## MODULE 10 ROAD DEFECTS SURVEY AND MAINTENANCE DEMAND DETERMINATION

Objectives

After fulfilling Module 10, you will be able to:

- Comprehend the methods to survey the road defects and other structure's defects.
- Understand and be able to follow the procedure of surveying road defects.
- Understand and be able to use the field surveying forms
- Understand and be able to use the road condition evaluation form, establish the bill of quantity for maintenance.
- Be able to independently conduct work ranging from road defect survey, fill in the investigation form to preparing the Bill of Quantity.
- Self Assessment.

#### Requirement

The participants are required to have comprehended following modules:

- Module 1: "Local Road Network"
- Module 4: "Rural Road Defects and Causes"

#### Methodology

- The participants are introduced assessment standards of conditions of road, structures & safety facilities.
- The participants are given thorough explanation on the structure and the usage of investigation forms.
- The participants are introduced methods to measure road defects (trainers demonstrate as a sample)
- The participants practice road defects surveying, fill in the form and make Bill of Quantity for maintenance
- Self Assessment

### **Training Kit**

- Rural Road Maintenance Handbook
- Module 10 "Road Defects Survey and Maintenance Demands Determination"

| Studying<br>Activities | <ol> <li>Learn about assessing standards of road conditions</li> <li>Realize simple surveying tools &amp; learn about usage of surveying tools to establish a road defect survey</li> <li>Learn about pavement defects survey, surveying form &amp; preparation of bill of quantity</li> <li>Learn about the other road &amp; structure defects, surveying form &amp; preparation of bill of quantity</li> <li>Practice road defects surveying on site</li> </ol> |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SEACAP 11              | Page 1 Total: 20 pages                                                                                                                                                                                                                                                                                                                                                                                                                                            |

## 1. Learn about indicators for assessment of rural road conditions and indicators for quantifying road defects

Look at the figure below to distinguish qualitative and quantitative assessment parameters for rural road maintenance works.



Quantity of rural road maintenance demand

*Realize* road condition assessment parameters

Read Table 2, Table 3, Table 4, Table 5 (pages 24, 25, 26,27) – of **Rural Road Maintenance Handbook** to realize road condition assessment parameters. **Fill** in the blank below with road condition assessment parameters for each type of road

(S



*Realize* parameters to quantify road defects for estimating maintenance cost of road pavement

Look at the presentation of parameters for quantifying pavement defects below:



