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Abstract

Using new and unique panel data, we investigate the role of long-term health and child-
hood malnutrition in schooling outcomes for children in rural India, many of whom lack
basic numeracy and literacy skills. Using data on students’ performance on mathematics
and Hindi tests, we examine the role of the endogeneity of health caused by omitted vari-
ables bias and measurement error and correct for these problems using a household fixed
effects estimator on a sub-sample of siblings observed in the data. We also present several
extensions and robustness checks using instrumental variables and alternative estimators.
We find evidence of a positive causal effect of long-term health measured as height-for-age
z-score (HAZ) on test scores, and the results are consistent across several different specifica-
tions. The results imply that improving childhood nutrition will have benefits that extend
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1 Introduction

India certainly has good reason to be concerned about education. Although India is somewhat

comparable to its neighbours Bangladesh and Pakistan, it lags far behind China and other

developing countries in Asia and South America (UNESCO, 2006). Despite progress in terms

of primary school enrollment, attendance and retention rates are low, achievement levels are

unimpressive, and teacher absenteeism is high (Kingdon, 2007; Kremer, Chaudhury, Rogers,

Muralidharan, & Hammer, 2005). The 2007 Annual Status of Education Report (ASER) shows

some alarming statistics for rural Indian children: “Nearly 40% of children at class 5 level cannot

read a class 2 text, while around 60% at that level are unable to carry out simple divisions.

What should be more worrying though, is the fact that in class 2, only 9% of children can read

the text appropriate to them, and 60% cannot even recognize numbers between 10 and 99”

(Pratham, 2008).

While there is much research seeking to discover the determinants of student outcomes, this

has focused mostly on factors thought to be most amenable to policy influence, namely school

and teacher factors (see Glewwe (2002) and ? (?) for a review). However, child and home

background factors are much more versatile indicators of the child’s circumstances and may be

the more important factors behind children’s educational outcomes.

In this paper, we focus on health as a determinant of primary school outcomes. Health is

in general an under-studied component of educational outcomes, particularly in developing

countries. However, there is good reason to believe that health, and specifically malnutrition,

is a key part of child development. Indeed, research has found that malnutrition in the early

years of life may cause later deficiencies in cognitive development. There is some disagreement

as to whether the effects of malnutrition on cognitive development are most acute when the

child is a baby (0-6 months, as Dobbing (1976) argues) or a toddler (6-36 months), but there

seems to be a consensus that the first two years are very important (Waber et al., 1981; Pollitt,

Gorman, Engle, Rivera, & Martorell, 1995; Martorell, 1995; Glewwe & King, 2001). In the
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long run, if unhealthy children do poorly in school, and low schooling attainment compromises

labour market performance, then malnutrition in childhood can undermine labour outcomes in

adulthood (Deaton, 2008)—this effect will be compounded if unhealthy children are more likely

to become unhealthy, uneducated adults.

As with education, Indian children also suffer from below average health. Even though India

experienced improvements in overall nutrition in the 1990s, the advances in anthropometric

measures are “slow relative to what might be expected. . . in light of India’s recent high rates

of economic growth” (Deaton & Drèze, 2008, p.1). Statistics from the 2005-06 wave of the

National Family Health Survey also show only slow improvements in childhood malnutrition:

from 1998-99 to 2005-06, the proportion of undernourished (based on weight-for-age) children

was essentially unchanged (47% to 46%), and the percentage of stunted (based on height-for-

age) only declined about 1 percentage point per year from 45% to 38% (Citizens Initiative for

the Rights of Children Under Six, 2006).1 This is especially true for girls, and for children in

rural areas (Tarozzi & Mahajan, 2007; Tarozzi, 2008). Compared to Western standards, India

still has a long way to go (see Table 1).

Following on from the research by nutritionists, it then becomes important to find out how nu-

trition and health later affect academic outcomes once children enter school. And in developing

countries like India, where child malnutrition is common, understanding the impact of health

on schooling is of even greater importance and urgency.

One might expect intuitively that unhealthy children do worse in school on average, for sev-

eral reasons: their cognitive development has been compromised, they are more likely to be

absent from school, they have less time or energy to finish homework, they have problems con-

centrating, etc. On the other hand, sickly children may do less outside work or play, staying

home and studying more than their healthier counterparts—this effect might be less prevalent

than the first but nonetheless plausible. Previous research that has investigated the role of
1The FOCUS report (Citizens Initiative for the Rights of Children Under Six, 2006) does not state if these

differences are statistically significant.
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Table 1: UNICEF Nutrition Statistics, 2000-2006
India China Bangladesh Pakistan Vietnam US

Infants with low birthweighta 30% 2% 22% 19% 7% 8%
Children exclusively breastfed (< 6 mos)a 46 51 37 16 17 –
Children breastfed with solid food (6-9 mos)a 56 32 52 31 7 –
Under-5s underweight, moderate & severe 43 7 48 38 25 2
Under-5s underweight, severe 16 – 13 13 3 0
Under-5s wasting, moderate & severe 20 – 13 13 7 0
Under-5s stunting, moderate & severe 48 11 43 37 30 1

Source: UNICEF, http://www.unicef.org/infobycountry, accessed 6 November 2008.
a: Figures for 1999-2006.
Definitions: Low birthweight - Less than 2,500 grams. Underweight - Moderate and severe - below -2 standard deviations from median weight
for age of reference population; severe - below -3 standard deviations from median weight for age of reference population. Wasting - Moderate
and severe - below -2 standard deviations from median weight for height of reference population. Stunting - Moderate and severe - below -2
standard deviations from median height for age of reference population.

health in academic performance has struggled to find convincing evidence of a direct, causal

link between health and school achievement.2 This is in part because much of the research to

date has relied almost exclusively on cross-sectional data, and in part because most surveys

lack comprehensive information on both the student’s background and his/her school (see, e.g.

Gomes-Neto, Hanushek, Leite, and Frota-Bezzera (1997)). Both of these factors mean that

endogeneity caused by unobserved omitted variables is a real concern that has not always been

adequately addressed.

