Mainstreaming Slope Stability Management – Hazard and Risk Assessment – to Laos Practitioners

Theme 6

Engineering Geological Assessments

6.1 – Topographic survey
Topography and landforms

- Compass traverse – easy, quick, imprecise. Errors in this is normally of the orders of metres. Useful for rapid geological or geomorphological assessments.
- Theodolite / Levelling or EDM Survey – relatively easy to complete. Becomes time consuming in areas without good lines of sight. Precision is in the order of mm in X, Y and Z directions.
- Digital photogrammetry – expensive but can cover large areas in relatively short periods and provide good. Added benefit of having aerial photographs for interpretation.
- LiDAR / Laser scanning – laser distance measurement. A powerful survey method that can be employed on the ground or be airbourne. Normally will give precision in the order of mm, BUT can have large errors in heavily vegetated terrains.
- Airbourne / Satellite based remote sensing – good for large areas but generally scans vegetation surfaces and is of limited use for landslide investigations.
GPS
Engineering geological maps
Use of laser scanning: Fathom Fault - Cullercoates

- Work undertaken as a partnership between Durham University and a major geotechnical contractor.
- Data used to map faults and fissures on the rock surface.
- Digital camera linked to scanner allows colour to be applied to point cloud.
- Scan time of 5-10 minutes.
- 8000 observations per second.
Laser scanning and LiDAR are powerful tools for monitoring and mapping the ground. However, the difficulties encountered with these techniques due to vegetation are significant.
From Glen et al. 2006.
Analysis of LiDAR-derived topographic information for characterizing and differentiating landslide morphology and activity.
Geomorphology. **73**, 131–148
Electromagnetic distance measurement

- Requires the establishment of a temporary bench mark which ideally should allow a view of the entire site.

- Requires a survey to operate the EDM equipment and a colleague to carry a staff with a reflector for the surveyor to sight onto.

- Requires post processing and mapping. Normally within a Geographic Information System or a Computer Aided Design (CAD) package.

- Data are recorded as a series of X, Y and Z points. Local coordinate systems must be linked clearly to National or International Grid systems.
Global Positioning Systems (GPS)

- Does not require a clear line of sight and therefore is valuable where terrain is difficult.

- However, it does require a clear view of the sky and precision is generally related to the number of satellites visible to the receiver.

- Precision is vastly improved by GPS in differential mode. This is where a GPS bases station is ‘fixed’ on a known location and a ‘rover’ or ‘ranger’ station is used to make observations. Baselines between stations should be of the order of 100s of metres.

- GPS precision is improved by post processing of data. Precision of GPS in kinetic mode (walking around making only brief measurement stops) is nominally +/- 1-2cm with a local station but this requires post survey processing.

- GPS is a powerful and practical tool for rapid landslide surveying.
Mainstreaming Slope Stability Management – Hazard and Risk Assessment – to Laos Practitioners

Theme 6

Engineering Geological Assessments

6.2 – Engineering Geological Mapping
Most rock materials have sufficient strength for civil engineering purposes. HOWEVER this is less true of rock masses.

The ROCK MASS is the combination of the material (rock) and the fractures and discontinuities in the mass.

The ground is modified by recent and active GEOMORPHOLOGICAL processes.

In tropical and sub tropical zones the most important geomorphological process is WEATHERING.

Weathering results in the formation of RESIDUAL SOILS on slopes.

Residual soils give rise to ground conditions that are extremely difficult to predict. This is known as geological HETEROGENEITY.

The likely heterogeneity in the ground should be identified in the GEOLOGICAL MODEL and on ENGINEERING GEOLOGICAL MAPS.
Initial Assessment of Slope Failure / Landslide

Topographic Survey

Engineering Geological Mapping

Ground Investigation & Monitoring – Yes/No?

