
Introduction

For the first time in thirty years, ultra-short course
chemotherapy for tuberculosis appears a feasible goal.
Investment in basic mycobacteriology and drug dis-
covery has produced an unprecedented portfolio of lead

compounds. Their late pre-clinical and early clinical
development presents several specific challenges
however, some arising from weaknesses in our under-
standing of how therapy works. Modern pharmaco-
kinetic-pharmacodynamic (PK-PD) methods provide a
conceptual framework within which we can improve our
knowledge of the biological basis of pharmacodynamic
phenomena and enhance the methodology and causal
interpretation of clinical trials. In this review we
describe some obstacles facing new anti-tuberculosis
drugs during development, outline the contribution that
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Summary
Optimization of dosing strategies and companion drugs prior to Phase III trials is currently
a critical obstacle in the development of new anti-tuberculosis drugs. Pharmacokinetic-
pharmacodynamic (PK-PD) methods have assumed an important role in improving the
efficiency of this process across the pharmaceutical industry and in other areas of anti-
infective therapy. Information gained using PK-PD methods from the earliest in vitro
assessments right up to the end of Phase II development can underpin proof-of-concept
and ensure that agents are fully pharmacologically optimized. Despite our limited
understanding of the biology of bacillary elimination in vivo, such an approach has
already provided key insights into these mechanisms and helped to identify the role of
different drugs in therapy and assess their potential for progression to pivotal trials.
While isoniazid appears historically to have been effectively exploited, human studies
suggest that it does not play a key role in the sterilizing phase of treatment. Re-
evaluation of the PK-PD of rifamycins by contrast suggests that there may be con-
siderable scope for improving their activity by intensifying current dosing strategies.
Various PK-PD analyses of the fluoroquinolone series demonstrate remarkable
agreement concerning the ranking of their sterilizing activity, results which appear to
be confirmed in recent human phase II studies. The pharmacological characteristics of
completely new classes of drugs now entering clinical development suggest that experi-
ence with existing drugs, particularly EBA studies, should not prejudice evaluation of
their pharmacodynamic activity which may differ qualitatively from that of many
current agents. In conclusion, PK-PD analysis has a vital role to play in the rational
development of new anti-tuberculosis drugs and combination regimens.
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PK-PD methods can be expected to make to resolving
them and review the current state of our knowledge of
the PK-PD properties of existing and new anti-tubercu-
losis drugs.

Current problems in development of new
anti-tuberculosis drugs

The sequence of clinical trials that resulted in modern
short-course chemotherapy was completed by 1985,
using a development strategy moving directly from
Phase I studies of restricted scope to pivotal Phase III
trials with limited prior evaluation in animal models.1

This approach is no longer feasible. Regulatory changes
in clinical drug development have formalized staging of
the evaluation of efficacy and safety as well as increased
scrutiny of different aspects of the pharmacology of
new drugs.

Moreover, short-course regimens virtually eliminated
failure during treatment and shifted attention to rates
of relapse, which were consistently reduced to 5% or
less. Such a strong comparator makes new Phase III trials,
even non-inferiority designs, expensive and risky and
since definitive proof of “sterilizing” activity relies on
relapse, there is controversy as to whether a range of
surrogate endpoints used in animal models and early
clinical development can adequately capture this speci-
fic pharmacodynamic activity. PK-PD approaches may be
key to resolving these disagreements about how best to
demonstrate efficacy, while ensuring that the regimens
are fully optimized at the intermediate Phase II stage.

Pharmacokinetic-pharmacodynamic
methods in modern drug development

Classical PK-PD analysis focused on mechanistic repre-
sentations of intensively sampled ex vivo and animal
models2 but PK-PD ideas have recently been applied in
clinical drug development, lending statistical and causal
support to the evaluation of dose-response3,4 and are
advocated as a means of improving its efficiency.5,6 In
infectious diseases therapy, PK-PD analysis is of par-
ticular clinical interest and has demonstrated its prac-
tical relevance in acute pneumonia,7 HIV infection8,9 and
malaria.10,11 Clinical translation of the PK-PD approach
has been enabled by key advances in hierarchical or
“population” approaches to pharmacokinetics capable
of making effective use of sparse data collected under
clinical trial conditions.12 Therefore, tools now exist
which can accrue increasingly reliable PK-PD informa-
tion from the earliest in vitro assessments right through
to the beginning of Phase III.