The question of causality is therefore still open-ended, although there has been some good

progress in the last decade or so. Not only has there been some experimentation (for instance

Bobonis, Miguel, and Puri-Sharma (2006); Miguel and Kremer (2004); Tan, Lane, and Lassibille

(1999); Pollitt et al. (1995); Martorell (1995)), but the approaches using nonexperimental data

have also improved. Beginning with Glewwe and Jacoby (1995), there has been a clear focus

in the literature on using fixed effects and instrumental variables (IV) to tease out the causal

relationship between long-term health (measured as height-for-age) and educational outcomes.

Using cross-sectional data from Ghana, Glewwe and Jacoby (1995) instrument for height-for-

age (HAZ) using community health variables, school characteristics, and parental and household

characteristics in a model of school enrollment. They find that child malnutrition is a significant

determinant of delayed enrollment and explains the delay more than other possible factors.

Also using Ghanaian data, Behrman and Lavy (1997) examine the effect of HAZ on cognitive
2Because height-for-age (HAZ) is one of the best indicators of long-run nutritional status (Glewwe & King,

2001), we use long-term health, HAZ and nutrition as roughly interchangeable concepts.
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achievement tests, focusing on the possible biases induced by omitted variables and measurement

error. They note that the direction of the bias is unknown a priori and then compare IV results

with community and family fixed effects to see what we can learn about the unobserved variables.

They conclude that using family and community level instruments imply a downward bias to

the OLS results, but that the family and community fixed effects suggest an upward bias. Their

preferred estimates are the fixed effects results, as they claim that the assumption that there

are no unobserved educational inputs in the error term biases the results upwards even if one

has a valid instrument. They conclude that child health does not affect cognitive achievement.

A recent working paper by Wisniewski (2009) uses price and weather shocks as instruments and

does find that both nutritional status and other health problems like intestinal worms have a

significant impact on tests scores in the OLS, IV and school fixed effects results.

Longitudinal data have been in general scarce, but there are a few important exceptions.

Glewwe, Jacoby, and King (2001) use a siblings fixed effects approach with Filipino data. They

difference HAZ across siblings, and then instrument this difference with an earlier observation

of sibling height. Their results show a huge downward bias in the OLS—the 2SLS coefficient

on HAZ is about 30 times the OLS coefficient—which they attribute mostly to measurement

error. The authors argue that better nourished children perform better in school because of

both early enrollment and better productivity once enrolled. Another recent study is Alderman,

Behrman, Lavy, and Menon (2001), which uses panel data of children in rural Pakistan. Based

on a structural model (that differs from the one used in this paper), the authors argue that

food prices in previous periods are valid instruments for child health in those periods. They

find that better health raises the probability of enrollment in school at age 7. Glewwe (2005)

points out that Alderman et al. (2001) may overestimate these health effects because past food

prices could affect savings for education in those periods, which would then violate the re-

quired assumption that the instruments have no effect on schooling other than an indirect effect

through past health. Finally, Alderman, Hoddinott, and Kinsey (2006) use a maternal fixed ef-

fects (essentially a siblngs fixed effects as in Glewwe et al. (2001)) estimation with Zimbabwean
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longitudinal data to measure the long-term effects of malnutrition. With war and drought as

instruments for early childhood HAZ, they find that higher HAZ at pre-school age increases

height as a young adult, raises completed years of schooling, and lowers the age of enrollment.

Though their instruments are potentially weak and their sample size is small, their results are

nonetheless compelling.

This paper improves on existing research by using new panel data from rural India, which allow

us to investigate the role of child health and nutrition in academic achievement as measured by

test scores. These unique data permit several levels of fixed effects analysis, including child fixed

effects. We believe that we are able to identify the causal impact of early childhood nutrition

and health, as measured by HAZ, on educational outcomes.

In the next section we discuss a theoretical and empirical model linking nutrition and academic

tests scores, and Section 3 explains the data in more detail. Empirical results are presented in

Section 4, in which we pare down the sample to analyze siblings and introduce household fixed

effects. Robustness checks, including instrumental variables analyses and fixed effects at the

child level, are presented in Section 5. A final section concludes.

2 Theoretical model

There are different ways to model childhood nutrition and schooling production, and the method

selected will have implications for our estimation strategy, and in particular, our instrument set.

We adopt here a simple framework developed by and attributable to Glewwe and Miguel (2008)

that relates child health and nutrition to academic outcomes. We will first develop a structural

production function, and then derive conditional demand functions that we then estimate with

our data.

The first assumption underpinning the model is that there are two time periods: (1) birth to

6 years when the child enters school; and (2) school age, from about age 6 to puberty. These

periods mirror the findings of nutritionists, who focus on period 1 (specifically birth to 24
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months) for cognitive development. With these periods defined, we can write down a structural

production function for schooling outcomes—in this case test scores (T2)—observed in period

2:

T2 = T2,P (H1, H2, PEI1, PEI2, S2, α, Q, Y S2) (1)

where the subscript “P” indicates that this is a production function. Ht measures nutritional

health from t − 1 to t, PEIt is parental education inputs in period t (such as time inputs and

school supplies), S2 is any individual shock to schooling performance experienced in period 2

(such as temporary illness3 or absences from school), α denotes the child’s innate schooling

ability, Q is school and teacher characteristics and quality (assumed to be time invariant), and

Y S3 is years of schooling completed by period 2 (which is highly dependent on the child’s age).

This production function is modified from Glewwe and Miguel (2008) to include contemporary

shocks in period 2 that could affect test performance.

Parents maximize a utility function:

U = U(H1, H2, C1, C2, T2) (2)

where Ct is parental consumption of an aggregate consumption good in period t. There are four

constraints in the parents’ optimization problem. The first constraint is the production function

in Equation 1. Two other constraints are the production functions for child health:

H1 = H1(Cc
1, M1, HE1, η) (3)

H2 = H2(Cc
1, C

c
2, M2, HE2, η) (4)

where Cc
1 is the child’s consumption of the aggregate consumption good in period t; Mt is health

care inputs in period t; HEt is the local health environment, e.g. water and sanitation quality,

in period t; and η is the innate healthiness of the child. HEt and η are considered exogenous

to the parents’ control. The final constraint is an intertemporal budget constraint:

W0 = pC,1(C1 + Cc
1) +

pC,2(C2 + Cc
2)

(1 + r)
+ pM,1M1 + pPEIPEI1 +

pM,2M2 + pPEIPEI2 + pSY S2

1 + r

(5)
3Temporary illness would not be captured in the HAZ variable H2, as this is a long-term measure of health.
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W0 is initial wealth, and r is the interest rate. p.,t are the prices of the various types of goods

in period t, but pPEI is assumed to be constant over the two periods, and pS is the price of

schooling in period 2.

