

Mainstreaming Slope Stability Management – Hazard and Risk Assessment – to Laos Practitioners

Theme 2

Factors Influencing Slope Stability in Laos

2.3 – River & Stream Erosion

River Bank Erosion

The factors controlling river bank erosion include:

The rate and amount of sediment supply

The rate and amount of water supply

The geology of the catchment area

Vegetation cover and land use in the catchment area

Effects of River Bank Erosion

River bank erosion has two main outcomes:

Bank Scour

the direct removal of bank materials by the physical action of flowing water

Mass Failure

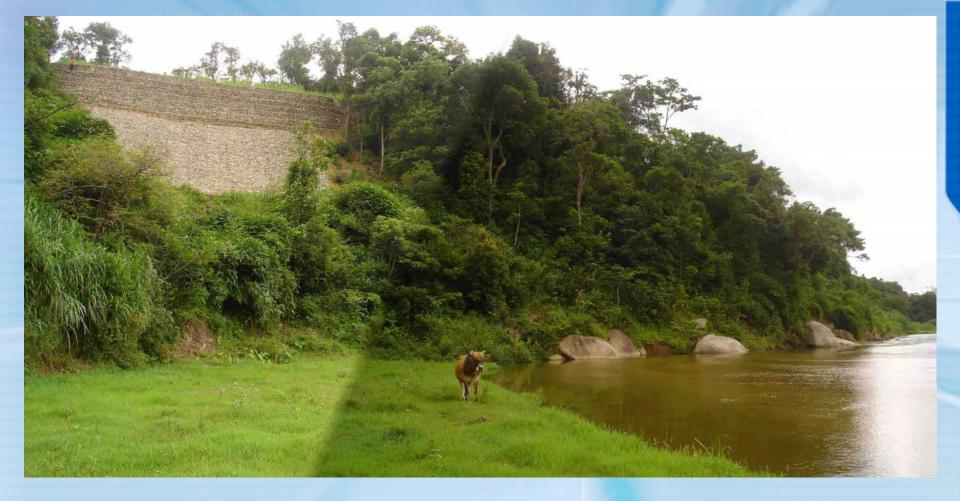
bank collapse and slumping which occurs as a single event

SEACAP 21/04 Stream Types and Characteristics Mountainous & Hilly Streams

General type of country or slopes	Type of stream or crossing	Typical Materials exposed in channel	Dominant channel processes	Possible hydraulic problems
Mountainous;	Boulder	Bedrocks and	Pools and rapids;	Bank erosion;
streams with	torrent	boulders	waterfalls	blockage by debris
steep slopes	Braided gravel river or outwash valley train (also occurs outside mountains)	Sand, gravel, cobbles	Transport of coarse alluvium; erratic shifting of main channels	Change in location of erosion as channels migrate during times of flood
	Alluvial fan	Sand, gravel, cobbles	Deposition of coarse alluvium; sudden shifting of channel	Change in location of erosion, channel realignment, scour
Hilly; streams	Entrenched	Bedrock,	Minor bank erosion:	Few problems
with moderate	river (also in	shale, etc.	transport of thin veneer	compared to other
slopes	mountains)		of alluvium	types; possible blockage by debris
	Wandering river	Sand, gravel, cobbles	Valley widening by erosion of valley sides	Bank erosion and scour, particularly
			and terraces; transport of alluvial and flood plain formation	on outside of bends.

SEACAP 21/04 Stream Types and Characteristics Plains and Gentle Slopes

General type of country or	Type of stream or crossing	Typical materials	Dominant channel processes	Possible hydraulic problems
slopes		exposed in channel		-
Plains; streams with flat slopes	Meandering alluvial river	Sand and silt	0	Bank erosion caused by continual shifting of meanders; sand bed especially susceptible to scour
	Low-velocity stream in organic terrain, often with contorted windings Lake or inundated		Bank erosion; deep scour holes Wave action	Provision for large overbank flows Soft foundations
	flood plain crossing	organic material		


SEACAP 21/04 Examples of River Erosion Road 13N km 470+500

SEACAP 21/04 Examples of River Erosion Road 13N km 366+000 & 368+000

SEACAP 21/04 Examples of River Erosion Road 8 km 118+000 to 128+800

Control Measures Retreat & Realignment

Only feasible where land use, terrain and topography allow
– often not feasible in hilly areas

 Can result in issues over land ownership if properties or farmland are affected

 Can potentially avoid high construction costs associated with bank protection and river engineering work

SEACAP 21/04 Control Measures - Engineering Works

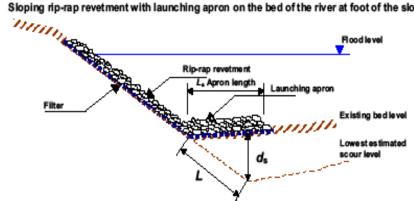
Rip Rap

- Layer of heavy stone which protects softer materials of the river bed and banks
- Must be heavy enough not to be moved by peak flow velocities (storm/flood events)
- Flexible system that can't 'break'
- Easy to construct
- Natural appearance, can promote vegetation growth
- Large stones difficult to quarry and transport
- Maintenance and repair required

