
Introduction

The relatively recent resurgence of human tuberculosis
now with multi- and extensively-drug resistant strains
has prompted the need to develop new, effective and
safe drugs as quickly and efficiently as possible.1,2

Animal models have and will continue to aid in early
discovery as well as the pre-clinical testing phase of
new drugs for efficacy and toxicity. This is particularly

true in the search and testing of badly needed
tuberculosis drugs. This review is intended to briefly
summarize our current knowledge of the pathogenesis
of experimental tuberculosis in the commonly used
animal models of the human disease. Until recent years,
there have been relatively few new drugs developed that
have undergone testing in the classical tuberculosis
animal models. As a result, we have a poor under-
standing of the response of the various animals to drugs
or drug combinations currently used or being tested for
use in humans. This review focuses on animals
historically used in tuberculosis research and more
specifically, on the morphologic features or pathologic
changes that characterize responses to aerosol or
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airway infections with virulent M. tuberculosis. Where
data are available, responses to drug therapy in the
various models are described. The goal in modeling
tuberculosis in animals is to mimic as closely as possible
the pathology and clinical progression of the naturally
occurring disease. An attempt has been made here to
highlight the major morphologic features of experi-
mental tuberculosis, particularly lesion types that are
known to occur in humans as well. The specific goal is
to provide a better understanding of the pathogenesis of
experimental tuberculosis as it pertains to drug therapy.
These data may aid in the selection of animal models
that best meet the needs of rationally designed,
hypothesis driven research related to the development
of new tuberculosis drugs. Additionally, by critically
comparing disease features shared by people and
animals, new therapeutic targets can be identified and
tested as alternatives or adjuncts to current therapy.
Lastly, there is increasing interest in how the existing
models can be modified to more closely reflect specific
lesion types, particularly those that are known to
respond poorly to drug treatment.3,4 These efforts will
benefit from a better understanding of the pathogenesis
of the major lesion types in both humans and animals.

Use of animals in tuberculosis drug research

Essentially all drugs approved for use in humans by the
Food and Drug Administration (FDA) undergo extensive
testing in two or more species of laboratory animals. For
practical or economic reasons, some species are more
widely used for efficacy studies while others are
preferred for pharmacokinetic and toxicity studies.
Similar considerations influence the selection of animal
models in tuberculosis research. One example is that
despite the documented differences in the immune
response between mice and humans, mice are still the
most widely used animal model for studying the
immunological responses to M. tuberculosis infection
and tuberculosis vaccines.5,6 For the same reasons, mice
are widely used in early tuberculosis drug discovery and
efficacy research. However, due to species specific
differences in disease progression and lesion
morphology, responses to drug therapy in mice may or
may not reflect the desired effects in people. The
response of animal models to experimental therapy for
other human diseases has recently been called into
question due to lack of agreement between animal and
human studies.7,8 The main reasons given for the differ-
ences in outcomes were a lack of stringent experimental
design in animal studies compared to human clinical
trials and the failure of animal models to adequately
reflect the naturally occurring disease in people.8

Similarly, what has prompted recent interest in con-
sidering more appropriate models to test tuberculosis
drugs is not only the urgent need for new drugs, but also
relevant differences between animals in their response
to experimental M. tuberculosis infections.

The susceptibility of various species of animals to the
human tubercle bacillus was explored long before
Robert Koch re-isolated the organism from experi-

mentally infected guinea pigs.9–12 Even these early
studies demonstrated marked differences between
species in their susceptibility to experimental infection.
Currently, the animals most widely used in tuberculosis
research are the various strains of resistant and
susceptible mice, rats, guinea pigs, rabbits, and non-
human primates.13–20 The major advantages and
disadvantages of each of these species for tuberculosis
research have been the subject of recent reviews.21–31

Because laboratory rodents share many basic
physiologic, metabolic and anatomic similarities with
people, they have and continue to play a critical role in
evaluation of fundamental drug effects and toxicity.32–36