Optimizing Equation 2 with respect to Equations 1, 3, 4 and 5 yields the following demand

functions:

Ct = Ct,D(W0; r, pC,1, pC,2, pM,1, pM,2, pPEI , pS ;

HE1, HE2, Q,ME, FE; α, η, σ, τ) t = 1, 2 (6)

Cc
t = Cc

t,D(W0; r, pC,1, pC,2, pM,1, pM,2, pPEI , pS ;

HE1, HE2, Q,ME, FE; α, η, σ, τ) t = 1, 2 (7)

Mt = Mt,D(W0; r, pC,1, pC,2, pM,1, pM,2, pPEI , pS ;

HE1, HE2, Q,ME, FE; α, η, σ, τ) t = 1, 2 (8)

PEIt = PEIt,D(W0; r, pC,1, pC,2, pM,1, pM,2, pPEI , pS ;

HE1, HE2, Q,ME, FE; α, η, σ, τ) t = 1, 2 (9)

Y S = Y S(W0; r, pC,1, pC,2, pM,1, pM,2, pPEI , pS ;

HE1, HE2, Q,ME, FE; α, η, σ, τ) t = 1, 2 (10)

where the subscript “D” indicates that these are demand functions. ME and FE are mother’s

and father’s education, respectively; σ is parental tastes for schooling, and τ is parental tastes

for child health.

We can then construct a conditional demand equation for academic achievement. To do so,

we first assume that given the utility maximizing levels of Cc
1, Cc

2, M1 and M2, which yields

conditional demand equations for parental inputs and years of schooling:

PEIt = PEIt,D(H1, H2; WCD, ω) t = 1, 2

Y S = Y S(H1, H2; WCD, ω) (11)

where WCD is the household’s non-health expenditures and equals W0 − pC,1C
c
1 − pM,1M1 −

(pC,2C
c
2 − pM,2M2)/(1 + r) and ω is the vector (r, pC,1, pC,2, pPEI , pS ; Q, ME, FE; η, σ, τ). One

8



can then substitute these conditional demand functions into the production function in Equation

1, yielding:

T2 = T2,CD(H1, H2; S2, WCD, ω, α) (12)

This is a conditional demand function because it is not a structural equation like Equation 1,

but it is not a reduced form because H2 is endogenous (Glewwe & Miguel, 2008). Note that

H1 is predetermined at the start of period 2, as parents make their decisions at the start if the

period. This equation shows the net effect of H2, i.e. both the direct effect and the indirect

effect(s) of H2 on T2. Indirect effects are those such as a change in parental inputs or years of

schooling as a result of a change in health. In other words, this equation can show how small

changes in H1 or H2 can affect T2, allowing for parents to alter their input choices in response

to these changes. Since we are not prepared to make a strong separability assumption, we do

not presume that the effect of H2 in Equations 1 and 12 are the same; however, we do believe

that it is worth estimating the conditional demand function to find out the relationship between

health and academic achievement. Moreover, the estimation is useful to policymakers, who can

themselves change the price of schooling, the price of health inputs, and the health environment

through policy efforts. A priori, the signs of H1 and H2 in Equation 12 should be positive

(Glewwe & Miguel, 2008).

2.1 Causality

The causal effects of H1 and H2 in Equation 12, however, are not easy to estimate. A central

issue is that some of the variation in anthropometric indicators is perfectly natural (some

children are naturally tall, others are short) and has nothing to do with their nutritional intake,

and likewise should not affect their test scores. In addition, measurement error is a confounding

issue. Another problem is endogeneity caused by the fact that decisions about schooling, health

and nutrition are not randomly determined but are rather based at least to some extent on

household decisions (Behrman, 1996). Thus associations that are commonly observed between

health and schooling may not in fact reflect true causality, resulting in omitted variable bias

9



Table 2: Variables Influencing Cognitive Achievement
Variables Observed Unobserved
Individual Anthropometric indicators Innate ability

Gender Motivation
Age Genetic Endowment
Illness Capacity to concentrate
Attendance & enrollment

Family Parental education Household intellectual atmosphere
Parental occupation Parental time and involvement in child’s development
Assets Income

Nutritional inputs (food, vitamins, etc.)
Parental preferences for child health

Community Availability of health services General intellectual atmosphere
Prevalence of disease Water quality and sanitation
Education resources Local labour market conditions

School Facilities Effectiveness of school management
Public/private

Teacher Qualifications/certifications Innate teaching ability
Experience Teacher effort

Source: Author’s interpretation of the School-Tells data. This table is inspired by Table 1 in Behrman (1996, p.25).

with the OLS results. Table 2 has a list of many variables observed and unobserved in the data;

though it is not an exhaustive list (see Table 13 in Appendix B for all of the variables used), it

does give a good sense of the scope of the data.

An example of an omitted variable that could cause bias is an unobservable parental characteris-

tic (such as “good parenting skills”) that is positively correlated with both health and education

that creates the appearance of a positive causal effect that is in fact a simple upward bias in

the OLS. On the other hand, there may be a downward bias if healthy children are actually

more likely to spend time doing things other than schoolwork because the returns to education

are sufficiently low in their community. Moreover, measurement error is likely to be a problem

in any dataset with anthropometric measurements of children, especially those collected in the

field. In addition, measuring age accurately in a setting such as rural India is problematic.4

