Variation of the parasite causing visceral leishmaniasis in East Africa

Prof. Asrat Hailu
Addis Ababa University, Ethiopia
Ecotypes of VL

1. *P. orientalis*, Acacia-Balanites woodland, black-cotton soil
 [Eastern Sudan, Northern, and North Eastern Ethiopia]

2. *P. martini/celiae*, eroded termite hills
 [South & SE Ethiopia, Kenya, Uganda, SE Sudan]

Map: Courtesy of HealthNet Intl, 2003
What we know, and don’t know

1. Disease phenotype
2. Response to PM treatment
3. Genetic diversity
4. *In vitro* drug susceptibility
5. Relationship between 3 and 4
VL in East Africa:
Clinical presentation and diagnosis

<table>
<thead>
<tr>
<th></th>
<th>Sudan</th>
<th>N-Eth</th>
<th>S-Eth</th>
<th>India</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymphadenopathy</td>
<td>72-86%</td>
<td><20%</td>
<td><15%</td>
<td>Low</td>
</tr>
<tr>
<td>PKDL</td>
<td>> 50%</td>
<td><5%</td>
<td><5%</td>
<td><1%</td>
</tr>
</tbody>
</table>
Response to paromomycin treatment (East Africa & India)

Response to PM is variable between trial sites in Africa:
+ efficacy ranges of low – 96%

Efficacy is much lower in Sudan cf. India:
+ low cf. 93%
Hypothesis

East African visceral leishmaniasis is caused by geographically (and genetically) isolated populations of *Leishmania donovani*
Objectives

✓ To describe the genomic polymorphisms
✓ To determine if genotypic variations segregate by geographical location
✓ To describe if genotypic variation correlates with drug sensitivity / resistance (planned)
Species and zymodemes within *Leishmania donovani* complex

<table>
<thead>
<tr>
<th>Species</th>
<th>Zymodemes</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. infantum</td>
<td>MON1, etc., MON-30, MON-81, MON-267, MON-278</td>
</tr>
<tr>
<td>L. archibaldi</td>
<td>MON-82, MON-257, MON-258</td>
</tr>
<tr>
<td>L. donovani</td>
<td>MON-18, MON-2, MON-32, MON-36, MON-37, MON-38, MON-274, MON-276, MON-277</td>
</tr>
</tbody>
</table>

Both spp., not found in South Ethiopia and Kenya
Phylogeny, parsimonious cladogram, based on MLEE

Pratlong et al., 2001

L. infantum complex

L. archibaldi complex

L. donovani complex

L. tropica complex

L. killicki complex

OTU from Sudan
Species of *L. donovani* complex

Recommendations, based on molecular tools:

- Only two species: "*L. archibaldi* is non-existent"
 - *L. infantum*
 - *L. donovani*

- *Leishmania donovani* is the only cause of VL in East Africa;

 "previous descriptions of *L. infantum* and *L. archibaldi* from this region are a consequence of convergent evolution in the isoenzyme data" [Jamjoom et al. *Parasitology*. 2004; 129, 399 – 409]
Targetted molecular markers

- **ITS-1** (Internal Transcribed Spacer) sequences
- **MER** (Mini Exon Repeats)
- **LEG** (T_2B_4)
- **CpbEF** (Cysteine proteinase b)
Molecular markers analyzed

<table>
<thead>
<tr>
<th>Methods</th>
<th>S</th>
<th>Markers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR</td>
<td>1</td>
<td>CpbEF</td>
</tr>
<tr>
<td>PCR-RFLP</td>
<td>2</td>
<td>MER (Eae I)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>MER (Nco I)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>MER (Hae III)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>LEG (Hae III)</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>ITS-1 (Hae III)</td>
</tr>
<tr>
<td>Analysis of sequences (PCR products)</td>
<td>7</td>
<td>MER</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>LEG</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>ITS-1</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>CpbEF</td>
</tr>
</tbody>
</table>
PCR amplifications (N=111)

- Majority of samples collected during LEAP0104 study
- n = 53 Sudan; n = 58 Ethiopia