## *Look carefully* at pavement defect surveying form below to understand its structure

| RT2     | Proj         | ect                                  |                          | RO | )AC            | ) DE | EFE | EC1 | r si | JRV | ΈY             | ΊN | g f | OR     | RM     |       |     |     |     |                 |     | For | rm1: | Pav | eme   | nt C | )efects |
|---------|--------------|--------------------------------------|--------------------------|----|----------------|------|-----|-----|------|-----|----------------|----|-----|--------|--------|-------|-----|-----|-----|-----------------|-----|-----|------|-----|-------|------|---------|
| Prov    | /ince        |                                      | District:                |    |                | Com  | mur | ne: |      |     |                |    | S   | tartir | ng Tin | ne:   |     |     |     | Finishing time: |     |     |      |     | Page: |      |         |
| Roa     | d Co         | ode:                                 | Road name:               |    | From: To Surve |      |     |     |      |     | Surveyor Name: |    |     |        | Da     | Date: |     |     |     |                 |     |     |      |     |       |      |         |
| (       | Chain        | age Km<br>m                          |                          | 0  | 50             | 0 10 | 0   | 150 | 200  | 250 | 30             | 03 | 50  | 400    | 450    | 500   | 550 | 600 | 650 | 700             | ) 7 | 50  | 800  | 850 | 900   | 95   | 0 1000  |
| Summary | Pave<br>Pave | ment/Shoulder wi<br>ment type:       | dth (m):                 |    |                |      |     |     |      |     |                |    |     |        |        |       |     |     |     |                 |     |     |      |     |       |      |         |
|         | р.<br>1      | Pavement clearii<br>m/m2-            | ng (length/area) -       |    |                |      |     |     |      |     |                |    |     |        |        |       |     |     |     |                 |     |     |      |     |       |      |         |
|         | 2            | Corrugation (dep<br>cm/m2-           | oth/area) -              |    |                |      |     |     |      |     |                |    |     |        |        |       |     |     |     |                 |     |     |      |     |       |      |         |
|         | 3            | Rutting (depth/a                     | rea) - cm/m2-            |    |                |      |     |     |      |     |                |    |     |        |        |       |     |     |     |                 |     |     |      |     |       |      |         |
| pav     | 4            | Pothole (average<br>cm/m2-           | e depth/area) -          |    |                |      |     |     |      |     |                |    |     |        |        |       |     |     |     |                 |     |     |      |     |       |      |         |
| eme     | 5            | Soft spot (volume                    | e/area) - m3/m2-         |    |                |      |     |     |      |     |                |    |     |        |        |       |     |     |     |                 |     |     |      |     |       |      |         |
| ent     | 6            | Cracking, ravelin<br>- m2            | g, fretting (area)       |    |                |      |     |     |      |     |                |    |     |        |        |       |     |     |     |                 |     |     |      |     |       |      |         |
|         | 7            | Numbers of conc<br>be replaced - sla | rete slab need to<br>b - |    |                |      |     |     |      |     |                |    |     |        |        |       |     |     |     |                 |     |     |      |     |       |      |         |
|         | 8            | Concrete paverr<br>(area) - m2 -     | nent cracking            |    |                |      |     |     |      |     |                |    |     |        |        |       |     |     |     |                 |     |     |      |     |       |      |         |
|         | 9            | Crack, joint dam                     | age (length) - m -       |    |                |      |     |     |      |     |                |    |     |        |        |       |     |     |     |                 |     |     |      |     |       |      |         |

\*Items 7, 8, 9 are exclusive for concrete pavement

P

*Realize* assessment parameters of side drain, road shoulder, bridge, S culvert, retaining wall... condition.

Read Table 1 (page 22) - of Rural Road Maintenance Handbook to realize assessment parameters of side drain & road shoulder



# *Read carefully* this surveying form for defects of shoulder, side drain, other structures & road furniture... to understand the form structure

| RT2    | Pro           | ject                           |                                 | RO | ٩D | DEF      | EC   | rs s | SUR | VE  | YIN  | IG             | FO    | RM     |     | I   | Form 2 | : For s | should          | der, sio | le drai | n & en | nbank | ment | t defects |
|--------|---------------|--------------------------------|---------------------------------|----|----|----------|------|------|-----|-----|------|----------------|-------|--------|-----|-----|--------|---------|-----------------|----------|---------|--------|-------|------|-----------|
| Pro    | /ince         | ·····                          | District:                       |    | (  | Commu    | une: |      |     |     |      | St             | artin | ıg Tin | ne: |     |        |         | Finishing time: |          |         |        | Page: |      |           |
| Roa    | d Cc          | de:                            | Road name:                      |    |    | From: To |      |      |     |     |      | Surveyor Name: |       |        |     |     | Da     | Date:   |                 |          |         |        |       |      |           |
| ļ      | ocat          | ion Km<br>m                    |                                 | 0  | 50 | 100      | 150  | 200  | 250 | 300 | ) 35 | 50             | 400   | 450    | 500 | 550 | 600    | 650     | 700             | 750      | 800     | 850    | 900   | 950  | 0 1000    |
| mary   | Pave          | ment/Shoulder wi               | dth (m):                        |    |    |          |      |      |     |     |      |                |       |        |     |     |        |         |                 |          |         |        |       |      |           |
| Sum    | Pave          | ment type:                     |                                 |    |    |          |      |      |     |     |      |                |       |        |     |     |        |         |                 |          |         |        |       |      |           |
|        | <b>ມ</b><br>1 | Shoulder reshapi               | ng (m/m²)                       |    |    |          |      |      |     |     |      |                |       |        |     |     |        |         |                 |          |         |        |       |      |           |
| shou   | 2             | Grass cutting on               | shoulder (m/m²)                 |    |    |          |      |      |     |     |      |                |       |        |     |     |        |         |                 |          |         |        |       |      |           |
| Ider   | 3             | Brush clearing or              | n road side (m <sup>2</sup> )   |    |    |          |      |      |     |     |      |                |       |        |     |     |        |         |                 |          |         |        |       |      |           |
| -ro    | 4             | Side drain clearin             | ıg (m)                          |    |    |          |      |      |     |     |      |                |       |        |     |     |        |         |                 |          |         |        |       |      |           |
| ad bed | 5             | Additional excava<br>(m)       | ation of side drain             |    |    |          |      |      |     |     |      |                |       |        |     |     |        |         |                 |          |         |        |       |      |           |
| - side | 6             | Minor landslide re             | emoving (m <sup>3</sup> )       |    |    |          |      |      |     |     |      |                |       |        |     |     |        |         |                 |          |         |        |       |      |           |
| edra   | 7             | Embankment/ slo                | ppe refilling (m <sup>3</sup> ) |    |    |          |      |      |     |     |      |                |       |        |     |     |        |         |                 |          |         |        |       |      |           |
| lin    | 8             | Side post/ traffic :<br>(unit) | sign clearing                   |    |    |          |      |      |     |     |      |                |       |        |     |     |        |         |                 |          |         |        |       |      |           |