Furthermore, classical measurement error causes attenuation bias and an underestimate of the

effect of health. In sum, the overall sign of the bias is ambiguous. These endogeneity concerns

are particularly acute, even if we have a very comprehensive set of information on households

and schools.
4We did make a concerted effort to ‘clean’ our height and age data as much as possible to avoid egregious

measurement errors (see Section A.1).
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In this paper, we focus primarily on the relationship between children’s health H1 and their

test scores. We do not have a perfect measure of H1 in the data, since the children are observed

twice at school age, i.e. twice during period 2. However, we argue here that HAZ is a reasonably

good indicator of health status achieved by the end of period 1, H1, because it is mostly the

product of the nutritional inputs a child has experienced during the first period. By the same

reasoning, HAZ is not a good measure of H2. Indeed, HAZ does not reflect short-run changes

to health in period 2 because it does not fluctuate as a short-term measure should. In fact,

Tanner, Healy, Lockhart, MacKenzie, and Whitehouse (1956) find that the correlation between

height at 2 years of age and adult height is on the order of 0.7 to 0.8, depending on gender; this

implies that children’s height at older ages, especially before puberty, mostly reflects nutritional

and medical inputs experienced when very young and not current inputs. Therefore, though

measured with error, we contend that height-for-age observed in our dataset is a reasonable

measure of H1.5

Following Glewwe et al. (2001) and citing the nutritional literature, we then make the strong

assumption that the effect of H2 is negligible in Equations 1 and 12 (this assumption is later

relaxed in Section 5). That is, the strongest effects of child health on schooling outcomes come

early in period 1, in the first two years of life (Waber et al., 1981; Pollitt et al., 1995; Martorell,

1995; Glewwe & King, 2001). As such, HAZ contains the most information about malnutrition

experienced in early childhood—which is the most important for cognitive development, and, by

extension, for schooling performance. A history of chronic malnutrition prevalent in developing

countries, and especially in rural India, will also show up most readily in long-term as opposed

to short-term health.6

Assuming a linear form for Equation 12, we can expand the model:

T2 = β0 + β1H1 + β2S2 + β3WCD + β4r + β5pC,1 + β6pC,2 + β7pPEI + β8pS + β9Q +

5An important limitation of this approach and of our data is that we are not able to examine the effect of
malnutrition at different points in childhood, as do Glewwe and King (2001).

6Some research has been done on academic achievement and obesity in developed countries (Kaestner &
Grossman, 2008; Averett & Stifel, 2007; Sabia, 2007; Datar & Sturm, 2006). Obesity is uncommon among rural
Indian children and is therefore not explored in this paper.
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β10ME + β11FE + β12η + β13σ + β14τ + β15α (13)

Building further on Equation 13, we can begin to address the endogeneity issues discussed

above. After presenting simple OLS results for the full sample for completeness, we narrow

down our sample to a sample of siblings and conduct family fixed effects on this sub-sample.

This approach is helpful because the unobserved variables that are constant at the level of the

household will be differenced out in a household fixed effects analysis of a sub-sample of siblings.

For example, to the extent that parental tastes for their children’s health τ is constant across

their children, such tastes will be removed by the differencing. The household fixed effects

significantly cuts down on the sources of potential biases. Unfortunately, the sample was not

collected as a sample of siblings; rather, the sub-sample of siblings is comprised of brothers

and sisters that we just happen to choose as part of the greater sampling process. This means

that the inference with the siblings sub-sample may be weaker due to the smaller size of the

sample.

As a further robustness check, we pursue an instrumental variables strategy to address remaining

endogeneity problems with HAZ. It is difficult to find a valid instrument for H1, as it must be

correlated with H1 but not with the unobserved variables and measurement errors. In addition,

within a siblings-only framework, it must vary across siblings within the household. Possible

candidates are period 1 health prices. However, one can criticize the period 1 instruments for

being unlikely to change and therefore related to health and prices in period 2. If true, then

these period 1 health prices may be invalid, given the specification in Equation 12.

An additional alternative, and one that is more likely to be available, is to use an exogenous

shock that affected H1 but is unrelated to period 2 academic performance. One such instrument

is weather data (Wisniewski, 2009). Although flood data are not available for India, rainfall

data are available for the period 1990-2002 at the district level. Therefore we use rainfall data

from the child’s birth year, year one and year two of life to instrument for H1, as these should

correspond to the years that matter most for cognitive development. However, it is important
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to keep in mind that weather data are likely to provide only weak instruments, and the IV

results are thus presented as a robustness check for the household fixed effects. Furthermore,

if weather shocks in period 1 affected food prices in period 1, and we do not control for initial

wealth excluding spending on health inputs in period 1 (which we cannot do because we do not

observe period 1 spending), then rainfall may violate the exclusion restriction that it only affect

T2 through H1 and not through any other unobserved variable (Glewwe & Miguel, 2008).

A final robustness check that we undertake is to use fixed effects at the child level. This approach

should eliminate any child-level characteristics that remain constant, such as inherent ability,

therefore providing another avenue through which to bolster our results. However, child fixed

effects cannot eliminate all sources of endogeneity that vary over time. In addition, the type of

instruments that would be necessary for such a specification—ones that vary over time within

the same student—are really difficult to find and then justify.

3 Data

The School-Tells study was designed to learn about schools, teachers, and overall achievement

in some of the most educationally disadvantaged parts of rural India. We first ran a pilot

study in March 2007 in Bihar to vet the testing tools and the questionnaires. Building on

what we learned in the pilot, we then ran the full survey in the field from July 2007 to April

2008 (corresponding to the north Indian academic year). The survey was administered in 11

districts, five in Uttar Pradesh (UP) and six in Bihar (see Appendix Section A for more details

on sampling).7

The study consisted of several questionnaires designed to measure all aspects of the children’s

learning environment. Altogether, we collected information at the child, household, teacher,

school, and village levels. The enumerators visited the schools four times, at roughly equal

intervals, over the nine months of the school year 2007-08, and collected school level information
7Districts are: Agra, Bijnor, Lucknow, Mahoba, Shrawasti, Banka, Bhojpur, Gaya, Madhepura, Madhubani,

and Saran.
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during each of these visits. The testing of the children occurred in the first visit and the last

visit. Anthropometric data and short-term health measures were collected on the same day as

the test, at the start and at the end of the school year (nine months apart). Detailed household,

village and teacher questionnaires were also administered, but most of the information on these

was collected only on the first visit to each school.

