Cyclone damage & agriculture in India
Income Smoothing, Risk Diversification and Cyclone Damage in India

Stefanie Sieber

EC501 Work-in-Progress Seminar
20.10.2009
The setting

- Cyclones are some of the most common & devastating natural disasters on the Indian Subcontinent
The setting

- Cyclones are some of the most common & devastating natural disasters on the Indian Subcontinent
 - They can be 150-1000km wide, reach windspeeds of 250kmph & lead to storm surges of up to 12m
 - On average, the Indian shore is hit every 3 years, but this probability varies greatly across districts due to
The setting

- Cyclones are some of the most common & devastating natural disasters on the Indian Subcontinent
 - They can be 150-1000km wide, reach windspeeds of 250kmph & lead to storm surges of up to 12m
 - On average, the Indian shore is hit every 3 years, but this probability varies greatly across districts due to
 - Their geographical location & the basin of formation
 - The exogenous variation in cyclone tracks
The setting

- Cyclones are some of the most common & devastating natural disasters on the Indian Subcontinent
 - They can be 150-1000km wide, reach windspeeds of 250kmph & lead to storm surges of up to 12m
 - On average, the Indian shore is hit every 3 years, but this probability varies greatly across districts due to
 - Their geographical location & the basin of formation
 - The exogenous variation in cyclone tracks
 - During 1949-2007, a cyclone on average affected 1.4 million people & caused $US290 million in damages (EM-DAT 2009)
The setting

- Cyclones are some of the most common & devastating natural disasters on the Indian Subcontinent
 - They can be 150-1000km wide, reach windspeeds of 250kmph & lead to storm surges of up to 12m
 - On average, the Indian shore is hit every 3 years, but this probability varies greatly across districts due to
 - Their geographical location & the basin of formation
 - The exogenous variation in cyclone tracks
 - During 1949-2007, a cyclone on average affected 1.4 million people & caused $US290 million in damages (EM-DAT 2009)
- Since the 1960s, the costs of natural disasters has increased 14-fold (Munich Re 1995) due to
 - Economic development
 - Population growth in risky areas
 - Climate change (Emanuel 1995, 2005)
Why do we care?

- Until 2000, the Indian government had no clear national or state-level strategy to deal with natural disasters
Why do we care?

- Until 2000, the Indian government had no clear national or state-level strategy to deal with natural disasters.
- Relief operations have often been ineffective with limited focus on rebuilding livelihoods (World Disaster Report 2001).
Why do we care?

- Until 2000, the Indian government had no clear national or state-level strategy to deal with natural disasters
- Relief operations have often been ineffective with limited focus on rebuilding livelihoods (World Disaster Report 2001)
- Disaster insurance is not widely available, plus HHs often underinsure against these risks (Kunreuther & Pauly 2004; Cole et al. 2009, Gine et al. 2007 & 2008)
Why do we care?

- Until 2000, the Indian government had no clear national or state-level strategy to deal with natural disasters
- Relief operations have often been ineffective with limited focus on rebuilding livelihoods (World Disaster Report 2001)
- Disaster insurance is not widely available, plus HHs often underinsure against these risks (Kunreuther & Pauly 2004; Cole et al. 2009, Gine et al. 2007 & 2008)
- Alternative coping mechanisms fail b/c
 - Informal insurance networks are vulnerable to geographically co-moving shocks (Besley 1995)
 - General equilibrium effects will depress local prices of assets and livestock & wages for off-farm employment
Why do we care?

- Until 2000, the Indian government had no clear national or state-level strategy to deal with natural disasters.
- Relief operations have often been ineffective with limited focus on rebuilding livelihoods (World Disaster Report 2001).
- Disaster insurance is not widely available, plus HHs often underinsure against these risks (Kunreuther & Pauly 2004; Cole et al. 2009, Gine et al. 2007 & 2008).
- Alternative coping mechanisms fail b/c
 - Informal insurance networks are vulnerable to geographically co-moving shocks (Besley 1995).
 - General equilibrium effects will depress local prices of assets and livestock & wages for off-farm employment.
- Moreover, HHs might not correctly anticipate these low probability events.
Research question

Rural households will face large, mostly uninsured & potentially unexpected income shocks
Research question

→ Rural households will face large, mostly uninsured & potentially unexpected income shocks

- What are the direct economic costs of cyclone damage in the primary sector?
Research question

Rural households will face large, mostly uninsured & potentially unexpected income shocks

- What are the direct economic costs of cyclone damage in the primary sector?
- Is the shock temporary or does it permanently affect agricultural production?
- If yes, how?
Research question

Rural households will face large, mostly uninsured & potentially unexpected income shocks

- What are the direct economic costs of cyclone damage in the primary sector?
- Is the shock temporary or does it permanently affect agricultural production?
- If yes, how?

And more generally,

- Does living in a disaster-prone area translate into a long-run growth disadvantage?

Note: I will not be able to address migration due to data limitations
This paper (1/2)

Uses a new digital dataset of cyclone tracks for India to measure cyclone exposure objectively
This paper (1/2)

Uses a new digital dataset of cyclone tracks for India to measure cyclone exposure objectively

Exploits the random variation of cyclone tracks over time to

- Estimate the direct cost of natural disasters on the primary sector at the district level
This paper (1/2)

Uses a new digital dataset of cyclone tracks for India to measure cyclone exposure objectively

Exploits the random variation of cyclone tracks over time to

▶ Estimate the direct cost of natural disasters on the primary sector at the district level
▶ Tests for the persistence of cyclone shocks
This paper (1/2)

Uses a new digital dataset of cyclone tracks for India to measure cyclone exposure objectively

Exploits the random variation of cyclone tracks over time to

- Estimate the direct cost of natural disasters on the primary sector at the district level
- Tests for the persistence of cyclone shocks
- Tests for potential adaptation to these cyclone shocks
Preliminary findings suggest that

- The elasticity of total revenue to cyclone shocks is -0.128
- For a median level of "affectedness" of 49% total revenue drops by 7.6%
Preliminary findings suggest that

- The elasticity of total revenue to cyclone shocks is -0.128
- For a median level of "affectedness" of 49% total revenue drops by 7.6%
- This effect does not persist over time
- However, the capital stock remains significantly lower even 5 years after the shock suggesting the presence of liquidity constraints
Preliminary findings suggest that

- The elasticity of total revenue to cyclone shocks is -0.128
- For a median level of "affectedness" of 49% total revenue drops by 7.6%
- This effect does not persist over time
- However, the capital stock remains significantly lower even 5 years after the shock suggesting the presence of liquidity constraints
- There is some income smoothing/risk diversification across crop types
Related Literature

- Nascent literature on natural disasters & aid
 - Literature on Climate Change (Deschenes & Greenstone 2007; Guiteras 2007, Dell et al. 2008)
 - Literature on choice under uncertainty - does not seem that relevant in this case
Related Literature

- Nascent literature on natural disasters & aid

- Literature on Climate Change (Deschenes & Greenstone 2007; Guiteras 2007, Dell et al. 2008)
Related Literature

- Nascent literature on natural disasters & aid

- Literature on Climate Change (Deschenes & Greenstone 2007; Guiteras 2007, Dell et al. 2008)

- Literature on choice under uncertainty - does not seem that relevant in this case
Cyclone damage & agriculture in India (1/5)

- Storm surges will inundate low-lying areas of the coastal regions and
 - Drown human beings & livestock
 - Destroy vegetation
 - Reduce soil fertility
Cyclone damage & agriculture in India (1/5)

- Storm surges will inundate low-lying areas of the coastal regions and
 - Drown human beings & livestock
 - Destroy vegetation
 - Reduce soil fertility
- Very strong winds will
 - Destroy installations, dwellings & communication systems
 - Uproot trees & crops
Cyclone damage & agriculture in India (1/5)

- Storm surges will inundate low-lying areas of the coastal regions and
 - Drown human beings & livestock
 - Destroy vegetation
 - Reduce soil fertility

- Very strong winds will
 - Destroy installations, dwellings & communication systems
 - Uproot trees & crops

- Heavy & prolonged rains will cause river floods & submergence of low-lying areas and
 - Pollute drinking water sources
 - Ruin crops
Cyclone damage & agriculture in India (1/5)