<table>
<thead>
<tr>
<th>Markers</th>
<th>Sudan</th>
<th>N. Ethiopia</th>
<th>S. Ethiopia</th>
</tr>
</thead>
<tbody>
<tr>
<td>MER</td>
<td>53/53</td>
<td>30/30</td>
<td>24/26</td>
</tr>
<tr>
<td>ITS-1</td>
<td>41/53</td>
<td>32/32</td>
<td>24/26</td>
</tr>
<tr>
<td>LEG</td>
<td>49/53</td>
<td>32/32</td>
<td>24/26</td>
</tr>
<tr>
<td>CpbEF</td>
<td>45/53</td>
<td>32/32</td>
<td>26/26</td>
</tr>
</tbody>
</table>
Study areas
ITS-1

PCR, PCR-RFLP:

PCR: (320 bp); 1.0% agarose gel electrophoresis

Primers:
- L5.8S = 5’-TGATACCACTTATCGCACTT-3’
- LITSR = 5’-CTGGATCATTTTCCGATG-3’

RFLP: Hae III restriction; PAGE, 10% acrylamide
ITS RFLP

Marker L. donovani L. aethiopica L. tropica L. infantum L. major

[Image of gel electrophoresis showing bands for each species]

[Map indicating regions such as Sudan and Ethiopia]
ITS sequence types

- 8x A
- 5x TA
- 7x A
- 6x TA
- 8x A
- 5x TA
- 7x A
- CC 6x A
- TC 6x TA
- 6x A

Map indicating countries:
- SUDAN
- ERITREA
- ETHIOPIA
PCR, PCR-RFLP:

PCR: (378-435 bp); 1.0% agarose gel electrophoresis

Primers: Fme2 = 5’-ACTTATTGGTATGCGAAACTTCCGG-3’
 Rme2 = 5’-ACAGAAACTGATACTTATATAGCGTTAG-3’

RFLP: Eae I, Nco I, Hae III (L. tropica, L. major)
 PAGE, 10% acrylamide
MER sequence types

- L. donovani
- L. donovani small gene variant
- L. major seq.
MER sequence types

L. donovani seq type A
- L. donovani seq type C
- L. donovani seq type B
- L. d Kenya small gene
- L. infantum France
- L. infantum Ibiza
- L. infantum Morocco
- L. infantum Malta
- L. infantum Italy
- L. major USSR 5ASKH

L. infantum small gene variant
- L. infantum large gene variant
LEG (T$_2$B$_4$)

PCR, PCR-RFLP:

PCR: (250 bp); 1.0% agarose gel electrophoresis

Primer T2: 5’-CGGCTTTCGCACCATGCGGTG-3’

Primer B4: 5’-ACATCCTGCCCACATACGC-3’

RFLP: Hae III restriction; PAGE, 10% acrylamide

L. dn = 2 bands: 180, 70 bp

L. in = 1 band: 250 bp

\(// = 3\) bands: 250, 180, 70 bp
LEG RFLP

L. donovani
L. aethiopica
L. tropica
L. infantum
L. major

Map showing prevalence in Sudan, Ethiopia, and Eritrea.
LEG sequence types
PCR:

CpbE (702); CpbF (741)
1.0 - 2.0% agarose gel electrophoresis

Primers:
Forward= 5’-CGTGACGCCGGTGGAAGAAT-3’
Reverse= 5’-CGTGCACTCGGCCGTCTT-3’

CpbE = L. infantum

CpbF = L. donovani/archibaldi
CpbEF sequence types

- L. donovani
- L. infantum

39 bp deletion
Summary, multi-locus analysis

<table>
<thead>
<tr>
<th>Seq. types</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-Sudan</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>N-Eth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-Eth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Seq. types</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-Sudan</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>N-Eth</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-Eth</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary, multi-locus analysis

<table>
<thead>
<tr>
<th>Seq. types</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-Sudan</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-Eth</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S-Eth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Seq. types</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>31</th>
<th>32</th>
<th>33</th>
<th>34</th>
<th>35</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-Sudan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>N-Eth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>S-Eth</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary, multi-locus analysis