PK-PD methods in tuberculosis

In vitro methods

The simplest bacteriological pharmacodynamic measure
is the Minimum Inhibitory Concentration (MIC), the drug

concentration which arrests growth of 90 or 99% of
colony-forming units in vitro under conditions of un-
restricted growth at a standardized density employing
static drug exposure. This is the measure of activity
typically used in primary drug discovery screens.13 It can
be crudely related to pharmacokinetic properties by
establishing breakpoints related to peak plasma
concentrations (C

max
) and can aid prediction of in vivo

pharmacodynamics within series of related agents.
However, it does not represent the concentration at
which growth ceases14 and does not distinguish between
static and cidal activity. More importantly, static drug
exposure cannot accurately represent dynamic in vivo
PK-PD relationships (such as Area-under-the curve (AUC)/
MIC or time > MIC ) and growth conditions are unrepre-
sentative of persisting organisms in vivo.

Liquid culture models of microbial persistence have
been developed and used to assess potential “steri-
lizing” activity of drugs. These models enable repeated
evaluation of killing under conditions of altered growth
characteristics15,16,17 and have been applied to the study
of altered time-kill properties in antibiotic-tolerant
Mycobacterium tuberculosis strains.18 Hollow fiber
systems that allow for realistic pharmacokinetic
patterns of drug exposure can also be adapted to the
study of M. tuberculosis.19 This approach has been used
to study the relationship between PK and emergence of
resistance for several fluoroquinolones, isoniazid and
rifampin19,20,21,22 as well as the post-antibiotic effect of
moxifloxacin.23 Transferring the environmental condi-
tions of persistence models to the hollow fiber system
could be the ideal approach to study the pharmaco-
dynamics of sterilizing activity in vitro but prolonged
experiments in this system are prone to contamination.
All of these models produce sizeable populations of non-
multiplying and drug-tolerant organisms but the extent to
which they reproduce in vivo conditions remains unclear.

Animal models

Evaluation of in vivo efficacy of new drug regimens in
animals still depends on mouse models. Simple mono-
therapy protection experiments using lethal inocula via
the intravenous or aerosol route can provide proof of
efficacy and preliminary dose selection. Short-term
studies can estimate the bactericidal activity of single
drugs or combinations using colony counting of organ
homogenates and the ability to prevent selection of
mutants resistant to companion drugs, but experiments
longer than two months appear necessary to describe
sterilizing activity. Negative organ cultures at comple-
tion of therapy cannot be assumed to indicate steriliza-
tion and three month follow-up to determine durable
cure should be considered the most rigorous measure of
sterilization. Alternative approaches based on the
“Cornell” mouse model utilize intensive therapy to
obtain a culture-negative state and then test the ability
of individual drugs or combinations to prevent “relapse”
when mice are left untreated or undergo immuno-
suppression, but this is a time-consuming and risky
system which may not give consistent results.24,25
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Dose fractionation studies are also feasible in mice
and can determine the strongest PK-index and its
precise relationship with PD effect. Recent such studies
have improved our understanding of the PK-PD of isonia-
zid, rifampin and the fluoroquinolones26,27,28 (see Figure 1).
These experiments may inform clinical development
with regard to optimal dosing strategies and may be
used to perform population-based pharmacodynamic
simulations and to prioritize related compounds in a
discovery program. They are labor-intensive, however,
and not very amenable to long-term models including
relapse.

Due to their small size, relatively low expense and
extensive history, mice will likely remain the animal
model of choice for tuberculosis but they do not develop
caseation necrosis or cavitation, the hallmarks of
pulmonary tuberculosis,29 and great care is required
when scaling doses of agents between mouse and man
due to metabolic differences and unforeseen pharmaco-
kinetic interactions.30 Recent work with microelectrodes
and the redox indicator pimonidazole in murine
tuberculosis suggests that anaerobic conditions are not
reproduced in these lesions in vivo31 and that trans-
cription profiles of recovered bacilli may be dependent
on the stage of infection and species used.32

The histological features of guinea pig tuberculosis
more closely approximate human pathology but there is
little modern experience with this experimental model
in chemotherapeutics. Prior studies suggest that, like
the mouse, the guinea pig model is able to differentiate
between the superior sterilizing activity of rifampin
over that of isoniazid but pyrazinamide historically
demonstrated no activity in guinea pigs.33,34 New drugs
in development provide an excellent opportunity to
compare assessment of sterilizing activity across
existing in vitro and animal models in hopes of ulti-
mately referencing each model to the activity demon-
strated in clinical trials.