- Storm surges will inundate low-lying areas of the coastal regions and
 - Drown human beings & livestock
 - Destroy vegetation
 - Reduce soil fertility

- Very strong winds will
 - Destroy installations, dwellings & communication systems
 - Uproot trees & crops

- Heavy & prolonged rains will cause river floods & submergence of low-lying areas and
 - Pollute drinking water sources
 - Ruin crops

⇒ The primary sector will be most exposed to these effects
Cyclone damage & agriculture in India (2/5)

These effects should vary across crops depending on their growing season & the month the cyclone strikes.
Cyclone damage & agriculture in India (2/5)

These effects should vary across crops depending on their growing season & the month the cyclone strikes

- There are cyclone shocks all year round, but the two main cyclone seasons in India are
 - May-June
 - September-November
Cyclone damage & agriculture in India (2/5)

These effects should vary across crops depending on their growing season & the month the cyclone strikes

- There are cyclone shocks all year round, but the two main cyclone seasons in India are
 - May-June
 - September-November

- There are two main cropping seasons in India (excluding Tamil Nadu)
 - Kharif crops are sown in spring & harvested in autumn
 - Rabi crops are sown in late autumn & harvested the following spring
 - Two season crops have varieties that can be grown in both seasons
Cyclone damage & agriculture in India (3/5)

- The farmer will face three states of the world
 - a cyclone shock in the Kharif season, which occurs with probability pr_k and causes damage d_{ki} to output/input i
 - a cyclone shock in the Rabi season, which occurs with probability pr_r and causes damage d_{ri} to output/input i
 - no cyclone shock, which occurs with probability $(1 - pr_k - pr_r)$
Cyclone damage & agriculture in India (3/5)

- The farmer will face three states of the world
 - a cyclone shock in the Kharif season, which occurs with probability pr_k and causes damage d_{ki} to output/input i
 - a cyclone shock in the Rabi season, which occurs with probability pr_r and causes damage d_{ri} to output/input i
 - no cyclone shock, which occurs with probability $(1 - pr_k - pr_r)$

- The farmer produces two different crops
 - Kharif crop q_k sold at price p_k
 - Rabi crop q_r sold at price p_r
The farmer will face three states of the world

- a cyclone shock in the Kharif season, which occurs with probability pr_k and causes damage d_{ki} to output/input i
- a cyclone shock in the Rabi season, which occurs with probability pr_r and causes damage d_{ri} to output/input i
- no cyclone shock, which occurs with probability $(1 - pr_k - pr_r)$

The farmer produces two different crops

- Kharif crop q_k sold at price p_k
- Rabi crop q_r sold at price p_r

The farmer uses two inputs

- Capital K rented at rental rate r
- Labour L hired at wage w
Cyclone damage & agriculture in India (3/5)

- The farmer will face three states of the world
 - a cyclone shock in the Kharif season, which occurs with probability pr_k and causes damage d_{ki} to output/input i
 - a cyclone shock in the Rabi season, which occurs with probability pr_r and causes damage d_{ri} to output/input i
 - no cyclone shock, which occurs with probability $(1 - pr_k - pr_r)$

- The farmer produces two different crops
 - Kharif crop q_k sold at price p_k
 - Rabi crop q_r sold at price p_r

- The farmer uses two inputs
 - Capital K rented at rental rate r
 - Labour L hired at wage w
Cyclone damage & agriculture in India (4/5)

If the farmer has full information about the event probabilities, she will maximize expected profits

$$\max_{q_k, q_r, K, L} E(\Pi) = pr_k [p_k (q_k - d_{kk}) + pr q_r - r (K - d_{kK}) - w (L - d_{kL})] +$$

$$pr_r [p_k q_k + p_r (q_r - d_{rr}) - r (K - d_{rK}) - w (L - d_{rL})] +$$

$$(1 - pr_k - pr_r) [p_k q_k + p_r q_r - r K - w L]$$

(1)

Subject to production functions $q_k = f_k (K, L)$ and $q_r = f_r (K, L)$
Cyclone damage & agriculture in India (5/5)

If the farmer has incomplete information I about the event probabilities, she will maximize expected profits

$$\max_{q_k, q_r, K, L} E(\Pi|I) = pr_k(I)[p_k(q_k - d_{kk}) + p_r q_r - r(K-d_{kK}) - w(L-d_{kL})] +$$

$$pr_r(I)[p_k q_k + p_r (q_r - d_{rr}) - (K-d_{rK}) - w(L-d_{rL})] +$$

$$(1-pr_k(I)-pr_r(I))[p_k q_k + p_r q_r - rK - wL] \quad (2)$$

Subject to production functions $q_k = f_k(K, L)$ and $q_r = f_r(K, L)$

Note: I is assumed to increase with the exposure to recent cyclone shocks
Predictions (1/2)

In the year of impact, a cyclone should

- Damage capital and labour inputs
Predictions (1/2)

In the year of impact, a cyclone should

- Damage capital and labour inputs
- Have a differential effect across crop types
 - Cyclones prior to September should
 - Destroy Kharif crops (sowing)
 - Increase production of Rabi crops (income smoothing)
 - Have an ambiguous effect on two-season crops (possibly substitution b/n varieties)

Cyclones after September should

- Destroy Kharif crops (harvest & storage)
- Have an ambiguous effect on Rabi crops (destruction vs. income smoothing)
- Destroy two-season crops
Predictions (1/2)

In the year of impact, a cyclone should

- Damage capital and labour inputs
- Have a differential effect across crop types
 - Cyclones prior to September should
 - Destroy Kharif crops (sowing)
 - Increase production of Rabi crops (income smoothing)
 - Have an ambiguous effect on two-season crops (possibly substitution b/n varieties)
 - Cyclones after September should
 - Destroy Kharif crops (harvest & storage)
 - Have an ambiguous effect on Rabi crops (destruction vs. income smoothing)
 - Destroy two-season crops
Predictions (2/2)

- If HHs have correctly anticipated the shock, we should observe
 - A full recovery in the years after the cyclone shock
Predictions (2/2)

- If HHs have correctly anticipated the shock, we should observe
 - A full recovery in the years after the cyclone shock
 - A quicker recovery
 - In richer states
 - In states with more responsive state governments
 - In states with better financial development
 - The higher the disaster aid
- If HHs have updated their expectations, we should observe
 permanent changes in
 - The crop mix
 - Input choices
 - Area planted
- If expected profits are lower than the outside option, the farmer should migrate
Predictions (2/2)

- If HHs have correctly anticipated the shock, we should observe
 - A full recovery in the years after the cyclone shock
 - A quicker recovery
 - In richer states
 - In states with more responsive state governments
 - In states with better financial development
 - The higher the disaster aid

- If HHs have updated their expectations, we should observe permanent changes in
 - The crop mix
 - Input choices
 - Area planted
Predictions (2/2)

- If HHs have correctly anticipated the shock, we should observe:
 - A full recovery in the years after the cyclone shock
 - A quicker recovery
 - In richer states
 - In states with more responsive state governments
 - In states with better financial development
 - The higher the disaster aid

- If HHs have updated their expectations, we should observe permanent changes in:
 - The crop mix
 - Input choices
 - Area planted

- If expected profits are lower than the outside option, the farmer should migrate
Empirical strategy (1/2)

- Identifying assumption: variation in cyclone tracks over time is exogenous (only driven by oceanic & climatic conditions)
Empirical strategy (1/2)

- Identifying assumption: variation in cyclone tracks over time is exogenous (only driven by oceanic & climatic conditions)

- Use a fixed effects specification to control for

 - Time-invariant district-level characteristics
 - Macroeconomic shocks & region-specific time trends with year FE and either (distance to sea)*year FE or state*year FE
Empirical strategy (1/2)

- Identifying assumption: variation in cyclone tracks over time is exogenous (only driven by oceanic & climatic conditions)
- Use a fixed effects specification to control for
 - Time-invariant district-level characteristics
 - Macroeconomic shocks & region-specific time trends with year FE and either (distance to sea)*year FE or state*year FE
- Control for other exogenous factors influencing agricultural production, namely precipitation & temperature shocks (Guiteras 2007, Schlenker & Roberts 2008)
Empirical strategy (2/2)