Mice have and will continue to be a valuable model in
the early pre-clinical stages of tuberculosis drug
discovery. In the mouse model, relatively small amounts
of experimental compounds can be used to obtain
toxicity, pharmacokinetic, tissue distribution as well as
initial efficacy data. Because of their larger size, rats
are routinely used in late pre-clinical pharmacokinetic
studies but their use requires larger amounts of
experimental compounds to achieve dose responses
similar to that of mice. However, rats are less commonly
used for tuberculosis research mainly because of the
added purchase and colony expenses compared to mice
and the fact that the lesion morphology in outbred
strains like mice fail to mimic some features that are
commonly seen in human tuberculosis.13,37–40 Since there
are important practical advantages to using rats for late
pre-clinical drug studies, there has been recent interest
in using the cotton rat, Sigmadon hispidus and Sigmadon

fulviventer as a model of tuberculosis, which do
develop a wider variety of lesion types.23

Pathogenesis of experimental tuberculosis

Since the human tubercle bacillus rarely if ever infects
animals naturally, experimental aerosol exposure of
laboratory species to M. tuberculosis is inherently
artificial, which is reflected by the varied clinical and
pathological responses, some of which are species
specific. At the most fundamental level, the host
inflammatory responses in animals and people are
similar, with the important differences being in the rate
of disease progression and in the array of lesion
types.14,23,39,41–45 While the more rapid rate of clinical
tuberculosis in animals is advantageous in the experi-
mental setting, the differences in pathology have
prompted the need to critically evaluate common
tuberculosis models more from a morphologic per-
spective. This approach is necessary to identify those
that best mimic the natural disease or that are appro-
priately suited to test specific hypotheses related to drug
discovery.

Tuberculosis lesions in all species are typically a
mixture of macrophages, lymphocytes, plasma cells and
granulocytes that encroach upon the cellular elements
that make up the pulmonary parenchyma.5,42,45–48 The
predominance of macrophages that differ in morphology
(mononuclear or multinucleated giant cells) as well as
differentiation and activation state are the hallmark of
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mycobacterial infections. Main species differences are
seen in the structural organization of the granulomata,
specifically the propensity to progress toward lesion
necrosis and cavitation. Arguably, lesion and host tissue
necrosis is the most important consequence to M.

tuberculosis infection in people and animals. Lesion
necrosis causes irreversible tissue damage with loss of
cell and tissue function and is the prelude to cavity
formation. More importantly in the context of drug
therapy, lesions with necrosis or cavitation, more so
than other lesion morphologies, often harbor viable
bacilli that are difficult to treat with conventional
antibiotic therapy.41,49

The difficulty in modeling human tuberculosis lies in
the variety of clinical presentations which can be
influenced by a wide array of host and environmental
factors. Known tuberculosis risk factors in humans like
age, nutritional status, exposure to cigarette smoke or
pollution, and concurrent infections or chronic diseases
like diabetes can also be modeled in animals.38,50–60 The
presence of risk factors in both humans and animals may
influence the rate of disease progression, pathology,
and bacterial load as well as treatment responses.
Lesions from different patients or even within a single
infected individual display a range of morphologies
usually related to stage of progression and anatomic
locations (pulmonary vs. extra-pulmonary) which may
vary in response to therapy.41,61

The basic lesion morphologies in people and in
animals infected with M. tuberculosis are broadly classi-
fied as non-necrotic or solid, necrotic, cavitary, calcified
and fibrotic. Pathology of experimental tuberculosis in
animals can further be influenced by the route of infec-
tion, strain of animal or dose and strain of M. tuber-

culosis.5,62–64 In a given species and with all variables
held constant, the differences in lesion morphology in
animals are mainly due to genetic resistance, the stage
of disease and the presence or absence of an adaptive
immune response that is acquired during infection or
conferred by vaccination.5,65 This is particularly true in
species that develop a wide spectrum of lesion
morphologies similar to those seen in people.

It is widely accepted that proper and rapid structural
organization of the tuberculous granuloma is a favorable
host response as it contains bacilli locally, thus prevent-
ing the progression of disease and spread between
individuals by infected aerosols.47,66–68 However, in the
context of drug therapy and sterilizing immunity, the
well formed granuloma, especially with necrosis or
cavitation can also represent a barrier to effective
treatment, and therefore represents an unfavorable
rather than favorable host response.41,48,61,69 Surprisingly,
little is known about the ability of commonly used
tuberculosis drugs to reach bactericidal or bacteristatic
concentrations in lesions in humans or animals and
moreover, what morphologic features influence local
pharmacokinetics and tissue distribution of the various
drug formulations.