F

# *Read carefully* this surveying form for defects of bridge, culvert, retaining wall ... to understand the form structure

| RT2     | Proj   | ect               | F                              | ROA | D DE          | EC.  | TS S | SUR | VEY | ING  | 6 FO    | RM     |     |     | Fo  | rm 3: F | or br           | idge, c | ulvert | , retai | ning v | /all | defects |
|---------|--------|-------------------|--------------------------------|-----|---------------|------|------|-----|-----|------|---------|--------|-----|-----|-----|---------|-----------------|---------|--------|---------|--------|------|---------|
| Prov    | vince  |                   | District:                      |     | Comm          | une: |      |     |     | :    | Startir | ng Tim | ne: |     |     |         | Finishing time: |         |        |         |        |      | Page:   |
| Roa     | d Co   | de:               | Road name:                     |     | From:         |      | То   |     |     | . Su | irveyc  | or Nar | ne: |     |     |         | Date:           |         |        |         |        |      |         |
|         | Locati | ion Km<br>m       |                                | 0 5 | <u>50 100</u> | 150  | 200  | 250 | 300 | 350  | 400     | 450    | 500 | 550 | 600 | 650     | 700             | 750     | 800    | 850     | 900    | 950  | 1000    |
| Summary | Paver  | nent/Shoulder wi  | dth (m):                       |     |               |      |      |     |     |      |         |        |     |     |     |         |                 |         |        |         |        |      |         |
|         | Paver  | Clean debrie and  |                                |     |               |      |      |     |     |      |         |        |     |     |     |         |                 |         |        |         |        |      |         |
| bridg   | 1      | (m <sup>2</sup> ) | unuye sunace                   |     |               |      |      |     |     |      |         |        |     |     |     |         |                 |         |        |         |        |      |         |
| le - cu | 2      | Replace bridge v  | vooden plank (m <sup>3</sup> ) |     |               |      |      |     |     |      |         |        |     |     |     |         |                 |         |        |         |        |      |         |
| lvert   | 3      | (unit)            | voouen nalis                   |     |               |      |      |     |     |      |         |        |     |     |     |         |                 |         |        |         |        |      |         |
| t-otl   | 4      | Repair abutment   | (C_i)                          |     |               |      |      |     |     |      |         |        |     |     |     |         |                 |         |        |         |        |      |         |
| her s   | 5      | Remove concret    | e, masonry (m <sup>3</sup> )   |     |               |      |      |     |     |      |         |        |     |     |     |         |                 |         |        |         |        |      |         |
| itruc   | 6      | Soil excavation ( | m <sup>3</sup> )               |     |               |      |      |     |     |      |         |        |     |     |     |         |                 |         |        |         |        |      |         |
| tur     | 7      | Replace concrete  | e (m³)                         |     |               |      |      |     |     |      |         |        |     |     |     |         |                 |         |        |         |        |      |         |
| ß       | 8      | Replace masonr    | y (m³)                         |     |               |      |      |     |     |      |         |        |     |     |     |         |                 |         |        |         |        |      |         |