Design of Stabilisation Works
Engineering Geological Map

- Hydrology (surface water, stream erosion, ground water)
- Geology - soil & rock properties and weathering
- Slope angle & shape
- Vegetation & land Use
- Man made Features
- Previous landslides
Rotational Failure

Road 13N - Km 260.3

shallow (translational) failure
Road 13N - Km 260.3

Tension Cracks
Road 13N - Km 336.4

Shallow failures below and above road
Road 13N - Km 336.4

Road surface deformed

Road side-drain ‘lifted’
Road 13N - Km 336.4

Back Scarp
Examples of Engineering Geological Maps

- Examples from Laos (SEACAP) Sites
 - Km 260.3
 - Km 242
 - Km 317.9
Concrete surface protection
Road 13N - Km 317.9

- Back Scarp??
- Tension cracks hidden in trees
Integrating topography and engineering geology

The following slides show how geological features have been used to help to locate the boundaries of a large landslide at Knipe Point, Cayton Bay near Scarborough, England.

Surface observations show that the landslide shear surface is located in the Oxford Clay formation because this is being thrust upwards through the current beach level.

Further surface observations show that Oxford Clay is thrust against glacial deposits marking the lateral boundaries of the landslide.

Simple topographic measurements combined with engineering geological mapping allowed the main shear planes to be identified in the landslide system for further analysis. These are shown on the cross section.
Looking SW

2m

After defining the geometry of the landslide using the surface geology, geomorphology and borehole data, geotechnical parameters were applied to the cross section for analysis.

<table>
<thead>
<tr>
<th>Bulk Density (kg/m³)</th>
<th>c' (kPa)</th>
<th>φ' (°)</th>
<th>c_u (kPa)</th>
<th>φ_u(°)</th>
<th>c'_r (kPa)</th>
<th>φ'_r(°)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>2235</td>
<td>38</td>
<td>19</td>
<td>38</td>
<td>17.5</td>
<td>0</td>
<td>26.5</td>
<td>Mills (1981)</td>
</tr>
<tr>
<td>2150 - 2300</td>
<td>0 - 20</td>
<td>30 - 32</td>
<td>150 - 220</td>
<td>-</td>
<td>0</td>
<td>28 - 30</td>
<td>Russell and Eyles (1985)</td>
</tr>
<tr>
<td>2240</td>
<td>6</td>
<td>27</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>25</td>
<td>Powell and Butcher (2003)</td>
</tr>
<tr>
<td>2230</td>
<td>21</td>
<td>27</td>
<td>34</td>
<td>15</td>
<td>0</td>
<td>26</td>
<td>Representative values to be used</td>
</tr>
</tbody>
</table>
Ground models

- Conceptual Ground models seek to show the types of conditions that are expected to be encountered based on desk study data and field observations.
- Such models should show what types of variations should be expected based on the available data. Examples include:
 - In highly weathered terrains a ground model may suggest the presence of corestones in the soil mass.
 - In areas with geological faults they may indicate that there may be a higher fracture density in the immediate vicinity of the fault.
- Ground models may at some point have quantitative data applied such as fracture spacing or shear strength data.
- Ground models should therefore evolve as you get more data.
- Ground models can include a 4\(^{th}\) dimension – TIME! A good example would be how slopes over-steepen in response to erosion (see theme 2.3).

Fig. 33. Wet tropical weathering (superimposed on geology shown in Fig. 19).
Mainstreaming Slope Stability Management – Hazard and Risk Assessment – to Laos Practitioners

Theme 6

Engineering Geological Assessments

6.3 – Field description of soils and rocks
Description of Rock

1. Material characteristics
 1. Strength – unconfined compressive (MN/m²)
 2. Structure – inter-relationship of texture & lithology
 3. Texture & fabric – arrangement & relationship of rock components
 4. Colour
 5. Grain size – averaged dimensions of rock fragments
 6. Name

2. General Information
 1. Additional info & minor constituents
 2. Geological Formation
 3. Mass characteristics
 1. State of weathering
 2. Discontinuities
Description of rock in cores

1. Rock material characteristics
 • Colour
 • Grain size – averaged dimensions of rock fragments
 • Structure – inter-relationship of texture & lithology
 • Texture & fabric – arrangement & relationship of rock components
 • Strength – unconfined compressive (MN/m²)