What has re-emerged recently from testing new
tuberculosis drug candidates in animals is the persis-
tence of drug tolerant bacilli and more importantly,
their distribution within specific lesion types.70 One of

the most comprehensive descriptions of the association
between persistent tubercle bacilli and microscopic
lesion morphology in people was made by the physician
Georges Canetti. Canetti conducted a thorough and sys-
tematic description of human tuberculosis between 1940
and 1944, in which he described the “histobacteriology”
of over 1500 cases.41 While Canetti’s approach was
simplistic by today’s standards, he established that
certain lesion types were associated with the persis-
tence of viable tubercle bacilli that resisted drug therapy.
Even during this period of early tuberculosis drug develop-
ment, Canetti suggested that “practically all bacilli will
develop resistance to drugs, individually and less so with
drugs in combination”. Canetti concluded that lesion mor-
phology contributed to the development of tuberculosis
drug resistance, particularly those lesions that were more
likely to harbor difficult to treat bacilli.41

In the course of carefully examining thousands of
human tuberculosis lesions, Canetti broadly classified
responses as benign or unfavorable. The benign lesions
were those with minimal or no necrosis, with complete
or near complete healing by calcification, fibrosis or
even bone formation (ossification). These changes were
viewed as non-progressive with limited irreversible
tissue damage containing few or no visible or cultureable
bacilli. Unfavorable lesions on the other hand were
classified as such because the progressive inflammation
and necrosis resulted in extensive irreversible tissue
damage that often harbored relatively large numbers of
visible and cultureable bacilli. These features have
served as the basis of lesion classification schemes that
can also be used to evaluate responses in animals,
particularly those that develop a range of lesion
morphologies similar to humans.61,71

Non-necrotic or solid lesions

Solid or non-necrotic lesions occur as an early manifes-
tation of M. tuberculosis infection in all species. Solid
lesions represent the initial non-suppurative or granulo-
matous inflammatory response that precedes organiza-
tion into the classical granulomas typical of human
tuberculosis and experimental infections.14,23,41,61,72,73

With few exceptions, solid lesions are the predominant
lesion morphology, irrespective of stage of disease, in
most strains of resistant and susceptible mice.5,16,42,45

Solid lesions also characterize post-primary or secon-
dary lesions that have been best characterized in the
guinea pig model.31,71,73–75 Similar post-primary lesions
occur in other species as the result of hematogenous or
chronic intra-pulmonary dissemination but are often
indistinguishable from primary lesions by routine
histology. In the remaining models the pathogenesis of
post-primary lesions has not been systematically
characterized.14,23,42,76,77

A better understanding of tuberculosis lesion
pathogenesis is emerging from evaluating animal models
that demonstrate a varied in vivo response to experi-
mental infections. Differences in lesion morphology can
be species specific or influenced by presence or absence
of acquired immunity. In the guinea pig model, post-
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primary or secondary lesions are generally thought to
originate from hematogenous lung reinfection during
the bacillemic phase of disease.30,44,65 The lack of lesion
necrosis and thus calcification of post-primary lesions in
guinea pigs is likely influenced more by the develop-
ment of a systemic adaptive immune response which is
coincident with bacillemia and hematogenous lung re-
infection.5,31,42,44,65,77 Morphologic differences between
primary and post-primary lesions in immunologically
naïve animals have provided the best evidence in
experimental tuberculosis that lesion morphology
significantly influences the effectiveness of drug
therapy.70,74,78 In drug treated guinea pigs, early post-
primary lesions resolve and are prevented from develop-
ing further, whereas primary lesions remain unresolved
but continue to heal by calcification and fibrosis. In a
study by Dhillon, responses to isoniazid or rifampicin
treatment were determined in mice and guinea pigs
that were first vaccinated with M. bovis BCG (BCG).78

While the beneficial responses to drug therapy in BCG
vaccinated guinea pigs was interpreted from the
perspective of adaptive immunity, we know from past
and more recent studies that BCG vaccination signifi-
cantly improves lesion morphology primarily by prevent-
ing lesion necrosis.31,71 In guinea pigs but not in mice,
BCG vaccination prevents necrosis and calcification of
primary lesions, thus changing the lesion from necrotic
to a solid phenotype. Despite the immunity conferred by
BCG vaccination, treatment of mice had no impact on
the bactericidal activity of either rifampicin or isonizid
in lungs compared to non-vaccinated animals. However,
in BCG vaccinated guinea pigs, both drugs were more
effective, suggesting that lesion morphology differences
had a greater influence on drug efficacy than did
immunity conferred by BCG vaccination.78