- To estimate direct economic cost of cyclone exposure include:
 - A measure of cyclone exposure in year t to estimate the contemporaneous effect
 - Lags of the cyclone exposure variable to estimate the persistence of the cyclone shock
Empirical strategy (2/2)

- To estimate direct economic cost of cyclone exposure include
 - A measure of cyclone exposure in year t to estimate the contemporaneous effect
 - Lags of the cyclone exposure variable to estimate the persistence of the cyclone shock

- Main problem with including lags: cannot isolate potential change in expectations from effect of past shocks on current agricultural production
Empirical strategy (2/2)

- To estimate direct economic cost of cyclone exposure include
 - A measure of cyclone exposure in year t to estimate the contemporaneous effect
 - Lags of the cyclone exposure variable to estimate the persistence of the cyclone shock

- Main problem with including lags: cannot isolate potential change in expectations from effect of past shocks on current agricultural production
 - To estimate effect on expectation use cyclone exposure of neighboring districts
 - This is ONLY valid, if can show that neighboring districts do not affect local markets through prices
Regression specification for cyclone impact

Various LHS variables, e.g. $\ln(revenue_{tot})_{dt}$ for district d, year t

$$\ln (y_{dt}) = \alpha + \beta_0 shock_{dt} +$$

$$+ \sum_{m=4}^{12} \theta_1 m rainshock_{dmt} + \sum_{m=1}^{3} \theta_2 m rainshock_{dmt+1} \quad (4)$$

$$+ \sum_{m=4}^{12} \theta_3 m tempshock_{dmt} + \sum_{m=1}^{3} \theta_4 m tempshock_{dmt+1}$$

$$+ \delta_d + \mu_i t + \varepsilon_{dt}$$

- Standard errors clustered at the district level
Regression specification for cyclone impact

Various LHS variables, e.g. $\ln(revenue_{tot})_{dt}$ for district d, year t

$$\ln (y_{dt}) = \alpha + \beta_0 shock_{dt} +$$

$$+ \sum_{m=4}^{12} \theta_{1m} rainshock_{dmt} + \sum_{m=1}^{3} \theta_{2m} rainshock_{dmt+1}$$

$$+ \sum_{m=4}^{12} \theta_{3m} tempshock_{dmt} + \sum_{m=1}^{3} \theta_{4m} tempshock_{dmt+1}$$

$$+ \delta_d + \mu_i t + \epsilon_{dt}$$

- Standard errors clustered at the district level
- Variable for cyclone impact $shock_{dt}$ for district d in year t
- δ_d district FE, $\mu_i t$ region i*year t interactions, ϵ_{dt} error term
- Weather shocks $rainshock_{dmt,dmt+1}$ & $tempshock_{dmt,dmt+1}$ for district d in month m of year t and $t + 1$
Regression specification for cyclone impact, by season

Various LHS variables, e.g. $\ln(revenue_tot)_{dt}$ for district d, year t

\[
\ln(y_{dt}) = \alpha + \beta_{0k}shock_{dt} \ast kari_{t} + \beta_{0r}shock_{dt} \ast rabi_{t,t+1} \\
+ \sum_{m=4}^{12} \theta_{1m}rainshock_{dmt} + \sum_{m=1}^{3} \theta_{2m}rainshock_{dmt+1} \\
+ \sum_{m=4}^{12} \theta_{3m}tempshock_{dmt} + \sum_{m=1}^{3} \theta_{4m}tempshock_{dmt+1} \\
+ \delta_{d} + \mu_{i,t} + \epsilon_{dt} \tag{5}
\]

- Standard errors clustered at the district level
Regression specification for cyclone impact, by season

Various LHS variables, e.g. $\ln(revenue_tot)_{dt}$ for district d, year t

\[
\ln(y_{dt}) = \alpha + \beta_{0k}\ shock_{dt} \ast kharif_t + \beta_{0r}\ shock_{dt} \ast rabi_{t,t+1} \\
+ \sum_{m=4}^{12} \theta_{1m}\ rainshock_{dmt} + \sum_{m=1}^{3} \theta_{2m}\ rainshock_{dmt+1} \\
+ \sum_{m=4}^{12} \theta_{3m}\ tempshock_{dmt} + \sum_{m=1}^{3} \theta_{4m}\ tempshock_{dmt+1} \\
+ \delta_d + \mu_i t + \varepsilon_{dt}
\] (5)

- Standard errors clustered at the district level
- Dummy for Kharif season $kharif_t = 1$ if cyclone in year t occurs in month $m = [4, 8]$, $= 0$ otherwise
- Dummy for Rabi season $rabi_{t,t+1} = 1$ if cyclone in year t occurs in month $m = [9, 12]$ or cyclone in year $t = +1$ occurs in month $m = [1, 3]$, $= 0$ otherwise
Regression specification for persistence

Various LHS variables, e.g. $ln(revenue_tot)_{dt}$ for district d, year t

\[
\ln (y_{dt}) = \alpha + \beta_0 \text{shock}_{dt} + \beta_1 \text{shock}_{dt-1} + \beta_2 \text{shock}_{dt-2} + \ldots + \beta_5 \text{shock}_{dt-5} \\
+ \sum_{m=4}^{12} \theta_1 m \text{rainshock}_{dmt} + \sum_{m=1}^{3} \theta_2 m \text{rainshock}_{dmt+1} \\
+ \sum_{m=4}^{12} \theta_3 m \text{tempshock}_{dmt} + \sum_{m=1}^{3} \theta_4 m \text{tempshock}_{dmt+1} \\
+ \delta_d + \mu_i + \varepsilon_{dt}
\] (6)

- Standard errors clustered at the district level
Regression specification for persistence

Various LHS variables, e.g. $\ln(revenue_tot)_{dt}$ for district d, year t

\[
\ln (y_{dt}) = \alpha + \beta_0 shock_{dt} + \beta_1 shock_{dt-1} + \beta_2 shock_{dt-2} + \ldots + \beta_5 shock_{dt-5} \\
+ \sum_{m=4}^{12} \theta_{1m} rainshock_{dmt} + \sum_{m=1}^{3} \theta_{2m} rainshock_{dmt+1} \\
+ \sum_{m=4}^{12} \theta_{3m} tempshock_{dmt} + \sum_{m=1}^{3} \theta_{4m} tempshock_{dmt+1} \\
+ \delta_d + \mu_i t + \varepsilon_{dt}
\] (6)

- Standard errors clustered at the district level
- Variable for cyclone impact $shock_{dt}$ & associated lags $shock_{dt-i}$ for $i = 1, 2, \ldots, 5$
Regression specification for persistence, by season

Various LHS variables, e.g. $ln(revenue_tot)_{dt}$ for district d, year t

$$
\ln (y_{dt}) = \alpha + \beta_{0k} shock_{dt} \times kharif_t + \beta_{1k} shock_{dt-1} \times kharif_t + \beta_{2k} shock_{dt-2} \times kharif_t + ... + \beta_{5k} shock_{dt-5} \times kharif_t + \beta_{0r} shock_{dt} \times rabi_{t,t+1} + \beta_{1r} shock_{dt-1} \times rabi_{t,t+1} + \beta_{2r} shock_{dt-2} \times rabi_{t,t+1} + ... + \beta_{5r} shock_{dt-5} \times rabi_{t,t+1} + \sum_{m=4}^{12} \theta_{1m} rainshock_{dmt} + \sum_{m=1}^{3} \theta_{2m} rainshock_{dmt+1} \\
+ \sum_{m=4}^{12} \theta_{3m} tempshock_{dmt} + \sum_{m=1}^{3} \theta_{4m} tempshock_{dmt+1} + \delta_d + \mu_i t + \epsilon_{dt}
$$

- Standard errors clustered at the district level
Cyclone Data

- Source: Cyclone eAtlas from India Meteorological Department (electronic version 1.0/2008)
Cyclone Data

- Source: Cyclone eAtlas from India Meteorological Department (electronic version 1.0/2008)
- Time Period: 1891-2007 (daily)
- Geographical coverage: Bay of Bengal & Arabian Sea
Cyclone Data

- **Source:** Cyclone eAtlas from India Meteorological Department (electronic version 1.0/2008)
- **Time Period:** 1891-2007 (daily)
- **Geographical coverage:** Bay of Bengal & Arabian Sea
- **Track records of**
 - Depressions (< 33 knots/60kmph)
 - Cyclones (33-47 knots/60-88kmph)
 - Severe Cyclones (>47 knots/88 kmph)
Cyclone Data