2. General Information
 • Minor constituents and additional information
 • Geological Formation

2. Rock mass characteristics
 • State of weathering
 • Discontinuities
 • Fracture state

(After BS EN ISO 14689-1:2003; BS5930, 1999)
<table>
<thead>
<tr>
<th>Descriptor</th>
<th>Strength (MPa)</th>
<th>Typical characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extremely weak*</td>
<td>< 1</td>
<td>Indented by thumbnail</td>
</tr>
<tr>
<td>Very weak</td>
<td>1-5</td>
<td>Crumbles under firm blows with point of geology hammer, can be peeled by pocket knife</td>
</tr>
<tr>
<td>Weak</td>
<td>5-25</td>
<td>Can be peeled by pocket knife with difficulty, shallow indentations made by firm blow with point of geology hammer</td>
</tr>
<tr>
<td>Medium strong</td>
<td>25-50</td>
<td>Cannot be peeled or scrapped with a pocket knife, specimen can be fractured with a single firm blow of geology hammer</td>
</tr>
<tr>
<td>Strong</td>
<td>50-100</td>
<td>Specimen requires more than one blow of geology hammer to fracture.</td>
</tr>
<tr>
<td>Very strong</td>
<td>100-250</td>
<td>Specimen needs many blows of geology hammer to fracture.</td>
</tr>
<tr>
<td>Extremely strong</td>
<td>>250</td>
<td>Specimen can only be chipped with geology hammer</td>
</tr>
</tbody>
</table>

* some extremely weak rocks behave as soils and should be described as soils see BS ISO 14688-1
Weathering

Whole mass is decomposed to a residual soil and relict structure is no longer evident. Describe as an engineering soil.

Describe rock as completely weathered (weathering grade V). All of the rock mass is a soil material although some relict structure remains.

Describe rock as severely weathered (weathering grade IV). More than 50% of the rock mass is decomposed to a soil material.

Describe rock as moderately weathered (weathering grade III). The rock is discoloured throughout with significant weakening.

Describe rock as discoloured or slightly weathered (weathering grade IIa-c depending on degree of discolouration.)

Bedrock geology – describe rock material as FRESH weathering grade I)
From Duzgoren-Aydin et al. (2002)
<table>
<thead>
<tr>
<th>Rock type</th>
<th>Density dry t/m³</th>
<th>Porosity %</th>
<th>Dry UCS range MPa</th>
<th>Dry UCS mean MPa</th>
<th>UCS saturated MPa</th>
<th>Modulus of elasticity GPa</th>
<th>Tensile strength MPa</th>
<th>Shear strength MPa</th>
<th>Friction angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granite</td>
<td>2.7</td>
<td>1</td>
<td>50-350</td>
<td>200</td>
<td></td>
<td>75</td>
<td>15</td>
<td>35</td>
<td>55</td>
</tr>
<tr>
<td>Basalt</td>
<td>2.9</td>
<td>2</td>
<td>100-350</td>
<td>250</td>
<td></td>
<td>90</td>
<td>15</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>Greywacke</td>
<td>2.6</td>
<td>3</td>
<td>100-200</td>
<td>180</td>
<td></td>
<td>60</td>
<td>15</td>
<td>30</td>
<td>45</td>
</tr>
<tr>
<td>Sandstone-Carboniferous</td>
<td>2.2</td>
<td>12</td>
<td>30-100</td>
<td>70</td>
<td></td>
<td>30</td>
<td>5</td>
<td>16</td>
<td>45</td>
</tr>
<tr>
<td>Sandstone-Triassic</td>
<td>1.9</td>
<td>25</td>
<td>5-40</td>
<td>20</td>
<td></td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>Limestone-Carboniferous</td>
<td>2.6</td>
<td>3</td>
<td>50-150</td>
<td>100</td>
<td></td>
<td>60</td>
<td>10</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>Limestone—Jurassic</td>
<td>2.3</td>
<td>15</td>
<td>15-70</td>
<td>25</td>
<td></td>
<td>15</td>
<td>2</td>
<td>5</td>
<td>35</td>
</tr>
<tr>
<td>Chalk</td>
<td>1.8</td>
<td>30</td>
<td>5-30</td>
<td>15</td>
<td></td>
<td>6</td>
<td>0.3</td>
<td>3</td>
<td>29</td>
</tr>
<tr>
<td>Mudstone-Carboniferous</td>
<td>1.4</td>
<td>10</td>
<td>10-60</td>
<td>40</td>
<td></td>
<td>10</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shale-Carboniferous</td>
<td>2.2</td>
<td>15</td>
<td>5-30</td>
<td>20</td>
<td></td>
<td>2</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clay-Cretaceous</td>
<td>2.1</td>
<td>30</td>
<td>1-4</td>
<td>2</td>
<td></td>
<td>0.2</td>
<td>0.2</td>
<td>0.7</td>
<td>20</td>
</tr>
<tr>
<td>Coal</td>
<td>1.4</td>
<td>10</td>
<td>2-100</td>
<td>30</td>
<td></td>
<td>10</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gypsum</td>
<td>2.2</td>
<td>6</td>
<td>20-30</td>
<td>26</td>
<td></td>
<td>20</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salt</td>
<td>2.1</td>
<td>5</td>
<td>5-20</td>
<td>12</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hornfels</td>
<td>2.7</td>
<td>1</td>
<td>200-350</td>
<td>250</td>
<td></td>
<td>80</td>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>Marble</td>
<td>2.6</td>
<td>1</td>
<td>60-200</td>
<td>100</td>
<td></td>
<td>80</td>
<td>10</td>
<td>32</td>
<td>35</td>
</tr>
<tr>
<td>Gneiss</td>
<td>2.7</td>
<td>1</td>
<td>50-200</td>
<td>150</td>
<td></td>
<td>60</td>
<td>10</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Schist</td>
<td>2.7</td>
<td>3</td>
<td>20-100</td>
<td>60</td>
<td></td>
<td>45</td>
<td>10</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Slate</td>
<td>2.7</td>
<td>1</td>
<td>20-250</td>
<td>90</td>
<td></td>
<td>45</td>
<td>10</td>
<td>30</td>
<td>25</td>
</tr>
</tbody>
</table>
What is a discontinuity?

