at the same time. We assume that an update
process as described in the previous chapter has already been done for the
entire module, and that the local revision numbers of all files in the module
are the same as the latest revision numbers of the corresponding files in the
remote CVS repository.

DailyTortoiseCVS

Change in local copy

Change made by other
developer. Committed to

the CVS repository.

Local copy of the
source code file.

Remote source code file
in the CVS repository.

revision 1.3
revision 1.2

revision 1.3

Change made by other
developer and updated
from CVS repository.

revision 1.1

Change from local copy
committed to remote

CVS repository
commit

14

The commit process displays a window with all files that will be affected by
the commit process, as well as their current local status. At this stage you can
de-select files from the list, verify that the file formats are recognized properly
(Text/ASCII, binary), and add a comment to the commit process. This
comment will be attached to each new file revision generated by this commit
process on the remote CVS repository.

DailyTortoiseCVS 15

Subsequently, the commit process generates a message window that shows
the details of the communication between the CVS client and CVS server, as
well as the actions performed.

According to the message, the new revision 1.3 was generated in the remote
CVS repository, as well as in the local copy.

The local copy now shows an overlay icon indicating that the local file
similar.readme is in sync with the copy in the remote CVS repository. Note
that the version number has changed to 1.3 after the successful commit
process.

At this stage, we have incorporated our local changes into the remote CVS
repository. These changes are now visible through the CVS web interface of
the CropForge server, and they are accessible to other developers through an
update process of their local copy of the source code.

DailyTortoiseCVS 16

6. Adding a file or directory to the source code

Adding a file or a directory to the remote CVS repository is a three-step
process. The first step is to create or copy a file or directory into the local
module directory that is under CVS control. Then the file or directory has to
be added to the local CVS system maintained by TortoiseCVS. Finally, the file
or directory has to be committed to the remote CVS repository.

In the following example, a file (newguide.html) has been created in the local
document module of the spellcheck project. The overlay icon indicates that
the file has not yet been added to the local copy of the source code under CVS.

We now perform a CVS Add for the file newguide.html.

DailyTortoiseCVS 17

The add process displays a window with all files that will be affected by the
add process, as well as their current local status. At this stage, you can de-
select files from the list and verify that the file formats are recognized
properly (Text/ASCII, binary). The file format can be changed by a right-click
on the format value of a specific file.

Subsequently, the add process generates a message window that shows the
details of the communication between the CVS client and CVS server, as well
as the actions performed.

Note the message that alerts the user to perform a commit in order to add the
file permanently to the remote CVS repository.

Now the overlay icon indicates that the file has been added to the local copy,
but it does not have a revision number yet.

DailyTortoiseCVS 18

We now perform a commit for the file (newguide.html) that was added to the
local copy of the documentation module.

The commit process displays a window with all files that will be affected by
the commit process, as well as their current local status. At this stage, you can
de-select files from the list, verify that the file formats are recognized properly
(Text/ASCII, binary), and add a comment to the commit process. This
comment will be attached to the initial file revision on the remote CVS
repository.

DailyTortoiseCVS 19

Subsequently, the commit process generates a message window that shows
the details of the communication between the CVS client and CVS server, as
well as the actions performed.

According to the message, the initial revision 1.1 was generated in the remote
CVS repository, as well as in the local copy.

This is now reflected in the local copy, which shows that the file
newguide.html has the revision 1.1 and according to the overlay icon is in
sync with the remote CVS repository.

DailyTortoiseCVS 20

At this stage, we have incorporated a new file into our local copy as well as
into the remote CVS repository. These changes are now visible through the
CVS web interface of the CropForge server, and they are accessible to other
developers through an update process of their local copy of the source code.
When another developer performs an update to his/her local copy of the
documentation module of the spellcheck project, the file newguide.html,
revision 1.1, will be added to the local copy.

The process as shown above for a single file works equally for several files or
entire directories and their respective content.

DailyTortoiseCVS 21

7. Deleting a file or directory from the source code

Deleting a file or a directory from the remote CVS repository is a two-step
process. The first step is to remove the copy of a file or directory from the
local module directory and at the same time from the local CVS control. Then,
the deletion has to be committed to the remote CVS repository. Note: Adding
a file is a three-step process, deleting a file is a two-step process.

In the following example, a file (newguide.html) is removed from the local
document module of the spellcheck project. Initially, the overlay icon
indicates that the file is in sync with the remote CVS repository.