3.1 Anthropometric indicators

Although health is a function of many things that can vary from child to child, particularly

genetics, anthropometric indicators are a good measure of overall physical development, as they

reflect diet and growth experienced in the child’s lifetime. To discover how “normal” a child’s

growth is, we can compare him/her to a “healthy” reference group (say, children from the United

States) (O’Donnell, Doorslaer, Wagstaff, & Lindelow, 2007). Thus all of the anthropometric

indicators are transformed into z-scores that map our Indian children to a reference population

of US children.8

Table 3: Anthropometric Statistics, Pooled Waves – All Children in Classes 2 and 4

Variable Mean Std. Dev. Min. Max. N
HAZ -1.27 1.37 -5.999 4.618 7,924
BAZ -1.50 1.05 -4.995 1.633 7,625
WAZ -1.85 1.27 -5.976 2.458 7,705
Source: Author’s calculations based on the pooled observations across both waves. Summary statistics reflect
cut-offs described in Section 3.1.

Following the existing literature, the main indicator that we focus on is height-for-age (HAZ),

which, for children, is a cumulative (linear) measure of lifetime nutritional and medical inputs.9

It is a long-term measure and cannot capture short-term fluctuations in malnutrition. Severely

low HAZ is referred to as “stunting.” In addition, we have data on BMI-for-age (BAZ), which is

a medium- to short-term indicator of malnourishment than HAZ, and weight-for-age (WAZ).10

In a developing country, HAZ can be as low as -6 and as high as 5. To put the scale of

HAZ into perspective, a 1 unit change in HAZ (i.e. 1 standard deviation of the reference
8We use the 2000 CDC growth charts. See Appendix A.1 for more details.
9A chronic illness that has as a side effect malnutrition can adversely affect child growth as well.

10Very low WAZ is considered “underweight.” WAZ is a composite measure of weight-for-height (WHZ) and
HAZ.
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Figure 1: Distribution of Anthropometric Indicators, Pooled Waves – All Children in Classes 2
and 4
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distribution) is about 6cm of raw height in our data. The average growth for the children

was 4.6cm over the nine months, one unit of HAZ is roughly equivalent to a year’s worth of

height gain. Summary statistics of the anthropometric indicators can be found in Table 3,

and their Kernel densities (empirical distributions) are graphed in Figure 1. They are roughly

normally distributed, though with a mean below zero because their health is below the reference

population’s, indicating that the children’s health is sub-par. The anthropometric indicators

required some cleaning, discussed in Appendix A.1.11

3.2 The tests

We crafted the tests with help from Pratham, an Indian NGO, which is also responsible for

designing the testing tools for the annual ASER survey of learning achievement levels. The tests
11Each anthropometric indicator for the reference population has a standard normal distribution with mean

zero and standard deviation of one. Our sample has distributions of HAZ, BAZ and WAZ that are shifted to the
left, i.e. the means are below zero.
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assessed the full range of academic ability: reading letters, words, sentences, and paragraphs;

writing letters, words, and sentences; recognizing 1- and 2-digit numbers; and solving numeric

and word math problems.12 Children in both classes 2 and 4 were given the same exact test, at

both the start and end of the school year. The test covered relevant material from the standard

class 2 and class 4 textbooks and matches very closely material in existing textbooks. The

test consisted of four sections: writing, reading, simple mathematics (including numeracy) and

advanced mathematics. None of the material was meant to be beyond a class 4 level. The

subject tests have a mathematics score out of 173 possible points and a Hindi score out of 241

possible points.

As the 2007 ASER report shows, many children in rural India struggle with the most basic

academic tasks. Although there are some who manage to thrive even in home and school

environments that are hardly conducive to learning, most children are not able to do work at

their grade level. Some children do achieve and even surpass the expected level; conversely

many others, despite attending school fairly regularly, do not learn to read or write. It is not

uncommon, especially in some states including Uttar Pradesh and Bihar, to find children who

do not possess any literacy and/or numeracy skills. Indeed, in several districts across these

two states, more than 40% of children in classes 1 and 2 cannot read letters of the alphabet

(Pratham, 2008).

The testing tools thus begin with very simple questions, such as identifying letters and numbers.

The questions increase in difficulty gradually until reaching a class 4 standard. Therefore, by

design, part of the test is too difficult for a class 2 student, and thus we expect the class 2 scores

to be automatically below the class 4 marks. Nonetheless both the Hindi and math tests do

have several questions that class 2 students should know how to answer, particularly the ones

that test recognition of letters and single digit numbers.
12The testing materials are available upon request.
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3.3 Dependent variable

To characterize the dependent variable for our analysis, we normalize the total score, setting the

mean to zero and the standard deviation to one. To do so, we pool the scores by subject across

both waves and normalize that distribution (we can do this because we administer the same

test in both time periods).13 This permits us to see how a child’s second test score changes

relative to his/her own performance on the previous test. The normalization also allows for

more direct comparability with the results of other studies that also normalize achievement test

scores.

3.4 The sample

We restrict the sample to children whom we observe twice and who are between 6 and 14 years

old, inclusive. With the combination of chaotic classroom assignments, multi-grade grouped

classes, and delayed enrollment in rural Indian schools, we felt that these were reasonable

cut-offs for children who should be in second and fourth grades.14 We drop children who are

missing HAZ measurements at two periods in time and focus on the panel individuals. We

include all children who meet these criteria, regardless of whether their scores went up or down

over time.15 This exercise results in a “pooled sample” of 3,921 children who are observed twice

with non-missing values for relevant variables. This sample is used only in Section 4.2. The

more important “sibling sub-sample”, used in subsequent sections of the paper, is comprised of

718 siblings in 356 households. Altogether, the sibling sub-sample contains 1,436 observations

(two per sibling).
13When conducting the analysis by class and by gender, we re-normalize the subject scores.
14For details on the age distribution in primary school grades, see Pratham (2009).
15There are a few children in the sample whose scores increased considerably—for example by 300 out of a

possible 414 points combined on Hindi and math. The number of paired observations with a swing of more than
100 points between tests (positive or negative) is about 9%. These are potentially mismatched children who were
assigned the wrong ID number in the second round. However, it is impossible to determine whether there is an
ID mistake or whether this is a true observation, and they are left in the sample. The results are not affected if
we drop these children from the estimation sample.
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4 Results

We begin our analysis by looking at the summary statistics. There is a pretty striking relation-

ship between HAZ and test scores that can be seen in the summary statistics. Table 4 shows

mean test scores for categories of anthropometric z-scores—recall that a one unit change in a z-

score is equivalent to one standard deviation of the reference distribution. Larger height-for-age

(HAZ) is clearly associated with higher test scores. In fact, there is an obvious upward trend

in scores as HAZ increases. Given our discussion about short-term and long-term measures of

nutrition and their effects on schooling performance in Section 3.1, it makes sense that BMI-

for-age is not so obviously related to test scores, while height-for-age appears to have a strong

statistical link to testing outcomes.