<table>
<thead>
<tr>
<th>Seq. types</th>
<th>37</th>
<th>38</th>
<th>39</th>
<th>40</th>
<th>41</th>
<th>42</th>
<th>43</th>
<th>44</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-Sudan</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>N-Eth</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-Eth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Seq. types</th>
<th>46</th>
<th>47</th>
<th>48</th>
<th>49</th>
<th>50</th>
<th>51</th>
<th>52</th>
<th>53</th>
<th>54</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-Sudan</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>N-Eth</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-Eth</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary, multi-locus analysis

<table>
<thead>
<tr>
<th>Seq. types</th>
<th>55</th>
<th>56</th>
<th>57</th>
<th>58</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-Sudan</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>N-Eth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-Eth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Genotypes: Multi locus analysis

P. martini/celiae

P. orientalis

SUDAN

ERITREA

ETHIOPIA
Summary: main genotypes

<table>
<thead>
<tr>
<th></th>
<th>G-I</th>
<th>G-II</th>
<th>G-III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sudan</td>
<td>19</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>North Ethiopia</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Ethiopia</td>
<td></td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

- 2 major genotypes in E/Sudan
- 1 major genotype in N/Ethiopia
- 1 genotype in S/Ethiopia
Summary - Phase I study

Multi-locus analysis

- Genetic heterogeneity in Eastern Sudan & North Ethiopia
- Greater heterogeneity among isolates of Eastern Sudan
- *L. major* sequences within Sudanese *L. donovani* isolates
- Genetic homogeneity in southern Ethiopia
Evidences for distinct genotypes in Africa

Evidences from MLEE

African (Sub-saharan) *L. infantum* zymodemes
 = Not found in Mediterranean VL
 = Not found in S-Ethiopia, Kenya

Mediterranean *L. infantum* zymodemes
 = Not found in Sub-sahara Africa

African (Sub-saharan) *L. archibaldi* zymodemes
 = Not found in S-Ethiopia, Kenya
Evidences for distinct genotypes in Africa

Evidences from molecular tools

- **Oskam et al., 1998** - Restriction analysis and southern blotting
 - Microsatellites

- **Zemanova E. et al. 2004** - RAPD

- **Kuhls K. et al. 2007** - Microsatellite markers

- **Lukes J et al., 2007** - Multi-factorial (RAPD, RFLPs, Microsatellites, DNA Sequences)
Phylogenetic relationships, *L. donovani* complex

Sudan vs. Kenya vs. India

- gp63 intergenic region RFLP
 Mauricio IL et al., 2001

- mitochondrial cytochrome oxidase II gene sequences
 Ibrahim ME et al., 2001

- SCAR analysis
 Lewin S et al., 2002
Ecotypes of VL

1. *P. orientalis*, Acacia-Balanites woodland, black-cotton soil
 [Eastern Sudan, Northern, and North Eastern Ethiopia]

2. *P. martini/celiae*, eroded termite hills
 [South & SE Ethiopia, Kenya, Uganda, SE Sudan]

Map: Courtesy of HealthNet Intl, 2003
Parasitology: next steps

Methods:
- *In vitro* drug sensitivity testing (DST)
- Further genotypic characterization

- ✔ 230 isolates of *Leishmania donovani complex* from VL patients

 230 isolates:
 - E/Sudan (n= 75)
 - N/Ethiopia (n= 40)
 - S/Ethiopia (n= 55)
 - Kenya (n= 30)
 - Uganda (n= 30)

- ✔ Infection of peritoneal macrophages, CD1 mice
- ✔ IC$_{50}$ values: PM, AmBisome®, miltefosine, SSG
- ✔ Microscopy, Alamar blue (optional)
Acknowledgements

• Trial sites
 – Ethiopia: Arba Minch, Gondar
 – Sudan: Kassab

• University of Amsterdam
 – Dr. Aldert Bart

• Cooperating institutions
 – IEND, AAU

• Funding
 – DNDi
Thank you