Lung lesions that develop during the chronic stages of
infection (immune phase) are also more responsive to
drug therapy than necrotic lesions that develop
following initial exposure (pre-immune phase).70,74,78

These data further suggest that the relationship
between immune status and response to drug therapy is
mostly due to differences in lesion morphology. Even
one of the most promising new tuberculosis drugs is
effective at reducing the size and bacterial burden of
the solid, post-primary lesions compared to necrotic
primary lesions.70

Necrotic lesions

Caseous necrosis, as much as the granuloma itself, defines
the response to M. tuberculosis infection in humans and
experimental infections in some animals. Caseation
describes the macroscopic and microscopic appearance of
inspissated (cheese-like) exudate associated with lesion
necrosis. In his historic presentation in 1882, Robert Koch
observed that “in all tissues in which the tuberculosis
process has recently developed and is progressing most
rapidly, these bacilli can be found in large numbers,
especially at the edge of large, cheesy masses. The
bacilli occur almost exclusively in large numbers free of
the tissue cell”.11 What Koch described in these early

microscopic studies was that the majority of acid-fast
bacilli were concentrated extra-cellularly in rapidly
progressing lesions with caseous necrosis.

Lesion necrosis represents irreversible tissue damage
that undergoes healing in some species by calcification,
fibrosis and sometimes ossification. However, incom-
plete healing creates a microenvironment that harbors
bacilli that are visible by acid-fast staining, some of
which are confirmed viable by culture.49,70,79 More impor-
tantly, bacilli sequestered by these lesions are often
more tolerant to drug therapy.41,61,70,74 In general, animals
that develop necrosis following aerosol or intra-tracheal
infection include non-human primates, rabbits, guinea
pigs, cotton rats and a small group of highly susceptible
mouse strains (Figure 1).14,23,43,64,72,75,80–82 The patho-
genesis of lesion necrosis is poorly understood but likely
involves both host and pathogen factors.4,83–86 Host
factors include the combined effects of early delayed
type hypersensitivity (DTH) as well as necrosis associa-
ted with neutrophil infiltration and vascular thrombosis
as suggested by some recent animal studies.28,43,61,72,81 In
species that develop primary lesion necrosis, solid
lesions begin to progress to central necrosis between
3–4 weeks post-infection, often associated with the late
phase of a biphasic granulocytic inflammatory
response.14,44,64 Interestingly, strains of mice that fail to
develop lesion necrosis also show a biphasic
granulocytic inflammatory response, suggesting that
this is a common feature of infection but is not the sole
mediator of lesion necrosis.46,80,87–90 A better under-
standing of the pathogenesis of necrosis through the
study of appropriate animal models is needed. Thera-
peutic strategies aimed at preventing or minimizing
necrosis may be beneficial in eliminating bacilli that
persist in necrotic lesions in the face of conventional
antibiotic therapy.

Lesion hypoxia

One of the important consequences of inflammation
with necrosis is lesion hypoxia resulting in the loss of
structural organization of the pulmonary parenchyma
including the local blood supply.70,91–93 Hypoxia is
thought to be an important determinant in the
pathogenesis of tuberculosis since M. tuberculosis has
long been classified as an obligate aerobe. Bacilli grown
under low oxygen conditions have altered physiology
with a reduced rate of replication, making them less
susceptible to some drugs.94,95 Bacilli grown in low iron
containing media combined with gradual depletion of
oxygen are more virulent in animals.96 Most of what is
known about the influence of low oxygen on the
response of M. tuberculosis to drug treatment comes
from in vitro studies.95,97,98 Besides confirming the in vivo
hypoxic state, the difficulty in studying the effect of low
oxygen on M. tuberculosis response to drug therapy is in
isolating and characterizing the relatively few organisms
within appropriate lesions. Lesions in most strains of
mice, unlike those in people, show minimal necrosis and
no hypoxia.91,93 In highly susceptible mouse strains that
do develop lesion necrosis, lesion hypoxia is likely to
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exist but has not been confirmed. In guinea pigs and
people, the use of oxygen sensitive dyes in tissue
sections demonstrates that bacilli co-localize to lesions
with progressive inflammation and central zones of
necrosis.70,93,99