<table>
<thead>
<tr>
<th>Type of discontinuity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joint</td>
<td>A discontinuity in the body of rock along which there has been no visible displacement.</td>
</tr>
<tr>
<td>Fault</td>
<td>A fracture or fracture zone along which there has been recognizable displacement.</td>
</tr>
<tr>
<td>Bedding fracture</td>
<td>A fracture along the bedding (bedding is a surface parallel to the plane of deposition).</td>
</tr>
<tr>
<td>Cleavage fracture</td>
<td>A fracture along a cleavage (cleavage is a set of parallel planes of weakness often associated with mineral realignment).</td>
</tr>
<tr>
<td>Induced fracture</td>
<td>A discontinuity of non-geological origin, e.g. brought about by coring, blasting, ripping etc.</td>
</tr>
<tr>
<td>Incipient fracture</td>
<td>A discontinuity which retains some tensile strength, which may not be fully developed or which may be partially cemented. Many incipient fractures are along bedding or cleavage.</td>
</tr>
</tbody>
</table>
Information described in a scanline survey –

- spacing
- orientation (dip/strike or just dip in cores)
- persistence
- termination
- block size
- roughness (wavelength/amplitude, stepped/undulating/planar, rough/smooth)
- wall strength, weathering,
- aperture & infill
- seepage
- no. of joint sets

(After BS EN ISO 14689-1:2003; BS5930, 1999)
Joints, faults, bedding fractures and cleavage fractures

Incipient fracture – retaining some tensile strength, not fully developed, may contain cement

Induced fractures – discontinuity of non-geological origin (e.g. coring/blasting)

(After BS EN ISO 14689-1:2003; BS5930, 1999)
Fracture/joint spacing

From: BS EN ISO 14689-1:2003

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Discontinuity spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>>2 m</td>
<td>very wide</td>
</tr>
<tr>
<td>2 m - 0.6 m</td>
<td>wide</td>
</tr>
<tr>
<td>0.6 - 0.2 m</td>
<td>medium</td>
</tr>
<tr>
<td>200 - 60 mm</td>
<td>close</td>
</tr>
<tr>
<td>60 -20 mm</td>
<td>very close</td>
</tr>
<tr>
<td>< 20 mm</td>
<td>extremely close</td>
</tr>
</tbody>
</table>
Field testing