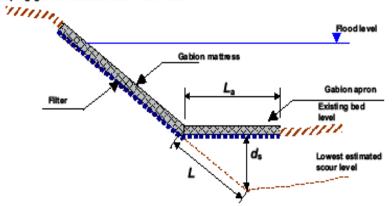
Control Measures - Engineering Works

Gabions

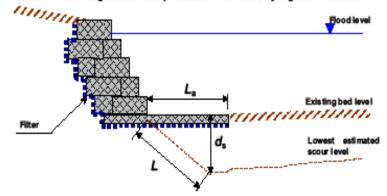
- Flexible and performance not impaired by slight settlement
- Easy to maintain
- Commonly used constructed method in Laos
- Natural appearance, can promote vegetation growth



Control Measures - Engineering Works


Mortared Masonry & Concrete

- Mortared Masonry unsuitable for river bank protection works – too rigid and doesn't drain.
- Mortared Masonry suitable for road side drainage and some slope drainage.
- Concrete has similar disadvantages to Mortared Masonry although is stronger.
- Concrete sometimes suitable if protected from scour.


Sloping rip-rap revetment with launching apron on the bed of the river at foot of the slope

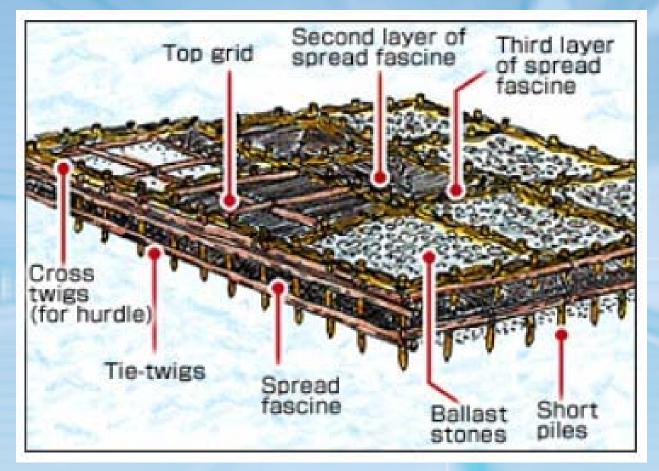
Sloping gabion mattress laid over a filter

River wall formed of gabion boxes protected at the base by a gabion mattress

Examples of Hard Revetments

Scot+

Wilson


Control Measures – 'Soft' Revetments

Soda Method

- Introduced to Mekong River in Vientiane by JICA Project
- Soda Mattresses Intended to be a 'low cost' method with following characteristics:
 - Use only locally available material such as fascine and stones
 - Can be built on various sizes depending on the particular site
 - Environmentally friendly
- Flexible and when used at the base of a revetment, it can accommodate movement and scour – similar to Gabions but lower cost.

Soda Mattress

Source : JICA

Vegetation

- Vegetation can be used above the water level see bioengineering Themes
- Vegetation alone for river bank work is unsuitable as it does not survive periods of flooding
- Reinforced vegetation can survive the higher flow velocities. Reinforcement options include:
 - Man made grids (Enkamat etc)
 - Gabions

Enkamat (Maccaferri)

Source : Maccaferri

Selection and Design

Type of protection	Maximum velocity (m/s)	Description	Remarks	
Bare Soil	0.75	Fine sand		
	0.75	Sandy Clay		
	0.90	Soft clays	Quoted velocities assume	
	1.05	Muds	that there is colloidal	
	1.50	Coarse sand	material in suspension, velocities are 30 to 50%	
	1.50	Medium clay	lower for water with no	
	1.85	Gravel	material in suspension.	
	1.70	Shingle	I	
	1.85	Hard clay		
Rip-rap	3.80	d50 stone 200 kg	Requires 0.8 m layer	
	4.60	d50 stone 600 kg	Requires 1.2 m layer	
	5.60	d50 stone 2,000 kg	Requires 1.8 m layer	
0.30m Gabion Mattress	5.50	d50 stone 100 mm		
	6.40	d50 stone 125 mm		

The relatively poor performance of rip-rap should be noted

Selection and Design

Type of protection	Maximum velocity (m/s)	Description	Remarks
Gabion Box	7.60	d50 stone 150 mm	
	8.00	d50 stone 190 mm	
Unreinforced Grass	2.00		
Enkamat 7003	5.20	30 minute, vegetated	Test values
	3.60	50 hour, vegetated	Test values
Enkamat 7920	5.80	30 minute, vegetated	Test values
	4.20	50 hour, vegetated	Test values
Soda Mattress	No data		4-5 m/s measured at JICA trial sites in Vientiane
Concrete	>8.00		

Measurement of Water Velocity

- On-site measurements can be made during flood conditions sufficient for Mekong River where flood peak is long duration and reliable.
- For tributary rivers with no data Manning's Equation can be used to obtain mean flow velocity – this must be factored to obtain channel velocity as follows:

Location	Factor for mean flow velocity
Straight reach	1.0
Outside bend	1.33
Inside bend	0.67
At bridge abutments etc	1.50