- **Source:** Cyclone eAtlas from India Meteorological Department (electronic version 1.0/2008)
- **Time Period:** 1891-2007 (daily)
- **Geographical coverage:** Bay of Bengal & Arabian Sea
- **Track records of**
 - Depressions (< 33 knots/60kmph)
 - Cyclones (33-47 knots/60-88kmph)
 - Severe Cyclones (>47 knots/88 kmph)
- **Advantage of meteorological measurements:**
 - no reporting bias
 - complete and consistent record
Cyclone Data

- Source: Cyclone eAtlas from India Meteorological Department (electronic version 1.0/2008)
- Time Period: 1891-2007 (daily)
- Geographical coverage: Bay of Bengal & Arabian Sea
- Track records of:
 - Depressions (< 33 knots/60kmph)
 - Cyclones (33-47 knots/60-88kmph)
 - Severe Cyclones (>47 knots/88 kmph)
- Advantage of meteorological measurements:
 - no reporting bias
 - complete and consistent record
- Two variables constructed:
 - \(cyclone_{hit} dt = 1 \) if cyclone passed over district \(d \) in year \(t \), 0 otherwise
 - \(percent_{affected} dt = \frac{area_{affected} dt}{total_{area} d} \)
Cyclones & Severe Cyclones, 1946-1987

Legend
- Cyclonic storm (33-47 knots)
- Severe Cyclone (>47 knots)
Cyclones & Severe Cyclones, 1946-1987 - buffered
Outcome Data (1/2)

Outcome Data (1/2)

- Time period: 1956-1987 (annual)
- Agricultural year $t \equiv$ April $t -$ March $t + 1$
- Number of districts: 259 (1966 boundaries, excl. Tamil Nadu)
Outcome Data (1/2)

- **Source:** India Agricultural & Climate dataset of the World Bank (Sanghi, Kumar & McKinsey, 1998)
- **Time period:** 1956-1987 (annual)
- **Agricultural year** \(t \equiv \text{April } t - \text{March } t + 1 \)
- **Number of districts:** 259 (1966 boundaries, excl. Tamil Nadu)
- **Agricultural data on prices, output & area planted by crop**

<table>
<thead>
<tr>
<th>Kharif crop</th>
<th>Rabi crop</th>
<th>Two season crop</th>
</tr>
</thead>
<tbody>
<tr>
<td>major crop</td>
<td>minor crop</td>
<td>major crop</td>
</tr>
<tr>
<td>bajra</td>
<td>cotton</td>
<td>wheat</td>
</tr>
<tr>
<td>maize</td>
<td>groundnut</td>
<td>gram</td>
</tr>
<tr>
<td>sesame</td>
<td>jute</td>
<td>sugar</td>
</tr>
<tr>
<td>tobacco</td>
<td>potato</td>
<td></td>
</tr>
<tr>
<td>ragi</td>
<td>rapeseed</td>
<td></td>
</tr>
<tr>
<td>tur</td>
<td>& mustard</td>
<td></td>
</tr>
</tbody>
</table>
Outcome Data (2/2)

- Agricultural data on (cont.)
 - Number of agricultural labourers & cultivators, real wages
 - Number & price of tractors & bullocks
 - Usage & price of fertilizer
Outcome Data (2/2)

- Agricultural data on (cont.)
 - Number of agricultural labourers & cultivators, real wages
 - Number & price of tractors & bullocks
 - Usage & price of fertilizer

- Main outcome variables (in natural logs):
 - Revenue variables (in MM 1980 INR): total revenue, revenue of 6 major crops, revenue of Kharif crops, revenue of Rabi crops, revenue of two-season crops
 - Input data: agricultural labourers (in 1000), cultivators (in 1000), real wage, # of bullocks (in 1000), # of tractors, fertilizer used (in tons)
Weather Data

- Source: Terrestrial Air Temperature & Precipitation dataset (Version 1.02)
Weather Data

- **Source:** Terrestrial Air Temperature & Precipitation dataset (Version 1.02)
- **Time period:** 1956-1988 (monthly)
- **Number of weather stations:** 352
Weather Data

- **Source:** Terrestrial Air Temperature & Precipitation dataset (Version 1.02)
- **Time period:** 1956-1988 (monthly)
- **Number of weather stations:** 352
- **Construct monthly weather shocks (following Duflo & Pande, 2007):**
 - Interpolated b/n weather stations w/in 100km radius
 - Calculate mean temperature & precipitation at the district level for each month & year
 - Calculate % deviation of the district-level weather variable from the district mean 1956-1988
Summary statistics: main outcome variables (year=1956)

<table>
<thead>
<tr>
<th></th>
<th>total (MM)</th>
<th>rev (MM)</th>
<th>rev 6 major (MM)</th>
<th>rev kharif (MM)</th>
<th>rev. rabi (MM)</th>
<th>rev. both (MM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean coast</td>
<td>800.61</td>
<td>680.35</td>
<td>123.99</td>
<td>24.00</td>
<td></td>
<td>652.63</td>
</tr>
<tr>
<td>sd coast</td>
<td>638.22</td>
<td>610.26</td>
<td>180.82</td>
<td>33.94</td>
<td></td>
<td>631.23</td>
</tr>
<tr>
<td>mean inland</td>
<td>530.43</td>
<td>371.33</td>
<td>100.88</td>
<td>139.77</td>
<td></td>
<td>289.78</td>
</tr>
<tr>
<td>sd inland</td>
<td>342.66</td>
<td>291.67</td>
<td>115.99</td>
<td>165.31</td>
<td></td>
<td>301.33</td>
</tr>
<tr>
<td>mean total</td>
<td>553.36</td>
<td>397.55</td>
<td>102.84</td>
<td>129.95</td>
<td></td>
<td>320.58</td>
</tr>
<tr>
<td>sd total</td>
<td>382.48</td>
<td>340.02</td>
<td>122.53</td>
<td>161.67</td>
<td></td>
<td>354.67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>agri L (1000)</th>
<th>cult (1000)</th>
<th>fertilizer (tons)</th>
<th>tractors (1000)</th>
<th>bullocks (1000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean coast</td>
<td>87.49</td>
<td>205.17</td>
<td>852</td>
<td>208.28</td>
<td>30.96</td>
</tr>
<tr>
<td>sd coast</td>
<td>77.29</td>
<td>134.54</td>
<td>1159.55</td>
<td>139.53</td>
<td>33.21</td>
</tr>
<tr>
<td>mean inland</td>
<td>56.60</td>
<td>212.667</td>
<td>336.57</td>
<td>206.37</td>
<td>62.61</td>
</tr>
<tr>
<td>sd inland</td>
<td>53.08</td>
<td>132.51</td>
<td>574.64</td>
<td>120.34</td>
<td>110.76</td>
</tr>
<tr>
<td>mean total</td>
<td>59.22</td>
<td>212.03</td>
<td>380.32</td>
<td>206.53</td>
<td>59.92</td>
</tr>
<tr>
<td>sd total</td>
<td>56.02</td>
<td>132.45</td>
<td>657.54</td>
<td>121.80</td>
<td>106.73</td>
</tr>
</tbody>
</table>
Summary statistics: cyclone variables (1946-1986)

<table>
<thead>
<tr>
<th></th>
<th>mean</th>
<th>sd</th>
<th>min</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>% affected coast</td>
<td>6.63</td>
<td>19.84</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>% affected inland</td>
<td>.081</td>
<td>6.69</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>% affected total</td>
<td>1.31</td>
<td>8.77</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>prob cyclone hit coast</td>
<td>0.016</td>
<td>0.022</td>
<td>0</td>
<td>0.086</td>
</tr>
<tr>
<td>prob cyclone hit inland</td>
<td>0.0018</td>
<td>0.0072</td>
<td>0</td>
<td>0.052</td>
</tr>
<tr>
<td>prob cyclone hit total</td>
<td>0.0030</td>
<td>0.0103</td>
<td>0</td>
<td>0.086</td>
</tr>
</tbody>
</table>
Cyclone impact: shock dummy

<table>
<thead>
<tr>
<th>LHS in ln</th>
<th>(1) total rev</th>
<th>(2) rev 6 major</th>
<th>(3) rev kharif</th>
<th>(4) rev. rabi</th>
<th>(5) rev both</th>
</tr>
</thead>
<tbody>
<tr>
<td>cyclone_hit</td>
<td>-0.128*</td>
<td>-0.125*</td>
<td>0.200</td>
<td>-0.273</td>
<td>-0.0399</td>
</tr>
<tr>
<td></td>
<td>(0.0655)</td>
<td>(0.0706)</td>
<td>(0.177)</td>
<td>(0.438)</td>
<td>(0.0747)</td>
</tr>
<tr>
<td>district FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>dsea*yr FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>weather shocks</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Obs</td>
<td>8288</td>
<td>8288</td>
<td>8288</td>
<td>8288</td>
<td>8288</td>
</tr>
</tbody>
</table>
Cyclone impact: shock dummy (cont.)