- SPT: Standard Penetration Test
 - no. of blows/300mm penetration
- Permeability Test
- Vane tests
- Cone Penetration Tests
- In-Situ Density Test
- Index testing
- Point load tests – *important to evaluate the strength of discontinuities.*
- Schmidt Hammer – *important to evaluate the strength of discontinuities.*
Bedding thickness

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Bedding thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>>2 m</td>
<td>very thick</td>
</tr>
<tr>
<td>2 m - 0.6 m</td>
<td>thick</td>
</tr>
<tr>
<td>0.6 - 0.2 m</td>
<td>medium</td>
</tr>
<tr>
<td>200 - 60 mm</td>
<td>thin</td>
</tr>
<tr>
<td>60 - 20 mm</td>
<td>very thin</td>
</tr>
<tr>
<td>20 - 6 mm</td>
<td>thickly laminated</td>
</tr>
<tr>
<td>6 - 2 mm</td>
<td>thinly laminated</td>
</tr>
<tr>
<td>Aperture</td>
<td>Term</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>< 0.1 mm</td>
<td>very tight</td>
</tr>
<tr>
<td>0.1 – 0.25 mm</td>
<td>tight</td>
</tr>
<tr>
<td>0.25 – 0.5 mm</td>
<td>partly open</td>
</tr>
<tr>
<td>0.5 - 2.5 mm</td>
<td>open</td>
</tr>
<tr>
<td>2.5-10 mm</td>
<td>moderately wide</td>
</tr>
<tr>
<td>1-10 cm</td>
<td>wide</td>
</tr>
<tr>
<td>10-100 cm</td>
<td>very wide</td>
</tr>
<tr>
<td>> 1 m</td>
<td>extremely wide</td>
</tr>
</tbody>
</table>
LEFT: MSc Hydrogeology students logging rock core during a field course. BELOW: Core from a ground investigation (photographs courtesy of Drs N. Odling and J. Lawrence)
<table>
<thead>
<tr>
<th>Material type</th>
<th>Strength</th>
<th>Compressibility</th>
<th>Permeability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock</td>
<td>Very high</td>
<td>Very low</td>
<td>Medium to high</td>
</tr>
<tr>
<td>Granular soil</td>
<td>High</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Cohesive soil</td>
<td>Low</td>
<td>High</td>
<td>Very low</td>
</tr>
<tr>
<td>Organic soil</td>
<td>Very low</td>
<td>Very high</td>
<td>High</td>
</tr>
<tr>
<td>Made ground</td>
<td>Medium to very low</td>
<td>Medium to very high</td>
<td>Low to high</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soil type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLAY</td>
<td>Cohesive soil</td>
</tr>
<tr>
<td>BOULDERS</td>
<td>Granular soils</td>
</tr>
<tr>
<td>COBBLES</td>
<td>Granular soils</td>
</tr>
<tr>
<td>GRAVEL</td>
<td>Granular soils</td>
</tr>
<tr>
<td>SAND</td>
<td>Granular soils</td>
</tr>
<tr>
<td>SILT</td>
<td>Granular soils</td>
</tr>
<tr>
<td>PEAT</td>
<td>Organic soil</td>
</tr>
<tr>
<td>MADE GROUND</td>
<td>Man-made soils and other materials</td>
</tr>
<tr>
<td>Consistency</td>
<td>Undrained shear strength</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Very soft</td>
<td>< 20 kPa</td>
</tr>
<tr>
<td>Soft</td>
<td>20-40 kPa</td>
</tr>
<tr>
<td>Firm</td>
<td>40-75 kPa</td>
</tr>
<tr>
<td>Stiff</td>
<td>75 – 150 kPa</td>
</tr>
<tr>
<td>Very Stiff</td>
<td>150 – 300 kPa</td>
</tr>
<tr>
<td>Hard</td>
<td>> 300 kPa</td>
</tr>
</tbody>
</table>

In addition to shear strength you should also record plastic limit, liquid limits and plasticity index. These are generally termed the Atterberg limits.
Mainstreaming Slope Stability Management – Hazard and Risk Assessment – to Laos Practitioners