Clinical PD measures

Though the relapse endpoint has been utilized in clinical
dose-response studies,35 this requires prohibitively large

sample sizes and clinical PK-PD studies have necessarily
relied on intermediate bacteriological endpoints. The
simplest approach uses the proportion of negative
smears or cultures at fixed timepoints during treatment,
usually two or three months.36,37 Selecting a single end-
point is arbitrary, however, and its power when express-
ed as a binary outcome depends strongly on the magni-
tude of the probability of smear/culture conversion in
the comparator arm. One solution to this problem is to
model the probability of conversion using logistic
regression. A more informative approach is to use
samples obtained at multiple timepoints which can be
analyzed using a variety of survival techniques.38,39,40 All
of these techniques, however, express the bacillary load
in sputum only indirectly.

Quantitation of the decline of viable M. tuberculosis

in sputum during the first 14 days of therapy using plate-
counting was first used to assess drug activity in 1977.41

This “early bactericidal activity” (EBA), analyzed using
summary statistics based on linear regression, proved a
useful means of comparing agents during monotherapy,
demonstrating dose-response and in the case of
isoniazid, identifying the PK-PD relationship, at small
sample sizes42 (see Figure 2). However, EBA did not
appear to reflect the “sterilizing activity” of drugs
observed in Phase III trials. Subsequent colony-counting
studies of combination therapy extended over the first
four-eight weeks and analyzed using hierarchical non-
linear regression techniques suggest that bacillary
elimination is biphasic and that by focusing on the later
phase this approach can reproduce the results of histori-
cal clinical trials43,44 and detect differences between
novel regimens40 (see Figure 3).

Liquid culture systems, especially those that are con-
tinuously monitored, are also inherently quantitative,
producing a “time-to-positivity” (TTP) directly related
to colony counts on a logarithmic scale. Experience with
such data is limited but it may better represent that
part of the bacillary population in a restricted growth
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Figure 1 Mouse dose-fractionation studies (Jayaram et al

2003, 2004, 2007).

Figure 2 EBA Dose Titration Studies (from Donald 2003)

H=isoniazid, R=rifampicin, Rb=rifabutin, Rp=rifapentine,

Cp=ciprofloxacin, S=streptomycin.



state while preserving the power of a hierarchical
regression approach. Non-bacteriological endpoints such
as whole-blood bactericidal and interferon-gamma
release assays may also have a role to play in PK-PD
analysis.45,46

PK-PD of anti-tuberculosis agents

Nicotinamide analogs

Isoniazid

Isoniazid shows very high inter-individual pharmaco-
kinetic variability, with a multi-modal distribution of
exposure.47,48,49 This pharmacokinetic phenotype was
recognized in early studies as an important determinant
of neurotoxicity50,51 and is determined by polymorphisms
at the N-arylamine acetyltransferase (NAT2) locus,52

with alleles conferring a “slow” acetylator phenotype
associated with 4-fold greater exposure compared to
“rapid” acetylators.53,54 Disposition of isoniazid in pul-
monary epithelial lining fluid is comparable to that in
plasma.55

Isoniazid exhibits the highest EBA yet observed,42

reflecting its potent action on multiplying bacilli.37

Rapid attenuation of its effect after the first few days
has been attributed to eradication of a majority
subpopulation of actively dividing bacilli.56 Though it has
been argued from hollow fiber system data that the
emergence of drug resistance may explain the pheno-
menon,22 this has not been observed in clinical studies.57

EBA dose titration studies have defined a complete dose
response curve with maximum achievable EBA within
the range of clinically tolerable doses.58 The PK-PD
relationship is well-defined in animal, hollow fiber and
EBA studies, exhibiting a log-linear relationship with
response over a wide range of AUC/MIC values and an
independent effect of acetylator genotype.22,27,45,59 In

vitro pharmacodynamic studies support a prolonged

post-antibiotic effect, increasing with repeated drug
pulses60,61 and consistent with dosing intervals effective
in clinical trials.62 Acetylator phenotype does not affect
outcomes of short-course therapy63 except in highly
intermittent regimens in HIV-positive patients where
low isoniazid exposure has been linked with relapse.64,65

Pyrazinamide

Pyrazinamide shows limited pharmacokinetic varia-
bility48,66 even in HIV positive subjects67,68 despite pheno-
typical variation in its metabolism (particularly xanthine
oxidase).69,70 Although the nicotinamide analog pyrazina-
mide acts by an entirely different mechanism than
isoniazid,71 it requires acidic conditions to inhibit M.