F

## 2. Learn about common tools for rural road defect surveying

## *Measurement tools: consist of following main tools:*

- 1. Length measurement
- 2. Angle measurement
- 3. Cross slope (fall) template

### Length measurement tool

- used for measuring the length in:
  - milimetre, mm
  - centimetre, *cm* (1cm = 10mm)
  - decimetre, *dm* (1dm = 10cm = 100mm)
  - metre, *m* (1m = 10dm = 100cm = 1000mm)
- Tools:
  - Straight edge : plastic (up to 1m long); wooden (up to 3 m long); aluminum (up to more than 5 m long)
  - Locked steel measurement tape: maximum length of 2 or 5m
  - Steel measurement tape: maximum length up to 20, 30 or 50m
  - Measurement tape: maximum length up to 10, 20, 30 or 50m



Note

**SEACAP 11** 

## Angle measuring tool

- used to measure angle value:
  - degree, °
  - minute, ' (1° = 60')
  - second, " (1' = 60")
- angle measuring tools:
  - Quadrant: made from plastic to measure different angle value.
  - Angle measuring template made from wood, is used to check fixed angles (30°, 45°, 60°, 90° angle).



Quadrant

Template for 45° angle

Template for 30° và 60° angle

### Slope measuring template

- Slope measuring template is used to check cross fall, embankment slope, side drain slope....
- There are two types of slope measuring template:
  - Template with spirit level is used to check low slope such as cross fall, that is usually expressed in %.
  - Template for high slope is usually in right triangle shape. It is used to check embankment and/or side drain slope. The expressed value is 1: m (or 1/m), means 1 unit of length changing in height corresponding to m unit of length in horizontal distance (for example m metres)



Template for low slope

Template for checking slope of 1/1,5

## 3. Learn about method of pavement defects surveying to make qualitative & quantitative assessment

Measure area of pavement damage



Measure damage area (corrugation, rutting, soft spot, raveling, cracking ...) I



**Measuring steps:** 

Define damage area (figure above). Measure dimensions of damage area Calculate the area

#### Steel measurement tape



#### Cloth measurement tape





Page 12

## Measure the depth of corrugation, rutting and pothole



Defining depth of rutting, corrugation, or pothole using straight edge & tape measure



#### Implementing steps:

- Placing the straight edge horizontally on pavement surface (on top of corrugation or on surface level)
- Placing the steel tape square with the straight edge until reaching the bottom of rutting/ corrugation/ pothole.
- Take readings at the crossing with the straight edge. The taken reading is the depth

Measure pavement area need to be cleaned

#### Implementing steps:

- Length measuring
- Width measuring
- Area Calculating



## 4. Learn about methods of qualitative & quantitative assessment for shoulder, side drain, embankment & other structures defects.

Length measuring (length of side drain needs to be cleared, length of shoulder needs to be reshaped...)

#### Used tools:

Steel measurement tape Cloth measurement tape

#### Implementing steps:

- Put the tip of measure at beginning of shoulder/drain... that need to be reshaped/ cleared...
- Pull out the tape till maximum rang, then continue to the end of defect.
- Note the reading at the end, then accumulate to measured length



## Measure area (Vegetation area need be cleared ....)

### Used tools:

- Steel tape measure
- Cloth tape measure

#### Implementing steps:

- Define bounds of clearing area (for example, sight distance in horizontal curve.
- Convert to equivalent that is simple to define area (for example to trapezium).
- Measure major dimension of the area (for example, both bases & height of the trapezium)
- Calculate the area using appropriate formula



Measure volume (small landslide, soil refilling of embankment slope ....)

#### Used tools:

- Steel tape measure
- Cloth tape measure



Measure volume of structure defect (quarter cone of bridge, retaining wall ....)