<table>
<thead>
<tr>
<th>LHS in ln</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>agri L</td>
<td>0.00643</td>
<td>-0.0194</td>
<td>-0.229</td>
<td>-0.0708</td>
<td>-0.0843*</td>
</tr>
<tr>
<td>cult</td>
<td>(0.0655)</td>
<td>(0.0132)</td>
<td>(0.269)</td>
<td>(0.115)</td>
<td>(0.0493)</td>
</tr>
<tr>
<td>fertilizer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tractors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bullocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Cyclone hit: dummy for cyclone impact
- LHS: left-hand side variable
- Obs: observations
- district FE: district fixed effects
- dsea*yr FE: dsea*year fixed effects
- weather shocks: weather shocks included

<table>
<thead>
<tr>
<th>Obs</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8288</td>
<td>8288</td>
<td>8288</td>
<td>8288</td>
<td>8288</td>
<td>8288</td>
</tr>
</tbody>
</table>
Cyclone impact: % damage

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LHS in ln</td>
<td>total rev</td>
<td>rev 6 major</td>
<td>rev kharif</td>
<td>rev. rabi</td>
<td>rev both</td>
</tr>
<tr>
<td>% affected</td>
<td>-0.00158*</td>
<td>-0.00179**</td>
<td>0.00651**</td>
<td>0.00359</td>
<td>8.05e-05</td>
</tr>
<tr>
<td></td>
<td>(0.000876)</td>
<td>(0.00101)</td>
<td>(0.00326)</td>
<td>(0.00333)</td>
<td>(0.00121)</td>
</tr>
<tr>
<td>district FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>dsea*yr FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>weather shocks</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Obs</td>
<td>8288</td>
<td>8288</td>
<td>8288</td>
<td>8288</td>
<td>8288</td>
</tr>
</tbody>
</table>
Cyclone impact: % damage (cont.)

<table>
<thead>
<tr>
<th>LHS in ln</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>agri L</td>
<td>0.000132</td>
<td>-0.000104</td>
<td>-0.00143</td>
<td>-0.00141</td>
<td>-0.00112</td>
</tr>
<tr>
<td>cult</td>
<td>(0.000928)</td>
<td>(0.000217)</td>
<td>(0.00334)</td>
<td>(0.00227)</td>
<td>(0.000702)</td>
</tr>
<tr>
<td>fertilizer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tractor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bullocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% affected</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>district FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>dsea*yr FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>weather shocks</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Obs</td>
<td>8288</td>
<td>8288</td>
<td>8288</td>
<td>8288</td>
<td>8288</td>
</tr>
</tbody>
</table>
Cyclone impact by season: shock dummy

<table>
<thead>
<tr>
<th>LHS in ln total rev</th>
<th>(1) cyclone_hit*kharif</th>
<th>(2) cyclone_hit*rabi</th>
<th>(3) rev kharif</th>
<th>(4) rev rabi</th>
<th>(5) rev both</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.130*</td>
<td>-0.116</td>
<td>0.0971</td>
<td>0.0459</td>
<td>-0.0238</td>
</tr>
<tr>
<td></td>
<td>(0.0776)</td>
<td>(0.0835)</td>
<td>(0.169)</td>
<td>(0.151)</td>
<td>(0.0867)</td>
</tr>
<tr>
<td></td>
<td>-0.116</td>
<td>-0.166*</td>
<td>0.645</td>
<td>-1.644</td>
<td>-0.109</td>
</tr>
<tr>
<td></td>
<td>(0.0750)</td>
<td>(0.0890)</td>
<td>(0.536)</td>
<td>(2.031)</td>
<td>(0.122)</td>
</tr>
<tr>
<td>district FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>dsea*yr FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>weather shocks</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Obs</td>
<td>8288</td>
<td>8288</td>
<td>8288</td>
<td>8288</td>
<td>8288</td>
</tr>
</tbody>
</table>
Cyclone impact by season: shock dummy (cont.)

<table>
<thead>
<tr>
<th>LHS in ln</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>agri L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cult</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fertilizer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tractors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bullocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cyclone_hit*kharif</td>
<td>0.0434</td>
<td>-0.0274**</td>
<td>-0.439</td>
<td>-0.0868</td>
<td>-0.0423</td>
</tr>
<tr>
<td></td>
<td>(0.0271)</td>
<td>(0.0129)</td>
<td>(0.311)</td>
<td>(0.137)</td>
<td>(0.0353)</td>
</tr>
<tr>
<td>cyclone_hit*rabi</td>
<td>-0.153</td>
<td>0.0150</td>
<td>0.671***</td>
<td>-0.00194</td>
<td>-0.265</td>
</tr>
<tr>
<td></td>
<td>(0.252)</td>
<td>(0.0418)</td>
<td>(0.228)</td>
<td>(0.159)</td>
<td>(0.180)</td>
</tr>
<tr>
<td>district FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>dsea*yr FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>weather shocks</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Obs</td>
<td>8288</td>
<td>8288</td>
<td>8288</td>
<td>8288</td>
<td>8288</td>
</tr>
</tbody>
</table>
Persistence: shock dummy

<table>
<thead>
<tr>
<th>LHS in ln</th>
<th>(1) total rev</th>
<th>(2) rev 6 major</th>
<th>(3) rev kharif</th>
<th>(4) rev. rabi</th>
<th>(5) rev both</th>
</tr>
</thead>
<tbody>
<tr>
<td>cyclone_hit</td>
<td>-0.127*</td>
<td>-0.124*</td>
<td>0.207</td>
<td>-0.244</td>
<td>-0.0382</td>
</tr>
<tr>
<td></td>
<td>(0.0657)</td>
<td>(0.0703)</td>
<td>(0.181)</td>
<td>(0.430)</td>
<td>(0.0757)</td>
</tr>
<tr>
<td>l1_cyclone_hit</td>
<td>-0.0975</td>
<td>-0.0771</td>
<td>0.0434</td>
<td>-0.393</td>
<td>-0.112</td>
</tr>
<tr>
<td></td>
<td>(0.0748)</td>
<td>(0.0707)</td>
<td>(0.160)</td>
<td>(0.474)</td>
<td>(0.09241)</td>
</tr>
<tr>
<td>l2_cyclone_hit</td>
<td>0.0648</td>
<td>0.0663</td>
<td>0.172</td>
<td>0.183</td>
<td>0.148**</td>
</tr>
<tr>
<td></td>
<td>(0.0523)</td>
<td>(0.0643)</td>
<td>(0.211)</td>
<td>(0.227)</td>
<td>(0.0650)</td>
</tr>
<tr>
<td>l3_cyclone_hit</td>
<td>-0.0420</td>
<td>-0.0362</td>
<td>-0.398</td>
<td>0.217</td>
<td>-0.0296</td>
</tr>
<tr>
<td></td>
<td>(0.0501)</td>
<td>(0.0515)</td>
<td>(0.617)</td>
<td>(0.229)</td>
<td>(0.0603)</td>
</tr>
<tr>
<td>l4_cyclone_hit</td>
<td>-0.0699*</td>
<td>-0.0690</td>
<td>0.149</td>
<td>0.135</td>
<td>-0.121**</td>
</tr>
<tr>
<td></td>
<td>(0.0411)</td>
<td>(0.0423)</td>
<td>(0.293)</td>
<td>(0.171)</td>
<td>(0.0563)</td>
</tr>
<tr>
<td>l5_cyclone_hit</td>
<td>-0.0209</td>
<td>-0.0180</td>
<td>-0.332</td>
<td>0.307</td>
<td>0.0360</td>
</tr>
<tr>
<td></td>
<td>(0.0592)</td>
<td>(0.0579)</td>
<td>(0.619)</td>
<td>(0.197)</td>
<td>(0.0665)</td>
</tr>
</tbody>
</table>

| joint sig ls (pvalue) | 0.387 | 0.472 | 0.820 | 0.618 | 0.706 |
Persistence: shock dummy (cont.)