tuberculosis at clinically relevant concentrations and has
little or no activity in pH-neutral media or in macrophage
models.72 It has modest bactericidal activity in murine
models when administered alone but displays remarkable
synergy with rifamycins and several new drugs.73,74,75,76 It
shows no EBA over the first two days41 though in extended
colony counting studies it does have a detectable
effect.37,44 The PK-PD correlates of pyrazinamide’s unique
sterilizing activity therefore remain undefined and
pragmatic dose selection has been on the basis of limiting
hepatotoxicity.77,78

Rifamycins

Rifamycins differ chemically from other first line drugs
in that they are zwitterionic rather than basic and have
much higher logP values. They are inducers as well as
substrates of several metabolic mechanisms including
CYP3A479 and P-glycoprotein, the efflux protein product
of the MDR1a locus,80 and consequently prone to drug-
drug interactions. All produce active 25-O-desacetyl
metabolites.81 Rifampicin autoinduces its metabolism,
resulting in a 20–40% fall in exposure over the first 1-to-
2 weeks of therapy45,82,83 but this is less marked in other
rifamycins. The pharmacokinetics of rifampicin show sub-
stantial inter-individual and inter-occasion variability84

which is particularly affected by HIV co-infection,85,86

MDR1a polymorphism45 and possibly diabetes.87 Exposure
increases non-linearly with doses up to 10–13 mg/kg.88,89

By contrast, rifapentine pharmacokinetics are linear over
doses ranging from 300 to 1200 mg during intermittent
administration.90–93 Concentrations of both agents are
lower in epithelial lining fluid compared to plasma but
both are accumulated in alveolar cells94,95 and total
exposure of rifampicin in respiratory secretions may be
higher than in plasma.88

Short-term dose fractionation mouse studies confirm
that AUC/MIC of rifampicin is the PK index best
correlating with activity26 and “humanized” doses of
10 mg/kg daily (with an AUC bioequivalent to the
standard 600 mg dose) are barely on the upstroke of the
dose-reponse curve, with activity being lost at
5 mg/kg.96 In mice, unlike isoniazid, these doses are far
from any observed maximum effect.97

EBA dose-titration studies confirm a minimum
effective dose at approximately 5 mg/kg41 and con-
tinuously increasing response with rifampicin doses up
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to 1200 mg at which maximum effect does not appear
to be achieved.41,93,98 In USPHS Study 19, a 450 mg dose
achieved slower sputum conversion and had a higher
rate of treatment failure compared to doses of 600 or
750 mg in combination regimens.35 When released for
compassionate use, rifampicin was dosed at 1,200 mg or
greater99,100 and several small trials have claimed im-
proved results with such doses.101 Together, these PK-PD
data argue that dose selection during development of
rifampicin may have been inadequate and the current
600 mg dose could be sub-optimal.

Similar EBA dose-response curves have also been
observed for rifabutin and rifapentine.93,102 Development
of rifapentine focused on its pharmacokinetic potential
for once weekly administration, conditions under which
a 600 mg dose may be inferior to standard rifampicin-
based regimens in patients at high risk of relapse.103

Rifamycins demonstrate substantial post-antibiotic effect
in vitro making them suitable for intermittent therapy,60

but all are vulnerable to the emergence of rifamycin
monoresistance under these conditions.104,105,106,107 This is
likely related to pharmacokinetic mismatching with
isoniazid, ready selection of rifamycin-resistant orga-
nisms, reduced rifamycin bioavailability and poor immu-
nity in HIV-co-infected patients.21,64,65,107,108 Whether
companion drugs with longer half-lives, such as moxi-
floxacin, would eliminate this problem remains an open
question. From the pharmacodynamic standpoint, how-
ever, rifapentine is well tolerated at doses up to 1200 mg
once weekly and 450–600 mg daily.92,109 The marked
increase in rifamycin exposure obtained with such
dosing regimens enables treatment to be shortened to
three months or less in the mouse model74,110 and argues
that more potent daily rifapentine-based regimens
could be obtained by exploiting the PK-PD relationship.

Fluoroquinolones

Development of the fluoroquinolones has resulted in
enhanced anti-tuberculosis activity.111 The 8-methoxy-
quinolones moxifloxacin and gatifloxacin are most potent
in vitro, with MICs ranging from 0.125 to 0.5 μg/mL112

and perform well in an in vitro persistence model.113

Experience with fluoroquinolones in non-mycobacterial
respiratory infections identified AUC/MIC as the best PK
index7 and mouse data support the applicability of this
concept to tuberculosis.28 Comparison of expected
AUC/MIC values in humans at standard doses range from
12 for ciprofloxacin and ofloxacin, 45 for levofloxacin,
and 60–80 for moxi and gatifloxacin114 while doubling
the levofloxacin dose to 1000 mg achieves AUC/MIC
parity with the 8-methoxyquinolones. Because moxi-
floxacin undergoes extensive hepatic metabolism, which
is induced by rifampicin,115,116 and there are toxicity
concerns with gatifloxacin, high-dose levofloxacin could
become the preferred fluoroquinolone in rifamycin-
containing regimens.