#### Implementing steps:

- Define bound of defect
- Convert ot equivalent shape
- Measure major dimensions to calculate the area (S)
- Measure depth of masonry  $(H_x)$  estimate depth of damp soil need to be excavated Soil excavation ( $V_{*\mu_0} = S. H_*$ ) = soil refilling Renewed masonry ( $V_x = S. H_x$ )



Defect zone should be converted to equivalent simple shape (there is available formula to calculate area/volume in Rural Road Maintenance Handbook) to define maintenance demand



Look at complex table of field survey results below & study relation between it and field surveying forms above

| Table 8a - defect quantity - field survey result form |                |                 |      |   |          |                         |            |                    |  |  |  |  |
|-------------------------------------------------------|----------------|-----------------|------|---|----------|-------------------------|------------|--------------------|--|--|--|--|
| Commune:                                              |                |                 |      |   | Road : . |                         |            |                    |  |  |  |  |
| Lenght: km                                            |                | Road c          | ode: |   | Date:    |                         |            |                    |  |  |  |  |
| Pavement: Macadam -                                   | condi          | tion            |      |   |          |                         |            |                    |  |  |  |  |
| Type and location of defects assessment*              |                |                 |      |   |          |                         |            |                    |  |  |  |  |
| Location (km) or landmark                             | K0 -<br>K0+500 | K0+ 500 -<br>K1 |      |   |          | Assessment<br>parameter | quantity** |                    |  |  |  |  |
| road bed - shoul der - side drain                     |                | •               | •    | • |          | •                       |            | •                  |  |  |  |  |
| Side drain clearing (m)                               | 130            | 80              |      |   |          | 210 (m)                 | Bad        | 210 m              |  |  |  |  |
| Side drain excavation (m/m3)                          | 20/6.4         | 0               |      |   |          | 20 (m2)                 | Bad        | 6.4 m <sup>3</sup> |  |  |  |  |
| Vegetation clearing (m2)                              | 30             | 42              |      |   |          | 72 (m2)                 | Bad        | 72 m <sup>2</sup>  |  |  |  |  |
|                                                       |                |                 |      |   |          |                         |            |                    |  |  |  |  |
|                                                       |                |                 |      |   |          |                         |            |                    |  |  |  |  |
| pavement                                              |                |                 |      |   |          |                         |            |                    |  |  |  |  |

**SEACAP 11** 

| Cross fall (%)/(m)                             | 2/120   | 1.5/300 |      | 1.5-2(%) | Bad         |                                         |
|------------------------------------------------|---------|---------|------|----------|-------------|-----------------------------------------|
| Corrugation (5cm>h>3cm) (m)/(m <sup>2</sup> )  | 0       | 0       |      |          |             |                                         |
| Corrugation (h>5cm) (m)/(m <sup>2</sup> )      | 200/700 | 140/490 |      | 34%***   | Very<br>bad | 1190 m <sup>2</sup>                     |
| Pothole (Htb=12 cm) (m <sup>2</sup> )          | 80      | 60      |      |          |             | 140 m <sup>2</sup>                      |
| Soft spots (m <sup>2</sup> )/(m <sup>3</sup> ) | 20/14   | 30/18   |      | 5.4%**** | Bad         | 50m <sup>2</sup> /<br>32 m <sup>3</sup> |
|                                                |         |         | <br> | <br>     |             |                                         |
| bridge, culvert and other structures           | 5       |         |      |          |             |                                         |
| Dirt/debris on bridge surface(m2)              | 0       | 5       |      |          |             | 5 m <sup>2</sup>                        |
| Replace bridge nails (unit)                    |         | 30      |      |          |             | 30 c i                                  |
| Soil excavation for culvert outlet (m3)        | 3       |         |      |          |             | 1.9                                     |
| Soil refilling for culvert outlet (m3)         | 3       |         |      |          |             | 3 m <sup>3</sup>                        |
| Culvert outlet masonry (m3)                    | 4       |         |      |          |             | 4 m <sup>3</sup>                        |
|                                                |         |         |      |          |             |                                         |
|                                                |         |         |      |          |             |                                         |

\* Pavement/drainage system condition..... is rated in assessment parameters.

\*\* Column of defect quantity expresses quantitative parameter. This is input data of road maintenance estimating.