The Remove option in the CVS submenu of the Explorer removes the file
from the local directory and moves it into the Recycle Bin, and at the same
time records the removal in the local CVS administration information.

Note: A simple file deletion from the Explorer is not the same, as it will
change the local CVS administration information.

DailyTortoiseCVS 22

After the removal, the deleted file (newguide.html) no longer appears in the
Explorer file display.

In order to commit the file deletion, we need to go to the higher level
directory (documentation), and perform a commit on the entire directory.

The commit process displays a window with all files that will be affected by
the commit process, as well as their current local status. At this stage, you can

DailyTortoiseCVS 23

de-select files from the list and add a comment to the commit process. This
comment will be attached to the initial file revision on the remote CVS
repository.

Subsequently, the commit process generates a message window that shows
the details of the communication between the CVS client and CVS server, as
well as the actions performed.

According to the message, a new revision was generated, and the revision 1.1
was deleted in the remote CVS repository.

When another user now performs an update of his/her local documentation
module against the remote CVS repository, the file newguide.html will be
removed from his/her local copy of the source code.

Using the CVS web interface on CropForge, we can verify that the file
newguide.html has been removed from the documentation module on the
remote CVS repository.

DailyTortoiseCVS 24

However, the file newguide.html has not disappeared completely. A special
directory has been created on the remote CVS server called Attic, that holds
the deleted file. As we can see, the delete process has resulted in a new
revision (1.2) of newguide.html, and a move of that file into the Attic
subdirectory of the documentation module directory. As we will see in a later
section, CVS needs to be able to restore previous versions of the complete
source code, and for that reason deleted files cannot be removed permanently.

At this stage, we have removed a file from our local copy as well as from the
remote CVS repository. These changes are now visible through the CVS web
interface of the CropForge server, and they are accessible to other developers
through an update process of their local copy of the source code. When
another developer performs an update to his/her local copy of the
documentation module of the spellcheck project, the file newguide.html will
be deleted from his/her local copy.

DailyTortoiseCVS 25

Deleted files and their complete revision history are still retained in the
remote CVS repository, so that they can be restored if necessary.

The process as shown above for a single file works equally for several files or
entire directories and their respective content.

8. Tagging source code

Giving a common label to one or more files (typically on entire modules) is
referred to as “tagging,” and this is used to mark a version of these files for
easier retrieval. Basically, the assigned tag refers to the revision(s)
implemented on these files. It is recommended that tagging be performed on
project deliverables, and before making major changes to files.

To create a tag, select the file or directory for tagging, click the right mouse
button, then choose CVS -> Tag. A TortoiseCVS window (see example
below) will be displayed.

Proceed by selecting Create new tag radio button and enabling Check that
the files are unmodified, then type in a label name in the Tag input field.
Note that there are restrictions in the characters that a tag may contain (see
Section 14: Naming conventions). When you are finished, click the OK
button.

DailyTortoiseCVS 26

9. Branching source code

“Branching” in CVS refers to the process of isolating changes into a separate
line or branch of development. This allows changes to files within a branch
without affecting corresponding files in the main line of development or in
other branches.

To create a branch, select the files or directory to create a branch from, click
the right mouse button, then choose CVS -> Branch. A TortoiseCVS window,
as shown in the example below, will be displayed.

Proceed by selecting Create new branch radio button, and enabling Check
that the files are unmodified, then type in a label name in the New branch
name input field. Take note that there are restrictions in the characters that a
branch name may contain (see Section 14: Naming conventions). When you
are finished, click the OK button.

Note: The branch is created in the remote CVS repository only. Your local
copy must be tied to the CVS repository branch you wish to work on. For
information on how to select and access a branch, see Section 10: Switching
between branches.

DailyTortoiseCVS 27

10. Switching between source code branches

To access and edit files on a branch (instead of the main development line),
your local copy (working folder) must be bound to the branch. To bind your
local copy to a branch, select a directory in your project (the top-level
directory is recommended), click the right mouse button, then choose CVS ->
Update special. A TortoiseCVS window, as shown in the example below,
will be displayed.

Proceed by checking Get tag/branch/revision, then type in the branch name.
If you wish to stop working on a branch and move your working folder back
to the main line of development, specify “HEAD” as the branch/revision
name. When you are finished, click the OK button.