Table 4: Mean Test Scores and Nutrition, by Subject (Pooled Sample)

Mean Hindi Score Mean Math Score
All 54.35 57.51

HAZ < −3 30.57 30.96
−3 < HAZ < −2 46.68 47.48
−2 < HAZ < −1 54.69 58.12
−1 < HAZ < 0 63.96 67.45
0 < HAZ < 1 62.66 68.40
1 < HAZ < 2 64.73 72.62
HAZ > 2 66.30 76.18
BAZ < −3 54.55 56.82
−3 < BAZ < −2 53.11 55.81
−2 < BAZ < −1 56.29 59.04
−1 < BAZ < 0 53.29 58.11
0 < BAZ < 1 52.68 55.06
1 < BAZ < 2 56.27 60.92
BAZ > 2 50.50 52.91
Source: Author’s calculations. Standard deviations in parentheses. Total score is the sum of math and Hindi
sections.

4.1 Pooled data

We begin by showing results in Table 5 for the pooled sample that estimates the conditional

demand function of Equation 12. The regressions are run for the two subjects, Hindi and

mathematics, separately. Apart from the relevant teacher match, the righthand side variables
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for the Hindi and math regressions are identical. Because the dependent variable is normalized

with mean zero and standard deviation one, the coefficients in Table 5 can be interpreted as a

1-unit change in a variable x resulting in a change of β standard deviations from the mean test

score.

We use a very long list of righthand side (RHS) variables (see Table 13 in Appendix B), based

on our conditional demand function.16 The regressions include several time-varying and time-

invariant explanatory variables that are not reported in the tables in the interest of brevity.

These include individual characteristics, household and parental characteristics, school charac-

teristics, classroom characteristics17, teacher characteristics, health environment characteristics,

cost of schooling and health inputs, and district dummies.18 “Wave 2” is a time dummy tak-

ing the value of 1 for every observation in the second round of testing. It controls for the

average increase in test scores over the academic year that is common to all of the students.

The individual-level time-variant health variable of interest is HAZ. We also include two shock

measures (S2), days of illness in the last 3 months (a short-term measure that varies from 0 to

90) and a dummy variable for whether the child was absent three or more days from school in

the last two weeks. These two variables may help to control for the child’s testing ability on

the given day when the enumerators visited the school.

Columns [1] and [4] show simple OLS results for Hindi and math, respectively. These columns

are important to show because despite the barrage of controls included, the coefficient on HAZ

is positive and significant at the 1% level. It is clear the girls score much lower than boys on

average, and that the extent to which they trail boys is larger for math than Hindi. Class 4

children score higher than class 2 children, as we would expect (we refer the reader to Appendix
16Note that we do not control for school participation, since we specifically surveyed children who were already

in school. We experimented with a Heckman selection equation, using all of the siblings observed on the household
rosters, but this limited our analysis too much because we had only household level covariates for these children.
Moreover, we were not confident about the identification of the selection mechanism. We note that the selection
correction did not however change our results in a scaled-down, limited model. We refer the reader to Drèze and
Kingdon (2001), a detailed paper on school participation in northern rural India.

17We do not control for class size, since unobserved school quality could increase class size. However, we note
that its omission from the regressions does not alter the results in any substantial way.

18The survey does not contain information on parental heights. This might have been useful, in order to see
whether children are shorter due to malnutrition or genetics. However, since the data are a panel, parental
heights would be inconsequential in a fixed effects regression.
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C for more regression results separated by gender and class). Older children also perform better.

Being absent for three days or more in the last two weeks is associated with a lower score, as

is days of illness in the last three months. In addition, parents’ educations of both the mother

and father are very significant.

The coefficients for HAZ across the two subjects are quite similar. One more unit of HAZ

increases the Hindi test score by about .05 of a standard deviation (about 2.8 achievement

points—about a 5% increase at the mean score of 54.4) and the math score by about .08 of a

standard deviation (about 4.5 achievement points—about an 8% increase at the mean score of

57.7).19 Compared to Glewwe et al. (2001), who found in their 2SLS results that one standard

deviation of HAZ resulted in a rise of achievement scores by one-third of a standard deviation,

these results are small. (However, our IV results match up more closely to the results found in

Glewwe et al. (2001)).

The results in Table 5 also suggest that the effect of HAZ may be somewhat lower for Hindi than

for math; this is also confirmed if we pool the subjects (thereby having four observations per

child—two for each subject) and estimate a similar school fixed effects model. However, while

these coefficients are quite precisely estimated, their 95% confidence intervals do overlap.

In addition, students in private schools experience much better achievement on average than

those in government schools. This is due in part to the higher quality of private schools;

however, there is almost certainly some selection effect going on where students from more

privileged backgrounds with parents who value education highly attend private school. Within

the same village, the private school advantage is greater than across villages. That the marginal

effect on the private school dummy is about double in the village fixed effects column compared

with the OLS column is consistent with the idea that, in India, private schools are more likely

to spring up in poorer areas and in villages where the government schools function poorly (as

measured by teacher absence rates or by poor school infrastructure), as found in Muralidharan

and Kremer (2006) and Pal and Kingdon (2009).
19The standard deviation of the Hindi (math) marks is 58 (49).
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The data allow for several levels at which we can group students. We present village and

school fixed effects for the pooled sample, and note that the data strongly reject random effects

specifications in favour of fixed effects, as indicated by simple Hausman tests, and therefore

we do not show any random effects results. The fixed effects (within) estimation results are

consistent in showing a positive relationship between HAZ and test scores. The introduction of

fixed effects at the village and school levels lower the coefficient on HAZ slightly, suggesting that

some school-level and village-level variables are correlated with HAZ. However, HAZ remains

significant at the 1% level for both Hindi and math, even with school fixed effects.