Because of extensive lung involvement with chronic
inflammation, progressive tuberculosis in people and
animals can also be associated with whole body hypoxia
(hypoxemia). Lowered blood and tissue oxygenation can
be a direct effect of decreased lung perfusion and gas
exchange as a consequence of progressive lung disease
or indirect from decreased circulating erythrocytes and
hemoglobin concentrations reflecting anemia of chronic

infection.92,100–102 These effects can be measured in people
and animal models by decreased peripheral blood
oxygen saturation and decreased packed erythrocyte
volumes and hemoglobin concentrations, respec-
tively100–102 (Basaraba unpublished data). Hypoxia there-
fore may not be restricted locally to pulmonary or
extra-pulmonary lesions but may also be a systemic
effect during chronic infections.

Mineralized lesions

Dystrophic mineralization or calcification is a pathologic
process associated with intra- and extra-cellular
deposition of mixed calcium salts at sites of tissue
necrosis.103–108 The hydroxyapatite mineral complex
found within foci of tissue necrosis with dystrophic
calcification is similar to that found in normal bones and
teeth. As cells degenerate, calcification is initiated first
within mitochondria and progresses intra-cellularly by a
process referred to as propagation. Extra-cellular
calcification can be initiated from free iron or phospho-
lipids originating from organelles and membranes of
dead and dying cells.104,105,107,109 Calcification is a
progressive process and if complete, is considered along
with fibrosis as a favorable healing response. While
there are differences in the propensity of different
species to form calcified lesions, it is generally seen in
all models that develop lesion necrosis with the excep-
tion of the highly susceptible mouse strains. The lack of
calcification in these animals is likely due to the
shortened life-span from the rapidly progressive infec-
tion rather than the inability to form calcified lesions.

Calcification of lesions can be complete or incom-
plete. Complete calcification is a favorable response
whereas incomplete calcification is unfavorable since
residual lesion necrosis may harbor viable bacilli that
are drug tolerant.41,61,70 Patients with healed lesions
including those with calcification have a 2 fold higher
chance of reactivation compared to patients with no
radiographically visible lesions.54 The degree of lesion
calcification may be influenced by the relative presence
or absence of a variety of endogenous inhibitors of
calcification.104,110,111 The persistence of residual primary
lesion necrosis is best characterized in the guinea pig
but is present in other species as well (Figure 2).70,71,109

It has been suggested that the benefits of exposure of
tuberculosis patients to sunlight was in part due to the
role of increased endogenous vitamin D in promoting
dystrophic calcification and thus more complete lesion
healing.112

Residual lesion necrosis in the persistence
of M. tuberculosis

We have recently shown that drug treatment failed to
clear M. tuberculosis from regions of residual primary
lesion necrosis in immunologically naïve guinea pigs.70

The persistent lesion necrosis in partially calcified
primary lesions can be likened to a biofilm-like struc-
ture which has important implications with regard to
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Figure 1 Lesion morphology differs between different

inbred strains of mice infected with virulent M. tuberculosis.

A. At 58 days following low-dose aerosol infection in the

resistant C57Bl/6 strain of mice, lesions are composed of

macrophages and lymphocytes (inset) and show no evidence

of necrosis. B. In contrast the highly susceptible IFN-γ knock

out mouse at 29 days after infection has more extensive

lesions with necrosis and neutrophilic infiltrates (arrow).

Hematoxylin and eosin stain. A, 40X magnification (Bar =

460 μm), inset 200X magnification, B, 200X magnification.



tuberculosis drug therapy (Figure 2).70,113,114 Biofilm-
associated bacteria are in general resistant to anti-
biotics and are inaccessible to cellular and humoral host
defenses.115–118 The formation of biofilms is initiated by
bacterial colonization and formation of pathogen
derived, extra-cellular matrices, however, host compo-
nents derived from necrotic cells can also contribute to
the formation of biofilms.119,120 Besides residual primary
lesion necrosis, a similar layer of organized, acellular
debris may also represent a biofilm that lines the
interior surface of cavitary lesions as well (Figure 3B). 69

