THE ARTEMISININ ENTERPRISE CONFERENCE Exploring new sources of artemisinin

Fast-track breeding of high-yielding varieties of *Artemisia annua*

David Clayton Centre for Novel Agricultural Products, University of York, UK

CNAP CENTRE FOR NOVEL AGRICULTURAL PRODUCTS BIOLOGY TO BENEFIT SOCIETY

THE UNIVERSITY of York

Aims of the CNAP Artemisia Research Project

- to identify plants of *A. annua* with increased yields of artemisinin.
- to field trial plants, confirm heritability of high yield trait and select the best lines
- to develop robust and stable high yield varieties which will slot into the current supply chain for ACTs
- to deliver high-yielding seed to the ACT supply chain in as short a timeframe as possible
- to reduce the cost of ACTs

Scientific strategy

Starting material

- Artemis developed by Mediplant and currently used commercially. Yielding from 0.6 to 1.2% depending on the location
- collection of other varieties from various locations including Vietnam and East Africa

Summary of Breeding Routes

- Route 1: Forward Screen
- Route 2: Natural variation from the Artemis gene pool
- Route 3: QTL analysis of Artemis
- Route 4: Use of natural populations
- Route 5: Association study of natural variation
- Route 6: Heteroduplex mapping
- Route 7: Combining traits

Induced variation Natural variation

Delivery timeline

Scientific strategy

- high throughput screen of M2 (selfed) plants for artemisinin yield
 - Chloroform dip
 - UPLC MS with 2.5 min run time
- identify high yielding individuals and confirm trait in the field
- ~1000 plants screened every two / three weeks.

Forward Screen Update

- screened 21 000 / 25 000 plants
- identified 230 high yield individuals (between 1.5 and 3 fold higher than Artemis)

experimental trials will characterise

- metabolite content
- trichome density
- biomass traits (height, fresh weight, leaf area, nodes)
- vegetative stage
- plant architecture

to determine field performance and establish basis of high yield trait

Project status

- multiple lines exhibiting increased yield in artemisinin identified using a forward screen.
- first heritability data suggests a significant proportion of these are due to genotype
- mapping populations established in 3 different environments and genetic map constructed.
- mutations in target genes identified with potential to increase yield of artemisinin

EARLIEST DELIVERY - 2011

Minimum target yield improvement is double the yield of Artemis

Potential yield improvement from Phase 1 routes already known ~ 2-4% artemisinin per unit dry weight

Anne Rae

Debs Rathbone

Godfree Chigeza

Thilo Winzer

Tony Larson

Yi Li

Acknowledgements – Artemisia Research Project

The CNAP Artemisia Research Project is funded by The Bill & Melinda Gates Foundation. Initial work was financed by Medicines for Malaria Venture, GlaxoSmithKline and the Garfield Weston Foundation

- Ian Graham
- **Dianna Bowles**

- Elspeth Bartlet
- Wendy Lawley
 - Caroline Calvert

FOR NOVEL AGRICULTURAL PRODUCTS