4.2 Siblings and household fixed effects

We have established that a strong statistical relationship between achievement and HAZ is

present in the data. However, we must still address the significant problem of endogeneity. The

primary method with which we tackle endogeneity is to narrow down the sample to siblings in the

same household, who also attend the same school (most do attend the same school). Note that

this creates a sub-sample in which each household has four observations—two for each sibling.

This allows us to use a household fixed effects estimator that can control for time-invariant

unobservables at the levels of the village, school, and most importantly, the household. This

specification allows us to control for variation in parental attitudes and practices with respect

to health and education.

Table 6 shows the results of regressions run on the siblings sub-sample for both Hindi and math.

We present OLS, village fixed effects and school fixed effects for completeness and for comparison

with the full, pooled sample. The first thing to note is that though the point estimates in the

sub-sample regressions are similar to those in Table 5 (and are not statistically different), they

are slightly higher. This may be due to the imprecision caused by a smaller sample size, or it

may be because there is something different about the children that have siblings in the same

school, two classes apart, as compared with the other students. This is impossible to determine,

but remains a potential consideration when interpreting the results.
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Focusing now on Columns [4] and [8] of Table 6, it is clear that even with the household fixed

effects, there is a strong, positive effect of HAZ for both math and Hindi. In fact, going from

the school level to the household level has very little effect on the estimates, and if anything

pushes them up. This suggests that there are some variables, most likely parental preferences

for education and health, at the level of the household that are positively correlated with both

academic achievement and HAZ.

To get a further sense of the size of the effect of HAZ, the interesting calculation is the following:

being in Class 4 increases the test score by roughly .9 standard deviations (SDs) in both subjects,

ceteris paribus, so one year of school is related to an increase of about .45 SDs and one day

of school is related to about .0025 SDs (= .45/180, assuming a 180-day school year, though

many schools in rural India have fewer days of school). If we think one unit of HAZ (or about

6cm) raises the test score by .08 SD, then one unit if HAZ is worth about one month (32

days) of school, and an additional centimeter of height is equivalent to about 5 days of school

attendance (= 32/6). Moreover, the 1.26 units of HAZ that represents the average deficit of

the Indian children relative to the healthy reference population translates into a difference of

over 40 days in school.20 Since the children have spent, on average, three years in school, this

is like saying that Indian children spend about 7% less time in school per year, just due to a

health disadvantage. If the distribution of HAZ remains constant over the 6 years that these

children spend in primary school, or in other words their growth does not “catch up” to that

of American children, this can help explain why the performance of these rural children is low

relative to healthier peers in India and in other countries.21

In addition, we can compare the “academic value” of one SD of HAZ compared to father’s

education. The coefficients on father’s education is roughly .01 in all the regressions. The SD

of father’s education is 5 years. Therefore, a one SD increase in father’s education is associated
20Mean HAZ is -1.26.
21While India has not taken part in international tests of learning achievement levels in the past three decades,

a recent application of the TIMSS test items to secondary schools student in two north Indian states (Rajasthan
and Orissa) showed that only about 15% of Indian children reached or surpassed the international TIMSS average
test score; the achievement of 85% of the students was below the international mean mark (Wu, 2009).
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with a 5% increase in the child’s Hindi and math scores. Both of these are lower than the effect

of one SD of HAZ: a one unit increase in HAZ is roughly equivalent, ceteris paribus, to a child’s

father experiencing an education boost of more than 5 years.

5 Robustness checks

Though the results in Section 4 are suggestive, they can be further strengthened through several

robustness checks discussed below.

5.1 Instrumental variables

To add robustness to the household fixed effects estimates, we now instrument for HAZ using

rainfall data for the months of each child’s birth year, age one, and age two.22 While these

instruments do not vary within child, they do vary within household across siblings who are of

different ages (a similar argument is made by Alderman et al. (2006)).

We present IV results in Table 7 for both Hindi and math. Our first stage results are included in

Appendix D. Overall, the IV and IVFE coefficients are higher than the OLS and FE coefficients.

However, they are close enough that a test of endogeneity indicates that HAZ is exogenous.23

The IV approach suggests that at least for Hindi, there is a significant effect of HAZ on academic

performance, even after estimating household fixed effects. This effect is smaller for math, and

statistically insignificant when controlling for household fixed effects.

Based on a comparison of the FE and IVFE coefficients, the OLS and FE estimates appear

to be biased downwards for both subjects. All in all, the relative proximity of the estimates

suggests that the endogeneity of HAZ is not causing a large bias. However, we must qualify this

interpretation with an acknowledgement of weak instruments that may not offer a significant

improvement over the OLS/FE results in Table 6. Although the overidentification test statistic
22Mis-measuring age will affect the accuracy of these instruments.
23The endogeneity test is a difference of two Sargan-Hansen statistics (similar to the Wu-Hausman test). The

first is derived when the regressor (HAZ) is treated as exogenous, and the second is derived when the regressor
is treated as endogenous.
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suggests that the instruments are valid, the power of this test is weak with weak instruments.

The tests are only valid if there are at least as many suitable instruments as there are variables

that are instrumented, so it may have lower power in our case. Given the size of the first stage

F-statistic, which is under the rule-of-thumb threshold of 10, our instruments are weak and

could actually cause further bias (Bound, Jaeger, & Baker, 1995). Indeed, the bias of our IV

results could be around 20% of the OLS estimates (Stock & Yogo, 2005).

5.2 Nonlinear models

An additional criticism of the approach thus far is that the distributional qualities of the depen-

dent variable, the test scores, may cause some efficiency problems in our estimation. Indeed,

the distributions of Hindi and math scores of all the observations in both waves are shown in

Figures 2 and 3. These graphs highlight two important features of the data. First, for each dis-

tribution, there is clearly a mass point at zero. Second, the distributions have a very long right

tail extending to the maximum score. The distributions’ shapes are not significantly altered

when logged.

