ARTEMISININ ENTERPRISE CONFERENCE 2008

David Clayton
on behalf of the Artemisinin Enterprise
ARTEMISININ SUPPLY – THE CHALLENGE

- Rapid increases in volume demand
 - maybe unparalleled in history
 - no generally accepted forecast for future needs

Current production is
- expensive
- has long lead times
- is unreliable in quantity and quality
ARTEMISININ ENTERPRISE

- supported by the Bill & Melinda Gates Foundation
- a portfolio approach to address the need for affordable ACTs
- complementary technologies working in different ways and at different points in the artemisinin supply chain
CNAP ARTEMISIA RESEARCH PROJECT

- to develop new varieties of *A. annua* with increased yields of artemisinin.

- *A annua* has not benefited from domestication - modern molecular breeding can lead to rapid development of a robust crop

- Screening variation can identify high yielders that become parents to new hybrid varieties with improved performance

 increased yields are not generated by genetic modification
IOWH: SEMI-SYNTHETIC ARTEMISININ

• Objective: a complementary source of artemisinin
 – A non-seasonal supply
 – Rapid response to changes in demand
 – Supplements plant-derived artemisinin derivatives

• Artemisinic acid derived by fermentation of genetically engineered yeast
 – Subsequent chemical conversion to artemisinin

• 4 partners with complementary expertise

• Reduces the length of the supply chain by up to 90%

• Promise of 99.6% purity
 – plant-derived 97.8%
MMV: SYNTHETIC ENDOPEROXIDE

• Objectives:
 – identify a new class of fully synthetic endoperoxides
 – more potent than the currently available artemisinin derivatives in reducing parasite burden
 – low cost (< $1 USD per treatment when used in combination)
 – provision in combination of a single-dose oral cure for patients with uncomplicated \textit{P. falciparum} malaria (and possibly \textit{P. vivax})
 – potential for prophylactic treatment and intermittent preventative treatment in pregnant women and infants (\textit{IPT}_p and \textit{IPT}_i)

• Builds on experience with RBx1160:
The ACT supply chain; role of the new technologies

Current process
- Plant production with conventional varieties
 - Extraction and purification
 - Chemical transformation
 - Artemisinin derivatives (Artesunate, DHA etc)
 - Formulation and partner drug
 - ACTs

CNAP project
- Plant production with high yielding varieties
 - Extraction and purification
 - Chemical transformation
 - Artemisinic acid

IOWH project
- Microbial/Chemical Production
 - Fermentation and purification
 - Chemical transformation
 - Artemisinic acid

MMV project
- Synthetic production of peroxide
 - Formulation and partner drug
 - Novel combination therapies

The 2008 Artemisinin Enterprise Conference
AE CONFERENCE - 2008

• Third annual AE Conference - University of York October 8-10
• Broadened participation -
 – Artemisinin growers & suppliers
 – Industry representatives
 – Policy-makers, regulators
 – Product development partnerships
 – International organisations and sponsors (RBM, WHO, Global Fund)
 – Researchers
CONFERENCE OBJECTIVE

To: update the wider malaria community on the progress and timelines to delivery of outputs from the AE Enterprise projects

To: invite stakeholders to assess the impact of the three new AE technologies on the ACT supply chain

To: ask the stakeholders to make recommendations on how best to ensure smooth and effective integration of the new products into the supply chain so that they can contribute to the envisaged demand for ACTs
Key milestones

CNAP:
- delivery of registered hybrid seed with 2% artemisinin content by the end of 2011

IOWH:
- semisynthetic artemisinin produced in 100,000L tanks between 2011 and 2012.

MMV:
- development of a combination product and the product ready for launch by 2015
IMPACT OF AE TECHNOLOGIES