Theme 6

Engineering Geological Assessments

6.4 – Ground Investigation
Ground investigations

- The most likely methods you will employ to investigate landslides are:
 - Trial Pitting – MUST be used with caution on landslides and the risk to the engineering geologist logging the face MUST be carefully assessed.
 - Cable percussive drilling – sometimes known as shell and augur. A good method of advancing a hole and sampling soft ground
 - Rotary coring. A good method of sampling in firm soils and rocks. Has limitations related to the use of fluid flushes.
Advantages:
- allows for undisturbed sampling;
- allows easy identification of slip planes
- cheap

Disadvantages:
- Must be supported for safety reasons.

Photographs courtesy of Dr J. A. Lawrence, University of Leeds.
Mobile A Frame with power winch 1-2 tonne, towed behind 4x4

- Sand shell/clay cutter driven into ground by weight repeatedly dropped 1-2m
- Used in soils and weak/soft rock and sediments – clays, silts, sands
- Disturbed samples retrieved in U100s (100mm sampler in 150mm casing) for description and classification
- Chisel head used for harder rock
- 15m to 40m depth

Cable percussive drilling
Photographs courtesy of Dr J. A. Lawrence, University of Leeds.
Cable Percussion drill Log

<table>
<thead>
<tr>
<th>Sample / Tests</th>
<th>Description</th>
<th>Legend</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOPSOIL, Greyish brown CLAY-SILT</td>
<td>Very stiff yellowish brown and light yellowish brown slightly gravelly sandy SILT. Gravel is angular fine to coarse weak siltstone.</td>
<td></td>
</tr>
</tbody>
</table>

Remarks
- Hard Rock drilled at 0.12m
- 30cm depth/ Sample collected with raised core protected by fence
- PDC rest at depth 0.1m at 0.35m log = 0.35m
Rotary coring

- Good method for advancing a hole in rock.
- Good method for obtaining samples.
- Orientation of discontinuities cannot be measured from core due to rotation of core in barrel.
- Can induce fractures in weaker rock materials.
- Generally requires some form of fluid flush to lubricate and cool drill bit.
- Diagram from Clayton et al 1997.
Photographs and logs courtesy of Dr J. A. Lawrence, University of Leeds.

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>TCR</th>
<th>SCR</th>
<th>RQD</th>
<th>FI</th>
<th>Field Records</th>
<th>Description</th>
<th>Legend</th>
<th>Instr</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.00</td>
<td></td>
<td></td>
<td>59</td>
<td>27</td>
<td></td>
<td>Very weak to moderately weak thinly bedded mudstone, grey, weathered. Discontinuities are subhorizontal, locally to moderately spaced. Minor to moderate bioturbation. Staining penetrating from 24.50m. Oil well.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.00</td>
<td>90</td>
<td>70</td>
<td>30</td>
<td></td>
<td></td>
<td>Weak to moderately weak very thinly bedded light grey mudstone interbedded with moderately weak thinly bedded light grey fine grained sandstone. Distinctly weathered. Discontinuities are subhorizontal and spaced. Minor to moderate bioturbation. Staining penetrating from 24.50m. Oil well.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.10</td>
<td>100</td>
<td>90</td>
<td>51</td>
<td></td>
<td></td>
<td>Weak to moderately weak very thinly bedded light grey mudstone interbedded with moderately weak thinly bedded light grey fine grained sandstone. Distinctly weathered. Discontinuities are subhorizontal and spaced. Minor to moderate bioturbation. Staining penetrating from 24.50m. Oil well.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.70</td>
<td>95</td>
<td>75</td>
<td>64</td>
<td></td>
<td></td>
<td>Moderately weak to moderate, thinly bedded, grey, bioturbated, light grey mudstone, showing subhorizontal discontinuities. Distinctly weathered. Staining penetrating from 24.50m. Oil well.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.10</td>
<td>100</td>
<td>89</td>
<td>68</td>
<td></td>
<td></td>
<td>Moderately weak to moderate, thinly bedded, grey, bioturbated, light grey mudstone, showing subhorizontal discontinuities. Distinctly weathered. Staining penetrating from 24.50m. Oil well.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.00</td>
<td></td>
<td></td>
<td>95</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.65</td>
<td></td>
<td></td>
<td>96</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.00</td>
<td></td>
<td></td>
<td>90</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure No.: S2266.BH.19