<table>
<thead>
<tr>
<th></th>
<th>(1) LHS in ln agri</th>
<th>(2) LHS in ln cult</th>
<th>(3) LHS in ln fertilizer</th>
<th>(4) LHS in ln tractors</th>
<th>(5) LHS in ln bullocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>cyclone_hit</td>
<td>0.00161</td>
<td>-0.0193</td>
<td>-0.202</td>
<td>-0.120</td>
<td>-0.0894*</td>
</tr>
<tr>
<td></td>
<td>(0.0613)</td>
<td>(0.0147)</td>
<td>(0.265)</td>
<td>(0.135)</td>
<td>(0.0535)</td>
</tr>
<tr>
<td>l1_cyclone_hit</td>
<td>-0.00651</td>
<td>-0.0140</td>
<td>-0.164</td>
<td>-0.371**</td>
<td>-0.118</td>
</tr>
<tr>
<td></td>
<td>(0.0623)</td>
<td>(0.0167)</td>
<td>(0.273)</td>
<td>(0.158)</td>
<td>(0.0861)</td>
</tr>
<tr>
<td>l2_cyclone_hit</td>
<td>-0.0452</td>
<td>-0.00238</td>
<td>0.213*</td>
<td>-0.395**</td>
<td>-0.0950*</td>
</tr>
<tr>
<td></td>
<td>(0.0602)</td>
<td>(0.0156)</td>
<td>(0.127)</td>
<td>(0.155)</td>
<td>(0.0533)</td>
</tr>
<tr>
<td>l3_cyclone_hit</td>
<td>-0.0406</td>
<td>0.00282</td>
<td>0.130</td>
<td>-0.582***</td>
<td>-0.0519</td>
</tr>
<tr>
<td></td>
<td>(0.0586)</td>
<td>(0.0173)</td>
<td>(0.104)</td>
<td>(0.173)</td>
<td>(0.0465)</td>
</tr>
<tr>
<td>l4_cyclone_hit</td>
<td>-0.0480</td>
<td>0.000648</td>
<td>0.243**</td>
<td>-0.655***</td>
<td>-0.0261</td>
</tr>
<tr>
<td></td>
<td>(0.0608)</td>
<td>(0.0179)</td>
<td>(0.123)</td>
<td>(0.168)</td>
<td>(0.0458)</td>
</tr>
<tr>
<td>l5_cyclone_hit</td>
<td>-0.0560</td>
<td>0.0106</td>
<td>0.233*</td>
<td>-0.716***</td>
<td>-0.00765</td>
</tr>
<tr>
<td></td>
<td>(0.0623)</td>
<td>(0.0200)</td>
<td>(0.121)</td>
<td>(0.218)</td>
<td>(0.0379)</td>
</tr>
<tr>
<td>joint sig ls (pvalue)</td>
<td>0.515</td>
<td>0.978</td>
<td>0.182</td>
<td>0.00141</td>
<td>0.233</td>
</tr>
</tbody>
</table>
Persistence by season: shock dummy (1/4)

<table>
<thead>
<tr>
<th>LHS in ln total rev</th>
<th>rev 6 major</th>
<th>rev kharif</th>
<th>rev. rabi</th>
<th>rev both</th>
</tr>
</thead>
<tbody>
<tr>
<td>cyclone_hit*kharif</td>
<td>-0.129*</td>
<td>0.131</td>
<td>0.0550</td>
<td>-0.0228</td>
</tr>
<tr>
<td></td>
<td>(0.0766)</td>
<td>(0.199)</td>
<td>(0.152)</td>
<td>(0.0852)</td>
</tr>
<tr>
<td>l1_cyclone_hit*kharif</td>
<td>-0.0817</td>
<td>-0.0455</td>
<td>-0.0375</td>
<td>-0.0151</td>
</tr>
<tr>
<td></td>
<td>(0.0921)</td>
<td>(0.207)</td>
<td>(0.214)</td>
<td>(0.109)</td>
</tr>
<tr>
<td>l2_cyclone_hit*kharif</td>
<td>0.0530</td>
<td>0.0578</td>
<td>0.206</td>
<td>0.147*</td>
</tr>
<tr>
<td></td>
<td>(0.0607)</td>
<td>(0.252)</td>
<td>(0.199)</td>
<td>(0.0758)</td>
</tr>
<tr>
<td>l3_cyclone_hit*kharif</td>
<td>-0.0418</td>
<td>-0.0303</td>
<td>0.178</td>
<td>0.185</td>
</tr>
<tr>
<td></td>
<td>(0.0596)</td>
<td>(0.247)</td>
<td>(0.194)</td>
<td>(0.0675)</td>
</tr>
<tr>
<td>l4_cyclone_hit*kharif</td>
<td>-0.0509</td>
<td>-0.0414</td>
<td>0.173</td>
<td>0.142</td>
</tr>
<tr>
<td></td>
<td>(0.0439)</td>
<td>(0.309)</td>
<td>(0.154)</td>
<td>(0.0619)</td>
</tr>
<tr>
<td>l5_cyclone_hit*kharif</td>
<td>-0.0148</td>
<td>-0.0145</td>
<td>0.287</td>
<td>0.282</td>
</tr>
<tr>
<td></td>
<td>(0.0683)</td>
<td>(0.296)</td>
<td>(0.237)</td>
<td>(0.0780)</td>
</tr>
<tr>
<td>joint sig ls (pvalue)</td>
<td>0.544</td>
<td>0.727</td>
<td>0.521</td>
<td>0.441</td>
</tr>
</tbody>
</table>
Persistence by season: shock dummy (cont. 2/4)

<table>
<thead>
<tr>
<th>LHS in ln</th>
<th>(1) total rev</th>
<th>(2) rev 6 major</th>
<th>(3) rev kharif</th>
<th>(4) rev. rabi</th>
<th>(5) rev both</th>
</tr>
</thead>
<tbody>
<tr>
<td>cyclone_hit*rabi</td>
<td>-0.125</td>
<td>-0.178*</td>
<td>0.493</td>
<td>-1.655</td>
<td>-0.116</td>
</tr>
<tr>
<td></td>
<td>(0.0773)</td>
<td>(0.0942)</td>
<td>(0.424)</td>
<td>(2.096)</td>
<td>(0.127)</td>
</tr>
<tr>
<td>l1_cyclone_hit*rabi</td>
<td>-0.158***</td>
<td>-0.207***</td>
<td>0.460</td>
<td>-2.057</td>
<td>-0.251</td>
</tr>
<tr>
<td></td>
<td>(0.0524)</td>
<td>(0.0664)</td>
<td>(0.391)</td>
<td>(2.090)</td>
<td>(0.166)</td>
</tr>
<tr>
<td>l2_cyclone_hit*rabi</td>
<td>0.114</td>
<td>0.0975</td>
<td>-0.00106</td>
<td>0.700</td>
<td>0.143</td>
</tr>
<tr>
<td></td>
<td>(0.104)</td>
<td>(0.109)</td>
<td>(0.122)</td>
<td>(0.787)</td>
<td>(0.116)</td>
</tr>
<tr>
<td>l3_cyclone_hit*rabi</td>
<td>-0.0435</td>
<td>-0.0700</td>
<td>-3.443</td>
<td>0.502</td>
<td>-0.0423</td>
</tr>
<tr>
<td></td>
<td>(0.0507)</td>
<td>(0.0818)</td>
<td>(2.984)</td>
<td>(0.890)</td>
<td>(0.140)</td>
</tr>
<tr>
<td>l4_cyclone_hit*rabi</td>
<td>-0.177*</td>
<td>-0.221*</td>
<td>-0.413</td>
<td>0.167</td>
<td>-0.101</td>
</tr>
<tr>
<td></td>
<td>(0.0975)</td>
<td>(0.117)</td>
<td>(0.391)</td>
<td>(0.662)</td>
<td>(0.105)</td>
</tr>
<tr>
<td>l5_cyclone_hit*rabi</td>
<td>-0.0586</td>
<td>-0.0451</td>
<td>-3.610</td>
<td>0.375</td>
<td>-0.0317</td>
</tr>
<tr>
<td></td>
<td>(0.106)</td>
<td>(0.108)</td>
<td>(3.003)</td>
<td>(0.258)</td>
<td>(0.134)</td>
</tr>
<tr>
<td>joint sig ls (pvalue)</td>
<td>0.240</td>
<td>0.261</td>
<td>0.250</td>
<td>0.921</td>
<td>0.530</td>
</tr>
</tbody>
</table>
Persistence by season: shock dummy (cont. 3/4)