The formation of biofilms by M. tuberculosis is
controversial but non-tuberculous mycobacterium form
well characterized biofilms associated with oppor-
tunistic infections or persistence in the environ-
ment.113,116,121–124 In vivo biofilms are best characterized
in chronic lung infections caused by Pseudomonas

aeruginosa (P. aeruginosa) and are composed of both
pathogen and host factors. In preliminary studies we
have shown that residual necrosis in guinea pig primary
lesions also contains host cell nuclear and cytoplasmic
contents similar to P. aeruginosa biofilms (Basaraba
unpublished data).115,120 It stands to reason that in all
models that develop lesion necrosis with incomplete
calcification or cavitation, similar biofilm-like structures
occur but further study and characterization is needed.

Another lesion in tuberculosis that has features of an
in vivo biofilm is the filling and obstruction of small
airways with senescent neutrophils and macrophages.
This feature is commonly associated with post-primary
lesions in the chronic stages of infection in both guinea
pigs and mice and is likely to occur in other species as

well. The importance of this particular lesion is that it
represents the early stages of the animal equivalent of
sputum formation and often contains large numbers of
bacilli (Basaraba unpublished data).44,125 Bacilli are often
intracellular within degenerate macrophages but also
can be found embedded in an extra-cellular matrix com-
posed of host cell debris similar to that seen in necrotic
primary lesions within incomplete calcification.44,126 In
addition, similar to the mucoid airway plugs seen in
chronic Pseudomonas infections, these lesions in tuber-
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Figure 2 Immunologically naïve cotton rats Sigmadon spp.

develop primary lesion necrosis following aerosol infection

with virulent M. tuberculosis. Thirty days following infec-

tion, there are foci of early dystrophic calcification (black

arrow) with a rim of residual necrosis (white arrow and

inset). The rim of residual necrosis is devoid of calcified

foci and resembles a biofilm-like structure similar to that

described in other animals that develop primary lesion

necrosis. Hematoxylin and eosin stain. 40X magnification

(Bar = 460 μm), inset 400X magnification.

Figure 3 In non-human primates (Rhesus macaque, Macaca

mulatta) infected with M. tuberculosis, the primary lesions

associated with airways often progress to form large

cavities as the result of extensive lung tissue necrosis. A,

liquifactive necrosis leaves an extensive cavitation that is

delineated from more normal lung parenchyma by

extensive mixed inflammatory cell infiltrates (arrows). B,

the cavity lining contains sheets of inflammatory cells,

mostly neutrophils (arrow) and a layer of homogenous,

acellular material that resembles a biofilm-like structure

(arrowhead and inset). Hematoxylin and eosin stain, A, 20X

magnification (Bar= 900 μm), B, 200X magnification (Bar=

180 μm), inset = 400X magnification.



culosis may harbor a population of bacilli that are
concentrated in areas that are almost completely
devoid of oxygen.127 The importance of biofilms in
tuberculosis is that these structures may contain
difficult to treat bacilli and represent a potential target
for alternative therapy that can be tested in appropriate
animal models.117,118

Iron accumulation is another feature of primary
lesions with residual necrosis and incomplete calcifica-
tion. Iron is an essential micronutrient and like other
pathogenic bacteria, M. tuberculosis has evolved
virulence mechanisms to scavenge host iron.128–132 Iron
may be important in the pathogenesis of tuberculosis
biofilm formation and may be involved in the patho-
genesis of primary lesion necrosis through the genera-
tion of tissue damaging reactive oxygen intermediates.133

Recently, we have shown that iron accumulates both
intra-cellularly and extra-cellularly in the primary
lesions of guinea pigs infected with M. tuberculosis, a
process that is abrogated by BCG vaccination.109 Extra-
cellular iron accumulation is stratified within lesions
and is concentrated in a transition zone between the
calcified center and residual necrosis that harbors the
majority of the bacilli.125,109 It is unclear based on these
preliminary studies whether iron is biologically available
or if bacilli remain in an iron-poor microenvironment.
Iron chelation therapy has been suggested as an
alternative therapy in tuberculosis patients as well as
those co-infected with HIV.128,134,135 Therefore, the
targeting of lesion-associated iron with iron chelator
represents an alternative strategy to treat tuberculosis
either alone or in combination with conventional
therapy. Iron chelation may deprive M. tuberculosis of
host iron, aid in the disruption of biofilms or influence
the activity of anti-tuberculosis drugs, all of which can
be tested in appropriate animal models.128,130,131,133,136–139