<table>
<thead>
<tr>
<th>Impact</th>
<th>IMPACT OF AE TECHNOLOGIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduce lead-time for antimalarial drug supply</td>
<td>IMPACT OF AE TECHNOLOGIES</td>
</tr>
<tr>
<td>No change from current plant-derived artemisinin</td>
<td>IMPACT OF AE TECHNOLOGIES</td>
</tr>
<tr>
<td>Fermentation reduces lead-time by ~90% compared to plant-derived</td>
<td>IMPACT OF AE TECHNOLOGIES</td>
</tr>
<tr>
<td>Totally synthetic production should reduce lead-time by ~90%</td>
<td>IMPACT OF AE TECHNOLOGIES</td>
</tr>
<tr>
<td>Reduce cost of antimalarial drugs</td>
<td>IMPACT OF AE TECHNOLOGIES</td>
</tr>
<tr>
<td>Higher yields reduces cost/kg of artemisinin</td>
<td>IMPACT OF AE TECHNOLOGIES</td>
</tr>
<tr>
<td>Cost advantage over plant-derived needs to be clarified</td>
<td>IMPACT OF AE TECHNOLOGIES</td>
</tr>
<tr>
<td>Premature to estimate cost – target to at least match current ACTs</td>
<td>IMPACT OF AE TECHNOLOGIES</td>
</tr>
<tr>
<td>Stabilise artemisinin supply</td>
<td>IMPACT OF AE TECHNOLOGIES</td>
</tr>
<tr>
<td>Higher yielding varieties will restore confidence of farmers: fewer farmers needed to meet demand</td>
<td>IMPACT OF AE TECHNOLOGIES</td>
</tr>
<tr>
<td>Fermentation can be used to smooth variations in demand & respond to rapid upscaling</td>
<td>IMPACT OF AE TECHNOLOGIES</td>
</tr>
<tr>
<td>Increased choice of drugs will increase resilience in the supply chain</td>
<td>IMPACT OF AE TECHNOLOGIES</td>
</tr>
<tr>
<td>Stabilise market demand</td>
<td>IMPACT OF AE TECHNOLOGIES</td>
</tr>
<tr>
<td>Stabilisation of supply and reduced cost will increase and stabilise demand</td>
<td>IMPACT OF AE TECHNOLOGIES</td>
</tr>
<tr>
<td>Quality of antimalarials</td>
<td>IMPACT OF AE TECHNOLOGIES</td>
</tr>
<tr>
<td>Reduced cost of effective antimalarials will drive out counterfeits and artemisinin monotherapy</td>
<td>IMPACT OF AE TECHNOLOGIES</td>
</tr>
</tbody>
</table>
POTENTIAL CHALLENGES IN THE INTRODUCTION OF THE NEW AE TECHNOLOGIES

Market Issues:

- Keeping farmers & derivatisers engaged
- Developing credible forecasts
- Stabilising price, demand, and supply in artemisinin market
- Increasing competition of high quality ACTs
- Controlling access only to quality manufacturers
- Engaging global stakeholders
Technical Issues:

- Regulatory & pharmacopeial status of artemisinin
- Impact on existing regulatory approvals of changing source of artemisinin
- Variations in yields and impurity profiles between geographies
RECOMMENDATIONS FOR AE PARTNERS

• Ensure outputs exclusively benefit the manufacturers of high quality ACTs

• Develop an effective, joined-up communications strategy across the three projects

• Establish a regular Stakeholder Forum
RECOMMENDATIONS FOR CNAP

- Develop new communications networks
- Enhance farmer and extractor knowledge, confidence and participation
- Assess the impact of new varieties on impurity profiles for API manufacture
OTHER AE RECOMMENDATIONS

IOWH:
- Forward-looking communications to ensure clarity on prices, volumes and impacts

MMV:
- Information to stakeholders on progress with new synthetic peroxide
RECOMMENDATIONS FOR THE MALARIA COMMUNITY

- Develop agreed set of planning assumptions for demand forecasting (RBM/UNITAID)

- Develop action plan to mitigate future supply/demand mismatches (RBM PSM)
RECOMMENDATIONS FOR THE MALARIA COMMUNITY

• Scale-up RDTs in parallel with treatment strategies for patients who do not have malaria (RBM)

• Maximise the benefits of the AE technologies by minimising harmful alternatives (RBM PSM, MMV Access team)
RECOMMENDATIONS FOR THE MALARIA COMMUNITY

• Achieve consensus that artemisinin should be considered a starting material (Regulatory bodies)

• Consider pathways to sustainable and appropriate local production of ACTs (Donors and regulatory bodies)

• Review current extraction capacity (RBM PSM)
CONCLUSIONS

• AE innovations can significantly improve the ACT supply chain

• Needs timely and effective technology introduction

• Stakeholder confidence needed to realise full potential of the new technologies

• Time-limited opportunity to deliver success