<table>
<thead>
<tr>
<th>LHS in ln</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cyclone_hit*kharif</td>
<td>0.0423</td>
<td>-0.0286**</td>
<td>-0.402</td>
<td>-0.138</td>
<td>-0.0425</td>
</tr>
<tr>
<td></td>
<td>(0.0291)</td>
<td>(0.0142)</td>
<td>(0.306)</td>
<td>(0.162)</td>
<td>(0.0379)</td>
</tr>
<tr>
<td>l1_cyclone_hit*kharif</td>
<td>0.0385</td>
<td>-0.0279*</td>
<td>-0.296</td>
<td>-0.445**</td>
<td>-0.0317</td>
</tr>
<tr>
<td></td>
<td>(0.0273)</td>
<td>(0.0149)</td>
<td>(0.327)</td>
<td>(0.184)</td>
<td>(0.0395)</td>
</tr>
<tr>
<td>l2_cyclone_hit*kharif</td>
<td>-0.0145</td>
<td>-0.0147</td>
<td>0.221</td>
<td>-0.467**</td>
<td>-0.0414</td>
</tr>
<tr>
<td></td>
<td>(0.0310)</td>
<td>(0.0131)</td>
<td>(0.159)</td>
<td>(0.183)</td>
<td>(0.0389)</td>
</tr>
<tr>
<td>l3_cyclone_hit*kharif</td>
<td>-0.00434</td>
<td>-0.0125</td>
<td>0.158</td>
<td>-0.658***</td>
<td>-0.0119</td>
</tr>
<tr>
<td></td>
<td>(0.0245)</td>
<td>(0.0150)</td>
<td>(0.118)</td>
<td>(0.194)</td>
<td>(0.0399)</td>
</tr>
<tr>
<td>l4_cyclone_hit*kharif</td>
<td>-0.00833</td>
<td>-0.0178</td>
<td>0.359***</td>
<td>-0.744***</td>
<td>0.0248</td>
</tr>
<tr>
<td></td>
<td>(0.0275)</td>
<td>(0.0137)</td>
<td>(0.124)</td>
<td>(0.185)</td>
<td>(0.0417)</td>
</tr>
<tr>
<td>l5_cyclone_hit*kharif</td>
<td>-0.0252</td>
<td>-0.00963</td>
<td>0.339***</td>
<td>-0.823***</td>
<td>0.0316</td>
</tr>
<tr>
<td></td>
<td>(0.0280)</td>
<td>(0.0149)</td>
<td>(0.124)</td>
<td>(0.242)</td>
<td>(0.0366)</td>
</tr>
<tr>
<td>joint sig ls (pvalue)</td>
<td>0.915</td>
<td>0.212</td>
<td>0.162</td>
<td>0.00119</td>
<td>0.877</td>
</tr>
</tbody>
</table>
Persistence by season: shock dummy (cont. 4/4)

<table>
<thead>
<tr>
<th>LHS in ln</th>
<th>(1) agri L</th>
<th>(2) cult</th>
<th>(3) fertilizer</th>
<th>(4) tractors</th>
<th>(5) bullocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>cyclone_hit*rabi</td>
<td>-0.183</td>
<td>0.0260</td>
<td>0.670***</td>
<td>-0.0161</td>
<td>-0.310</td>
</tr>
<tr>
<td></td>
<td>(0.291)</td>
<td>(0.0486)</td>
<td>(0.209)</td>
<td>(0.178)</td>
<td>(0.201)</td>
</tr>
<tr>
<td>l1_cyclone_hit*rabi</td>
<td>-0.207</td>
<td>0.0463</td>
<td>0.477***</td>
<td>-0.0578</td>
<td>-0.499</td>
</tr>
<tr>
<td></td>
<td>(0.291)</td>
<td>(0.0565)</td>
<td>(0.147)</td>
<td>(0.185)</td>
<td>(0.381)</td>
</tr>
<tr>
<td>l2_cyclone_hit*rabi</td>
<td>-0.184</td>
<td>0.0513</td>
<td>0.227</td>
<td>-0.0770</td>
<td>-0.340*</td>
</tr>
<tr>
<td></td>
<td>(0.284)</td>
<td>(0.0556)</td>
<td>(0.194)</td>
<td>(0.179)</td>
<td>(0.193)</td>
</tr>
<tr>
<td>l3_cyclone_hit*rabi</td>
<td>-0.246</td>
<td>0.0898*</td>
<td>-0.0821</td>
<td>-0.145</td>
<td>-0.280**</td>
</tr>
<tr>
<td></td>
<td>(0.317)</td>
<td>(0.0544)</td>
<td>(0.232)</td>
<td>(0.0987)</td>
<td>(0.122)</td>
</tr>
<tr>
<td>l4_cyclone_hit*rabi</td>
<td>-0.273</td>
<td>0.109*</td>
<td>-0.476</td>
<td>-0.125</td>
<td>-0.308***</td>
</tr>
<tr>
<td></td>
<td>(0.310)</td>
<td>(0.0614)</td>
<td>(0.364)</td>
<td>(0.112)</td>
<td>(0.0709)</td>
</tr>
<tr>
<td>l5_cyclone_hit*rabi</td>
<td>-0.234</td>
<td>0.124**</td>
<td>-0.331</td>
<td>-0.132</td>
<td>-0.229***</td>
</tr>
<tr>
<td></td>
<td>(0.314)</td>
<td>(0.0608)</td>
<td>(0.254)</td>
<td>(0.118)</td>
<td>(0.0526)</td>
</tr>
<tr>
<td>joint sig ls (pvalue)</td>
<td>0.450</td>
<td>0.130</td>
<td>0.863</td>
<td>0.339</td>
<td>0.0299</td>
</tr>
</tbody>
</table>
Income smoothing & risk diversification: % affected

<table>
<thead>
<tr>
<th></th>
<th>(1) rev maize</th>
<th>(2) rev cotton</th>
<th>(3) rev gnut</th>
<th>(4) rev wheat</th>
<th>(5) rev gram</th>
</tr>
</thead>
<tbody>
<tr>
<td>CROP TYPE</td>
<td>Kharif</td>
<td>Kharif</td>
<td>Kharif</td>
<td>Rabi</td>
<td>Rabi</td>
</tr>
<tr>
<td>% affected*kharif</td>
<td>0.00161</td>
<td>0.0120**</td>
<td>0.00179</td>
<td>0.00703</td>
<td>0.0112**</td>
</tr>
<tr>
<td></td>
<td>(0.00891)</td>
<td>(0.00467)</td>
<td>(0.00436)</td>
<td>(0.00455)</td>
<td>(0.00527)</td>
</tr>
<tr>
<td>l1_ % affected*kharif</td>
<td>-0.00908</td>
<td>0.00893**</td>
<td>0.00347</td>
<td>0.00165</td>
<td>0.00930*</td>
</tr>
<tr>
<td></td>
<td>(0.00734)</td>
<td>(0.00453)</td>
<td>(0.00300)</td>
<td>(0.00506)</td>
<td>(0.00557)</td>
</tr>
<tr>
<td>l2_ % affected*kharif</td>
<td>-0.00628</td>
<td>0.00785*</td>
<td>0.00577**</td>
<td>0.00241</td>
<td>0.00565*</td>
</tr>
<tr>
<td></td>
<td>(0.00685)</td>
<td>(0.00423)</td>
<td>(0.00238)</td>
<td>(0.00443)</td>
<td>(0.00291)</td>
</tr>
<tr>
<td>l3_ % affected*kharif</td>
<td>0.00119</td>
<td>0.00384</td>
<td>0.00401</td>
<td>0.00671</td>
<td>0.00661**</td>
</tr>
<tr>
<td></td>
<td>(0.00461)</td>
<td>(0.00367)</td>
<td>(0.00264)</td>
<td>(0.00473)</td>
<td>(0.00307)</td>
</tr>
<tr>
<td>l4_ % affected*kharif</td>
<td>0.00214</td>
<td>-0.00396</td>
<td>0.00481*</td>
<td>4.68e-05</td>
<td>0.00413</td>
</tr>
<tr>
<td></td>
<td>(0.00508)</td>
<td>(0.00587)</td>
<td>(0.00260)</td>
<td>(0.00582)</td>
<td>(0.00684)</td>
</tr>
<tr>
<td>l5_ % affected*kharif</td>
<td>0.00507</td>
<td>-0.000551</td>
<td>0.00491*</td>
<td>0.00630</td>
<td>0.000100</td>
</tr>
<tr>
<td></td>
<td>(0.00503)</td>
<td>(0.00546)</td>
<td>(0.00288)</td>
<td>(0.00621)</td>
<td>(0.00511)</td>
</tr>
</tbody>
</table>