Cavitary lesions

Cavitary lesions are considered the most destructive and
thus the least favorable of host responses in humans
with tuberculosis, yet are seen consistently only in a
few animal models. Necrotic lesions associated with
airways are the prelude to cavity formation. It is
generally thought that cavities progress from caseous
necrosis to liquefaction to leave large voids that replace
normal lung parenchyma (Figure 3).69,140 The loss and
fragmentation of mineralized debris from calcified
lesions is a common tissue processing artifact and
should not be confused with true cavitary lesions.28 Non-
human primates and rabbits are the models that most
often develop cavitary lesions; however, the
pathogenesis likely differs from that of humans.15,43,83,85

In people, cavitary lesions typify post-primary or
reactivation tuberculosis that can develop decades after
initial infection; however, it can also be an extension of
progressive primary disease in patients with lowered
resistance.41,48,61,140–142 The large numbers of bacilli
combined with communication of cavities with airways
(open cavities) are considered important risk factors for
M. tuberculosis transmission.41,69 The pathogenesis of

post-primary tuberculosis with cavitation in people is
unclear but is likely to involve mediators of inflam-
mation and necrosis similar to those responsible for
inciting primary lesion necrosis. The initiation of re-
activation tuberculosis with subsequent cavity forma-
tion is thought to originate from bacilli that persist from
the bacillemic phase of the primary infection.141

Post-primary cavitary tuberculosis in people has a
characteristic apical lobe distribution that corresponds
to post-inflammation scarring. Radiographic surveys
suggest that these fibrotic or inactive lesions are
associated with a 30 fold higher risk of reactivation
compared to patients without apical lobe scars.54 A
similar pattern of regional tissue scarring at the site of
subsequent reactivation has not been described in
animals. Interestingly, the propensity for cavitary lesions
to form in apical lung lobes in human reactivation
tuberculosis corresponds to preferential accumulation of
iron in apical lung lobes associated with known
tuberculosis risk factors like smoking.143 Similar to the
suggestion that lesion iron accumulation may be involved
in the pathogenesis of primary lesion necrosis, tissue iron
accumulation may also be involved in the pathogenesis
of reactivation tuberculosis in humans.109,125,143

To develop new strategies to effectively treat
cavitary tuberculosis, there is a need for animal models
that reliably develop similar lesions. Therefore, there is
increasing interest in promoting necrosis and cavity
formation in animal models that don’t typically develop
these distinct lesion morphologies.3,64 However, this is
not possible without a better understanding of the
pathogenesis of cavity formation. It is generally
accepted that cavity formation results when there is a
transition from caseous necrosis to liquifactive necrosis
by an unknown mechanism. Caseous necrosis is called
such because of the dry crumbly appearance resembling
cheese whereas liquifactive necrosis is softening of the
caseum that is thought to result from fluid accumulation
and the lytic enzymes released from infiltrating
inflammatory cells, particularly neutrophils.41 Similar to
the role neutrophils may have in the initiation of
primary lesion necrosis, they are the predominant cell
type in cavitary lesions in people (Figure 3B).43,144

Cavitary lesions in animal models usually develop as
a continuation of the primary infection. However, even
in documented cases of cavitary lesions developing in
latently infected non-human primates, the distribution
of reactivation disease appears to be random rather
than apical as is typically seen in people.76 Rabbits
develop cavitary lesions as part of the primary disease
process following intra-tracheal infection with M.

bovis.43,72,145,146 Recent evidence, however, suggests that
highly virulent clinical isolates of M. tuberculosis in
rabbits also promote cavitary lesions as part of the
primary infection.146 Challenge with more virulent
clinical isolates in the rabbit model represents one
strategy that has been used to modify existing models to
promote specific lesion morphologies that more closely
mimic a specific lesion morphology seen in the naturally
occurring human disease.43,146

The staging of cavity formation in non-tuberculosis
mycobacterium infections may provide important clues
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to the pathogenesis of M. tuberculosis cavitary lesions.
The initial step involves airway associated necrosis
which is followed by progressive thickening of airway
walls with subsequent obstruction and eventually airway
dilation.147 Airway involvement may be direct
(endobronchial) or secondary to the expansion of lesions
originating from the peribronchial and peribronchiolar
lesions that involve pulmonary lymphatics.10,126,147 The
failure of peribronchial lesions to progress to cavitation
in some species may be in part, associated with
differences in pulmonary anatomy or the amount of
peribronchial and perivascular connective tissue.126 If
animal models can be made to consistently develop
cavities, they would be extremely useful in developing
therapies targeting this difficult to treat lesion
morphology in people.