\*\*\* Assessment parameter of corrugation is calculated in % of road length: (200+140)/1000 = 0.34 (34%)

\*\*\*\* Assessment parameter of pothole is calculated in % total pavement area (for both pothole and soft spots): (80+60+20+30)/(1000x3.5) = 0.054 (5.4%)



memorization

Keep in mind following procedure:

- Measure & quantify defect by qualitative and quantitative parameters
- Record in field survey form (form 1, form 2, form 3)
- Make calculation & put data in complex table
- 5. Practice field survey for qualitative and quantitative assessment to define maintenance demand.



Take forms 1, 2 and 3 to site, make survey & record data to the forms



*Make calculation & put data to* the complex table

| Table 8a -                           | defect q  | uantity -  | fiel d s             | urvey r | esult fo | orm                     |        |            |  |  |
|--------------------------------------|-----------|------------|----------------------|---------|----------|-------------------------|--------|------------|--|--|
| Commune:                             |           |            |                      |         | Road : . |                         |        |            |  |  |
| Road length: km                      |           |            | Road c               | ode:    |          | Date:                   |        |            |  |  |
| Pavement type:                       | . Pave    | ment width | <sup>/</sup> Road wi | dth:    |          | condi                   |        |            |  |  |
| Type and I                           | ocation o | fdefects   | -                    | -       | -        | 8556251                 |        | defect     |  |  |
| Location (km) or landmark            |           |            |                      |         |          | Assessment<br>parameter | Rating | quantity** |  |  |
| road bed - shoul der - side drain    |           |            |                      |         |          |                         |        |            |  |  |
|                                      |           |            |                      |         |          |                         |        |            |  |  |
|                                      |           |            |                      |         |          |                         |        |            |  |  |
|                                      |           |            |                      |         |          |                         |        |            |  |  |
|                                      |           |            |                      |         |          |                         |        |            |  |  |
|                                      |           |            |                      |         |          |                         |        |            |  |  |
|                                      |           |            |                      |         |          |                         |        |            |  |  |
|                                      |           |            |                      |         |          |                         |        |            |  |  |
|                                      |           |            |                      |         |          |                         |        |            |  |  |
|                                      |           |            |                      |         |          |                         |        |            |  |  |
| pavement                             |           |            |                      |         |          |                         |        |            |  |  |
|                                      |           |            |                      |         |          |                         |        |            |  |  |
|                                      |           |            |                      |         |          |                         |        |            |  |  |
|                                      |           |            |                      |         |          |                         |        |            |  |  |
|                                      |           |            |                      |         |          |                         |        |            |  |  |
|                                      |           |            |                      |         |          |                         |        |            |  |  |
|                                      |           |            |                      |         |          |                         |        |            |  |  |
|                                      |           |            |                      |         |          |                         |        |            |  |  |
|                                      |           |            |                      |         |          |                         |        |            |  |  |
|                                      |           |            |                      |         |          |                         |        |            |  |  |
|                                      |           |            |                      |         |          |                         |        |            |  |  |
| bridge, culvert and other structures | 5         |            |                      |         |          |                         |        |            |  |  |
|                                      |           |            |                      |         |          |                         |        |            |  |  |
|                                      |           |            |                      |         |          |                         |        |            |  |  |
|                                      |           |            |                      |         |          |                         |        |            |  |  |
|                                      |           |            |                      |         |          |                         |        |            |  |  |
|                                      |           |            |                      |         |          |                         |        |            |  |  |
|                                      |           |            |                      |         |          |                         |        |            |  |  |
|                                      | ļ         |            |                      |         |          |                         |        |            |  |  |
|                                      |           |            |                      |         |          |                         |        |            |  |  |
|                                      |           |            |                      |         |          |                         |        |            |  |  |
|                                      |           |            |                      |         |          |                         |        |            |  |  |
|                                      |           |            |                      |         |          |                         |        |            |  |  |
|                                      |           |            |                      |         |          |                         |        |            |  |  |



1. *Define bounds* of pothole in figure below, *convert* to equivalent simple shape, *write formula* to calculate equivalent area, then *fill in blank line* with measuring procedures to calculate pothole area



Measuring procedure to calculate pothole area:

| <br> | <br> | <br> |
|------|------|------|
|      |      |      |
| <br> | <br> | <br> |

.....

Formula to calculate pothole area:

Good Not good