Joint sig ls (pvalue):

- (1) 0.689
- (2) 0.313
- (3) 0.0456
- (4) 0.462
- (5) 0.0255
<table>
<thead>
<tr>
<th>LHS in ln</th>
<th>(1) rev maize</th>
<th>(2) rev cotton</th>
<th>(3) rev gnut</th>
<th>(4) rev wheat</th>
<th>(5) rev gram</th>
</tr>
</thead>
<tbody>
<tr>
<td>CROP TYPE</td>
<td>Kharif</td>
<td>Kharif</td>
<td>Kharif</td>
<td>Rabi</td>
<td>Rabi</td>
</tr>
<tr>
<td>% affected*rabi</td>
<td>0.00183</td>
<td>-0.0197***</td>
<td>-0.00192</td>
<td>-0.00263</td>
<td>0.00242</td>
</tr>
<tr>
<td></td>
<td>(0.00656)</td>
<td>(0.00667)</td>
<td>(0.00244)</td>
<td>(0.00256)</td>
<td>(0.00330)</td>
</tr>
<tr>
<td>l1_% affected*rabi</td>
<td>-0.0161***</td>
<td>-0.0146**</td>
<td>-0.00156</td>
<td>-0.00942**</td>
<td>-0.00489</td>
</tr>
<tr>
<td></td>
<td>(0.00615)</td>
<td>(0.00592)</td>
<td>(0.00237)</td>
<td>(0.00382)</td>
<td>(0.00442)</td>
</tr>
<tr>
<td>l2_% affected*rabi</td>
<td>-0.0138**</td>
<td>-0.0124*</td>
<td>-0.00268</td>
<td>-0.00704**</td>
<td>-0.00424</td>
</tr>
<tr>
<td></td>
<td>(0.00605)</td>
<td>(0.00745)</td>
<td>(0.00291)</td>
<td>(0.00342)</td>
<td>(0.00526)</td>
</tr>
<tr>
<td>l3_% affected*rabi</td>
<td>-0.0159*</td>
<td>-0.0132</td>
<td>-0.00509*</td>
<td>-0.000181</td>
<td>0.00356</td>
</tr>
<tr>
<td></td>
<td>(0.00815)</td>
<td>(0.00852)</td>
<td>(0.00284)</td>
<td>(0.00406)</td>
<td>(0.00608)</td>
</tr>
<tr>
<td>l4_% affected*rabi</td>
<td>-0.00593</td>
<td>-0.00586</td>
<td>-0.00736**</td>
<td>-0.00120</td>
<td>-0.00222</td>
</tr>
<tr>
<td></td>
<td>(0.00603)</td>
<td>(0.00495)</td>
<td>(0.00319)</td>
<td>(0.00338)</td>
<td>(0.00260)</td>
</tr>
<tr>
<td>l5_c% affected*rabi</td>
<td>-0.00418</td>
<td>0.000294</td>
<td>-0.00631*</td>
<td>0.00472</td>
<td>0.00165</td>
</tr>
<tr>
<td></td>
<td>(0.00780)</td>
<td>(0.00437)</td>
<td>(0.00373)</td>
<td>(0.00531)</td>
<td>(0.00412)</td>
</tr>
<tr>
<td>joint sig ls (pvalue)</td>
<td>0.0224</td>
<td>0.0641</td>
<td>0.0761</td>
<td>0.382</td>
<td>0.677</td>
</tr>
</tbody>
</table>
Additional specifications:

- Test identifying assumption by doing an event study analysis
 \[\implies\] need to show that leads are jointly insignificant
Additional specifications:

- Test identifying assumption by doing an event study analysis
 ⇒ need to show that leads are jointly insignificant

- Adaptation regressions:
 - Include measure for shocks within past five to ten years
 - Include measure for shock to neighboring district
Additional specifications:

- Test identifying assumption by doing an event study analysis → need to show that leads are jointly insignificant

- Adaptation regressions:
 - Include measure for shocks w/in past five-ten years
 - Include measure for shock to neighboring district

- Differential effect: interact cyclone variables with
 - Distance to sea
 - State-level characteristics:
 - Income
 - Financial Development
 - Government responsiveness
Additional datasets:

- Use district-level growing schedules to improve on Kharif vs. Rabi classification
Additional datasets:

- Use district-level growing schedules to improve on Kharif vs. Rabi classification
- Analysis of consumption & employment data
 - Advantage: complements above analysis of the income channel

- Analysis of the manufacturing sector
 - Test “creative destruction” (Gilchrist & Williams 2004) vs. “large temporary shock” hypothesis (Davis & Weinstein 2002, Miguel & Roland 2006)
 - Construct a measure of productivity (following Olley & Pakes 1996 & Pavcnik 2002)
 - Two possible datasets:
 - PROWESS dataset (1989-2003): only medium & large ﬁrms
Additional datasets:

- Use district-level growing schedules to improve on Kharif vs. Rabi classification.
- Analysis of consumption & employment data
 - Advantage: complements above analysis of the income channel.
- Analysis of the manufacturing sector
 - Test "creative destruction" (Gilchrist & Williams 2004) vs. "large temporary shock" hypothesis (Davis & Weinstein 2002, Miguel & Roland 2006).
 - Construct a measure of productivity (following Olley & Pakes 1996 & Pavcnik 2002).
 - Two possible datasets:
Summary

- This paper uses a new digital dataset of cyclone tracks to estimate the direct cost of natural disasters on the primary sector in India at the district level.
Summary

- This paper uses a new digital dataset of cyclone tracks to estimate the direct cost of natural disasters on the primary sector in India at the district level.

- Preliminary findings suggest that:
 - The elasticity of total revenue to cyclone shocks is -0.128.
 - For a median level of destruction of 49% total revenue drops by 7.6% (Note that these numbers are lower bound estimates).
Summary

- This paper uses a new digital dataset of cyclone tracks to estimate the direct cost of natural disasters on the primary sector in India at the district level.

- Preliminary findings suggest that:
 - The elasticity of total revenue to cyclone shocks is -0.128.
 - For a median level of destruction of 49% total revenue drops by 7.6% (Note that these numbers are lower bound estimates).
 - This effect does not persist over time.
 - However, the capital stock remains significantly lower even 5 years after the shock suggesting the presence of liquidity constraints.
Summary

- This paper uses a new digital dataset of cyclone tracks to estimate the direct cost of natural disasters on the primary sector in India at the district level.

- Preliminary findings suggest that:
 - The elasticity of total revenue to cyclone shocks is -0.128.
 - For a median level of destruction of 49% total revenue drops by 7.6% (Note that these numbers are lower bound estimates).
 - This effect does not persist over time.
 - However, the capital stock remains significantly lower even 5 years after the shock suggesting the presence of liquidity constraints.
 - There is some income smoothing/risk diversification across crop types.