Extra-pulmonary tuberculosis

An element of experimental tuberculosis in animals that
is often overlooked and has important implications during
drug therapy is the distribution and severity of extra-
pulmonary lesions. Because experimental tuberculosis is
a progressive disease in most animals, disseminated
extra-pulmonary lesions occur relatively early following
experimental aerosol infections.14,39,64,65,74,80 As in people
with progressive disease, the characteristic weight loss
associated with tuberculosis is the result of extra-
pulmonary disease as well as lesions restricted to the
lungs.50 Extra-pulmonary dissemination is frequently
documented by culture in experimental M. tuberculosis

infections but morphologic features are rarely reported
in the literature.39,44,64–66,71,148

The first site of extra-pulmonary spread is usually the
pulmonary and mediastinal lymph nodes that are
infected via draining, afferent lymphatics.5,14,21,69 In
people, the primary infection resulting in the combina-
tion of lung and lymph node lesions is common and is
referred to as the Ghon complex. In contrast, spread to
other extra-pulmonary organs is hematogenous through
the blood vasculature or through the gastro-intestinal
tract from swallowed bacilli.14,66,149 Gastrointestinal
infection can occur from swallowing bacilli during
aerosol infection or soon after as the result of grooming,
especially if whole body rather than nose-only aerosol
exposure methods are used. Additionally, gastrointestinal
infection can occur in the chronic stage of infection
from swallowing bacilli rich, respiratory secretions
produced by mucocilliary clearance.14 In a recent study,
besides the typical lung and pulmonary lymph node
involvement, extra-pulmonary M. tuberculosis lesions in
guinea pigs were found in brain, small intestine, hepatic
and mesenteric lymph nodes, pancreas, adrenal gland
and heart.150

The importance of extra-pulmonary lesions in the
evaluation of tuberculosis drug therapy is that tissues
respond differently and pose a unique challenge to drug
therapy.35,97,151,152,153 The differences may be tissue
specific, relating to type and distribution of vascularity
(lymphatic vs peripheral blood), differences in tissue
susceptibility, propensity to develop a unique lesion

morphology or differences in tissue distribution of
drugs.66,71,126,148 Lymph node involvement either with or
without lung involvement is a unique therapeutic
challenge in people that can also be modeled in
animals.153

In summary, the differences in lesion morphology
among the different animal species infected with M.

tuberculosis provide different levels of stringency for
testing new drugs. Mouse strains that develop only solid
lesions are best suited for discovery and early testing of
drugs for in vivo effects and toxicity.35,36 Certain highly
susceptible mouse strains have the added benefit of not
only developing necrotic lesions but also having a more
rapid disease progression, thus shortening the in vivo
testing intervals.34,64 Species such as guinea pigs and
cotton rats provide a wider variety of lesion types that
include necrotic and mineralized lesions for a higher
level of in vivo testing stringency and to test adjunct
therapies against novel therapeutic targets. The non-
human primate and rabbit models develop an even
wider variety of lesion types and are the most appro-
priate models to test drugs specially designed to treat
cavitary lesions. Since experimental M. tuberculosis

infections are progressive in the majority of model
species, all are suitable for testing the effects of drugs
on extra-pulmonary lesions.

Understanding the pathogenesis of the various lesion
types and their response to conventional drug therapy
and vaccination is important as it may aid in identifying
new drugs and novel therapeutic targets that can be
used alone or as adjunct therapy in people.154,155 These
strategies will be aided by a better understanding of
how unique morphologic features like necrosis,
cavitation and calcification influence drug penetration,
distribution and metabolism in vivo. Animal models have
shed light on the importance of the granulomatous
inflammatory response in containing bacilli, but also
how lesions may represent a barrier to conventional or
newly developed drugs.
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