Risk assessment of introduction of HPAI to commercial farms in Thailand

Suwicha Kasemsuwan
Faculty of Veterinary Medicine, Kasetsart University
Team

- Suwicha Kasemsuwan
- Sirichai Wongnarkpet
- Chalermpol Lekcharoensuk
- Theera Rukkuamsuk
- Pipat Arunpipas
- Thaweesak Songserm
- Prasit Chaithaweesap
- Tippawan Parakamawong
Outline

• Poultry sectors
• Risk question
• Model pathway
• Assumption
• Conclusion
Closed housing, EVAP.

high level of biosecurity

T. Songserm’s
Open housing (meat-typed and laying poultry)

T. Songserm's
Free grazing ducks in rice fields after harvest

Songserm *et al.*
Gilbert *et al.*
Backyard poultry
Risk questions

- What is the annual risk of introducing HPAI H5N1 infection into a commercial farm?
Model pathway

RELEASE ASSESSMENT

Parent stock

Hatchery

Day-old chick

Buffer zone (intensive surveillance)

Broiler farm

eggs

animals

human

equipment

air

food

Feed, water
Probability assessed (DOC route)

- Probability egg from PS is contaminated
- Probability egg becomes contaminated during transportation to hatchery
- Probability of low biosecurity at hatchery
- Probability DOC becomes contaminated during transportation

Risk estimates:
Annual probability of Introducing infection to a farm from DOC
Model parameters and assumptions

• Probability egg is contaminated from PS
 – Prevalence of disease in the PS
 – The frequency of surveillance testing of the PS
 – The surveillance test performance (Se, Sp)
 – Proportion of animals test in each PS
- Probability that a random egg becomes contaminated during transport
 - The prevalence of infection in the locations where it is transported
 - The probability of an effective contact
 - The number of contacts during transportation
 - Average time of transportation
• Probability of low biosecurity at hatchery
 – Probability of biosecurity failure at hatchery
Distribution for Prob. That at least 1 DOP get infected...

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>1.20471E-07</td>
</tr>
<tr>
<td>Maximum</td>
<td>7.80003E-06</td>
</tr>
<tr>
<td>Mean</td>
<td>1.45282E-06</td>
</tr>
<tr>
<td>Std Dev</td>
<td>1.0376E-06</td>
</tr>
</tbody>
</table>

Regression Sensitivity for Cell G123

- Prevalence of disease in the PS farm: 0.811
- Sensitivity of surveillance test: -0.395
- Prob. Of DOP get infected from vehicles: 0.234

Expected number of DOP infected prior entering a farm a year: 0.01318
Model pathway

RELEASE ASSESSMENT

Parent stock

eggs

Hatchery

Day-old chick

Buffer zone (intensive surveillance)

Broiler farm

animals

Feed, water

human

equipment

air

food
Probability assessed (others)

- Probability a factor is contaminated
- Probability the factor follow biosecurity system
- Effectiveness of the biosecurity system
- Risk estimates: Annual probability of Introducing infection to a farm from a factor
Risk mitigation (compartmentalization)

- General (location, layout, housing system)
- Farm management
- Feed management
- Worker management
- Poultry health management
- Pest control
- Water source management
- Biosecurity practice in emergency situation
ศูนย์
ความปลอดภัยทางสุขภาพระดับชาติ
การดำเนินงานในเนื้อ/เนื้อเป็ดเพื่อเข้าสู่ระบบ
Compartmentalisation
Distribution for Prob. that H5N1 expose to the farm (exc...)

Values in 10^-3

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>0.001177544</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.005650592</td>
</tr>
<tr>
<td>Mean</td>
<td>0.002626077</td>
</tr>
<tr>
<td>Std Dev</td>
<td>0.000705836</td>
</tr>
</tbody>
</table>

Regression Sensitivity for Cell H326

<table>
<thead>
<tr>
<th>Name</th>
<th>Regr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevalence of H5N1 carried by husk</td>
<td>0.628</td>
</tr>
<tr>
<td>Prevalence of H5N1 carried by water</td>
<td>0.570</td>
</tr>
<tr>
<td>Prevalence of H5N1 carried by birds</td>
<td>0.362</td>
</tr>
<tr>
<td>Prob. Big trees cut</td>
<td>-0.271</td>
</tr>
</tbody>
</table>
Distribution for Total prob. that H5N1 expose to the far...

Values in 10^-3

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>0.001178018</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.005651669</td>
</tr>
<tr>
<td>Mean</td>
<td>0.002627529</td>
</tr>
<tr>
<td>Std Dev</td>
<td>0.000705861</td>
</tr>
</tbody>
</table>

Regression Sensitivity for Cell H329

<table>
<thead>
<tr>
<th>Name</th>
<th>Regr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevalence of H5N1 carried by husk</td>
<td>0.628</td>
</tr>
<tr>
<td>Prevalence of H5N1 carried by water</td>
<td>0.570</td>
</tr>
<tr>
<td>Prevalence of H5N1 carried by birds</td>
<td>0.362</td>
</tr>
<tr>
<td>Prob. Big trees cut / ChickenSec1</td>
<td>-0.271</td>
</tr>
</tbody>
</table>
Conclusion

- Under current situation, the probability of introducing the virus into a farm is very low.
- Husk is considered the most influencing factor to the model.
Acknowledgments

Dr. Kachen Sathapornchai
Dr. Wantanee Kalpravidh
Dr. Ricardo Magalhaes
Prof. Dirk Pfeiffer

Department of Livestock Development, Thailand
Thailand Research Fund (TRF)
Thank you