Scale: 1:50

Log: AE/EM
NOTE All features shown are natural discontinuities unless stated otherwise.
Rock Quality Designation index (RQD) was developed by Deere (Deere et al 1967)

- defined as the percentage of intact core pieces longer than 100 mm

- Core diameter must be at least NX (i.e. 54 mm and upwards)
Rock Quality Designation

RQD = \sum \frac{\text{Length of core} > 10 \text{ cm}}{\text{Total length of core run}} \times 100 \%

Advantages:
implicitly accounts for discontinuities and weak materials by using core loss as an analogue for fractures and weak layers

disadvantages:
it is difficult for the engineering geologists to assess why core has been lost - is it though a high discontinuity density or a weak layer in the stratigraphy
Guidelines for sampling

- **Clays:**
 - Normally need undisturbed samples
 - U100 every 1.5m or change of stratum. Blow count and penetration should be noted.
 - If unable to obtain a U100 then bulk samples as above.
 - If U100 does not full penetrate SPT test is required.

- **Silt:**
 - Alternate SPT and U100 samples at 0.75m intervals

- **Sands & Gravels:**
 - Undisturbed samples are not practical due to the lack of cohesion.
 - SPT every 1m or change of stratum.
 - Bulk samples to be taken between SPT.
<table>
<thead>
<tr>
<th>Methods</th>
<th>Comments</th>
</tr>
</thead>
</table>
| Borehole Periscope | • Simple device that works successfully to about 30 m
 • Orientation, dip, and depth can be measured
 • Aperture, infill, can be observed/photographed
 • Water ingress seen if hole pumped dry. |
| Impression Packer | 1. Packer coated with wax
 2. Packer inflated and orientated
 3. Impressions interpreted
 • Excellent impressions achieved
 • Joint characteristics other than orientation are unknown unless reference is made to core
 • Care must be taken that compass is fully set before withdrawal. |
| Television Camera | • Video record can be made of hole
 • Some systems only suitable for general viewing of quality rather than detailed measurement of joint data |

Methods of downhole discontinuity survey (above - compression packer impression both from Clayton et al 1997)
Guidelines for sampling

- **Rock**
 - SPT on penetrating rock, every 1m and change of stratum where possible
 - In softer rocks (Chalks, Marls) U100 may be possible
 - Rock must be penetrated at least 1.5m to ensure it isn't a large cobble
 - If SPT refusal (>50 blows) record number of blows and penetration

Look at Chris Clayton’s book “Site Investigation” online at:

http://www.geotechnique.info/
Field testing

- SPT : Standard Penetration Test
 - no. of blows/300mm penetration
- Permeability Test
- Vane tests
- Cone Penetration Tests
- In-Situ Density Test
- Index testing
- Point load tests – *important to evaluate the strength of discontinuities.*
- Schmidt Hammer – *important to evaluate the strength of discontinuities.*
Laboratory tests are often considered as an essential part of the ground investigation process.

Tests should seek to replicate the state of stress in the ground as most failure criteria are actually non-linear in fact.

Structured soils – such as residual soils – often show strongly non-linear Mohr-Coulomb envelopes.

- Most strength tests require non-disturbed samples.
- Index tests can normally be done on disturbed samples.
- The tests you wish to carry out may dictate what equipment you deploy to site.
Rock Tests

- Direct shear (rock material – intact shear cohesion)
- Direct shear – discontinuities
- Unconfined Compression Test
- Tensile tests (direct and indirect)
- Hoek Cell (triaxial)
- Density
Soil Tests

- UCS – soils (of limited value in slope engineering)
- Triaxial test (UU to CD)
- Direct shear – shear box / ring shear
- Plasticity indices / Atterberg limits
- Moisture content
- Density
- Void ratio
Theme 6

Engineering Geological Assessments

6.4 – Geological sections and monitoring movement see practical exercise