DailyTortoiseCVS 28

11. Merging changes from a branch into main development

Changes done on a branch may be made available on another branch or on
the main line of development through a process known as “merging”.

To perform a merge, move/bind your local copy to the branch where you
want to merge your changes (see Section 10: Switching between branches),
then select a directory in your project (the top-level directory is
recommended). After making a selection, click the right mouse button and
choose CVS -> Merge. A TortoiseCVS window, as shown in the example
below, will be displayed.

Proceed by typing in the tag/branch name of the branch to merge from. Enter
a name in the Start input field and leave the End input field blank to merge
an entire branch. When you are finished, click the OK button.

Note: The steps specified above will merge changes from the start of the
branch, so it is highly recommended to assign a new tag to a branch after
every merge. The new tag would then be used to name a branch for
subsequent merges. Keep in mind that a conflict may result from a merge
operation. If that happens, the conflict must be resolved before committing
the new revision (see Section 13: Recognizing and resolving edit conflicts).
Also note that the merging process will only take effect on the CVS repository
after performing a commit.

DailyTortoiseCVS 29

12. Determining which files to put under version control

As the rule-of-thumb, certain file types (usually binary) should not be placed
under version control. In other words, we want the CVS server to ignore
these file types whenever operations such as Add and Commit are performed
on the CVS repository.

TortoiseCVS tries to automatically detect whether a file is binary or text when
you perform an Add operation on the CVS repository. Files with extensions
such as .doc and .exe are assumed to be binary, whereas other extensions such
as .cpp and .txt are assumed to be text.

The CVS server can be told which file types to ignore through a .cvsignore
file, which is basically a text file containing a list of files that you do not want
to include in CVS operations. The .cvsignore file contains one pattern per line,
which can be interpreted as file and/or directory names.

To create a .cvsignore file, select the files and/or directories that you want to
ignore, then click the right mouse button. In the pop-up menu, select CVS
Ignore. The .cvsignore file is automatically added to the current directory,
and the file now contains the selected filenames that will be ignored.

DailyTortoiseCVS 30

It is possible to ignore certain filenames, or even a group of files with a
common file extension. For example, you want to ignore files with the
following file extensions: *.~*, *.dcu, *.dpp, *.exe, *.cfg, *.dof, *.res,
*.ddp, and *.zip. Also, entire directory names can also be ignored. Just edit
the .cvsignore file, then it would look something like this:

The .cvsignore file will be effective once it has been added and committed to
every directory under CVS control. Once the .cvsignore file has been added to
the CVS repository, it can be shared with other developers. The .cvsignore
file works under WinCVS as well as TortoiseCVS.

13. Recognizing and resolving edit conflicts

A conflict occurs when two or more developers have changed the same few
lines of a file. The CVS server will report any conflicts, which have to be resolved
before performing further CVS operations. The CVS server has the ability to
identify conflicts but not to automatically resolve them; therefore any conflict
has to be resolved manually by the developer by editing of affected files. Once
a file has been opened, locate the area with the conflict. This area begins and
ends with the “<<<<<<<” and “>>>>>>>” markers, respectively. The area with
a conflict looks like this:

<<<<<<< filename
 code with changes done in your local copy/working folder
=======
 code merged from CVS repository
>>>>>>> revision/version number

DailyTortoiseCVS 31

The next step is to remove the conflict “markers” (along with everything on
the same line as the markers) and the line(s) of code you want to discard. You
would have to decide whether to retain the code from your local copy or the
code merged from the CVS repository. When a conflict occurs, a developer
should consult with the other developer(s) involved (if applicable) and work
out the correct solution together, rather than blindly overwriting one or the
other revision. After saving the file in your local copy, perform a commit to
save changes in the corresponding file in the CVS repository.

15. Resources

• CropForge server: http://cropforge.org
• TortoiseCVS software: http://www.tortoisecvs.org
• TortoiseCVS help: Start -> Programs -> TortoiseCVS -> Help
• PuTTY software: http://www.chiark.greenend.org.uk/~sgtatham/putty/
• CVS book: http://cvsbook.red-bean.com
• CVS manual: http://ximbiot.com/cvs/manual/

DailyTortoiseCVS 32

http://ximbiot.com/cvs/manual/
http://cvsbook.red-bean.com/
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.tortoisecvs.org/
http://cropforge.org/