A recent EBA study comparing high-dose levofloxacin,
moxifloxacin, gatifloxacin and isoniazid117 confirmed
this pharmacodynamic ranking demonstrating similarly
potent activity across these agents greater than that

previously observed for ciprofloxacin.118Their activity
approached that of isoniazid during the first two days
and exceeded it over the remaining five. A retrospective
study also suggested the superiority of levofloxacin over
ofloxacin for MDR-TB patients.119

A recent extended colony counting study demon-
strated faster bacillary clearance from sputum when 8-
methoxyquinolone, but not ofloxacin, was substituted
for ethambutol during the intensive phase of therapy40

(Figure 3). Two other Phase II trials have examined
similar regimens using culture conversion as an outcome
and both suggested clearance of sputum with
moxifloxacin120,121 although there was no advantage at 2
months in one study.120

Emergence of fluoroquinolone-resistant mutants
occurs rapidly with exposure in vitro in mice and in
humans.19,23,122 Although theory predicts that resistance
under monotherapy can be prevented, the drug expo-
sures required cannot be achieved in vivo.19,123 While
combination therapy remains necessary to prevent
selection of drug-resistance, each agent should be
administered in a way that minimizes the risk of
resistance to the drug itself or its companions. This may
prove to be particularly important in the choice of
fluoroquinolone and dose selection in the treatment of
MDR-TB to prevent the emergence of extensively drug-
resistant (XDR) tuberculosis.

New agents

The most advanced of the novel anti-tuberculosis
agents, the nitroimidazole derivatives PA-824 and OPC-
67683 and the diarylquinoline TMC207 (aka R-207910),
each have logP values similar to the rifamycins (3.69–
6.41), are highly protein-bound and eliminated slowly
with half-lives of 17–24 hours.76,124 Among the nitro-
imidazole derivatives, OPC-67683 has a 10-to-20-fold
lower MIC than PA-824 but the PK-PD relationship for
this new class of drugs remains unknown and human PK
data are not yet available. In mice, both agents demon-
strate bactericidal activity when administered alone
and accelerated bacillary clearance when substituted
for isoniazid in a three drug regimen.76,125

TMC207 has potent in vitro activity against M. tuber-

culosis with a typical MIC of 0.06 μg/mL and impressive
bactericidal activity in the mouse model. At doses
applicable to humans, TMC207 alone is at least as active
as the standard first-line regimen of rifampicin,
isoniazid and pyrazinamide. A strong synergistic effect is
observed with pyrazinamide, making regimens based on
this couple capable of rendering mice culture-negative
in two months.75,124 As with the nitroimidazoles, the PK-
PD parameter that correlates best with TMC207 activity
remains unknown but in vitro studies reveal unusual
time dependence. Even with concentrations up to 100×
the MIC, activity is not evident until the second week of
incubation. These unusual pharmacodynamic properties
and the pharmacokinetic accumulation of the drug may
explain the slow onset of effect observed in a recent 7-
day EBA study.126 In either event, data from mouse
models suggest that these results should not discourage
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further evaluation of this promising compound. The
sponsor has now embarked on a Phase II study in MDR-
TB patients comparing the addition of TMC207 or
placebo to an optimized background regimen. For the
time being, TMC207 is not under investigation for
treatment of drug-susceptible tuberculosis because its
metabolism is induced by rifampicin, resulting in a 50%
reduction in AUC, and dosing strategies to overcome the
drug-drug interaction have yet to be explored.

Conclusion

Interpretation of the pharmacodynamic activity of anti-
tuberculosis drugs is complicated by an incomplete
understanding of the pathophysiology of the disease.
PK-PD relationships are not clearly defined for some
important agents and experience is to date based on
only a few classes of drugs. However, the PK-PD approach
has demonstrated its relevance in contributing to the
understanding of many important phenomena in the
treatment of tuberculosis such as the role of isoniazid,
dose size of rifamycins and potency in fluoroquinolones
and promises to become a key component of the
rational development of new agents.
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