The interesting point to take away from these figures is that there are many children who

know virtually nothing, even after several years of schooling. There are some who know a

little bit, though they are still below the expected standard for their grade. A few students

manage to learn at the expected level. To be sure, some of the distribution’s shape comes from

combining private and government (public) schools, boys and girls, Bihar and UP, and class

2 and 4, because there is a lot of heterogeneity in student achievement among these groups.

For example, if we look only at class 4 students in Bihari private schools, the achievement

scores have a more normal appearance, though still with relatively thick tails. However, the

distributions remain very similar for students in government schools, no matter how we break

up the data.

Before presenting results from the count regressions, it is important to acknowledge the trade-

offs between a linear approach and a nonlinear approach. First, the linear model is often
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Figure 2: Hindi Test Scores Histogram, Pooled Waves – All Children in Classes 2 and 4
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inappropriate for left-censored data, i.e. the predicted values may be negative. In addition, while

the linear model allows us to investigate issues of endogeneity and fixed effects simultaneously

in a familiar framework, the inherent heteroskedasticity of the distribution seen in Figure 2

means that inference may be inefficient. With 7,800 observations in the pooled sample, this

may not be an issue; however, in the siblings sub-sample, there may be some gain to considering

a different econometric strategy.24

The alternative is a nonlinear model, and in particular a count model, which can allow for

the fact that tests scores are non-negative whole numbers, and may be better at tackling the

problem of heteroskedasticity inherent in the test scores distribution. In contrast to the linear
24The standard errors are robust and clustered at the village level in all of the results tables, but homoskedas-

ticity is strongly rejected in all of the models. This heteroskedasticity remains even with several interaction terms
that try to capture the heterogeneity and nonlinearities. For example when we include interaction terms for every
explanatory variable interacted with the private school dummy, there is still evidence of heteroskedasticity. When
we separate the data into smaller groups by gender, state, and class, this reduces the degree of heteroskedasticity
by allowing flexibility in the estimation. On the other hand, we run into small sample problems, and in addition,
regressions based on the linear model for class 2 in both Bihar and UP still exhibit heteroskedasticity problems.
We suspect that this is due to the mass point of zeros that are especially prevalent for the younger children.
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Figure 3: Mathematics Test Scores Histogram, Pooled Waves – All Children in Classes 2 and 4
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model E(y|x) = xβ, a count model takes the form E(y|x) = exp(xβ). The most basic count

regression model assumes that y given x follows a Poisson distribution, and the conditional

density of y is

f(y|x) =
exp [−μ(x)][μ(x)]y

y!
, y = 0, 1, 2 . . .

where μ(x) ≡ E(y|x) (Wooldridge, 2002).

However, the count model is not without its limitations. First, the Poisson distributional

assumption that the conditional mean and variance are equal can be quite restrictive:

Var(y|x) = E(y|x). (14)

This “equidispersion” assumption can cause the econometrician to underpredict the prevalence

of zeros in the data. Another potential problem with the equidispersion assumption is that

most count data has a variance that exceeds the mean, termed overdispersion. Our data on test

scores are a perfect example of overdispersion: the means of both the math and Hindi scores are
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much less than their variances (they are in fact roughly the same as their standard deviations).

There are several ways to resolve this issue. We can correct the standard errors by using robust

inference or bootstrapping, or we can relax the assumption in Equation 14 so that

Var(y|x) = σ2E(y|x). (15)

When σ2 > 1, the variance is greater than the mean. A generalized linear model estimated

by quasi-maximum likelihood (though still with the Poisson distributional assumption) allows

Equation 15 to hold. Another case in which Equation 15 holds is when we use a negative

binomial as the underlying distribution as opposed to Poisson. This is often referred to as

NegBin I (Cameron & Trivedi, 1986). Thus we have the tools with which to handle the potential

for erroneous inference caused by overdispersion. The second difficulty posed by the count model

is that we are restricted to the Poisson distributional assumption when expanding the analysis

to fixed effects or instrumental variables25 because a FE or IV estimator using the negative

binomial distribution does not exist. This is not a huge problem, since we know how to correct

the standard errors of the Poisson estimator. Finally, with a count model, we are unable to

combine FE and IV as we can with the linear model.

The results of various specifications with the count model for Hindi are presented in Table 8,

and Table 9 for math. For these regressions, we use the siblings sub-sample, in order to compare

them to the main estimates above. In general, the results in the count regressions match those

in Tables 6 and 7 quite well for all the covariates presented. The regressions’ R2 are very close

to the R2 of the linear estimators. Note that the coefficients in the nonlinear regressions are

interpreted as if the LHS variable were logged. So, in Column [1] of Table 8, the coefficient

of .098 on HAZ means that the expected count score (total score) changes by a factor of 1.10

(= exp(.098)), or increases by about 10%, ceteris paribus. Note that this is very close to the

result in Column [1] of Table 6. In the negative binomial model the marginal effect of an

additional unit of HAZ when evaluated at the mean is about 7 (8) points for Hindi (math), and

it differs by class: the marginal effect of HAZ at the mean is 4.5 (6) points for children in Class
25See Mullahy (1997) for a discussion of count data and IV.
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2 and 13 (12) points for children in Class 4.

The negative binomial model in Column [2] of Tables 8 and 9 finds somewhat higher effects,

suggesting that there is some overdispersion in the data. The NegBin estimator may be prefer-

able to the Poisson, as it allows explicitly for overdispersion in the distribution. A likelihood

ratio test of overdispersion is given by the parameter α̂. The null hypothesis of equidispersion

is α = 0; here, the data strongly reject the null. Also, the log likelihood of the NegBin model is

much higher (less negative) than the Poisson, meaning that the negative binomial distribution

fits the data more precisely than the Poisson. The Poisson (NegBin I) regression can also be

estimated with a generalized linear model with family Poisson (negative binomial I).26

We also report Poisson IV results using a GMM estimator, developed by Nichols (2007) and

based on work by Mullahy (1997).27 One criticism of the estimator is that it can generate

confidence intervals that are too narrow, and may require bootstrapped standard errors. In

our case, we have bootstrapped to 50 replications. Even though we favour the fixed effects

approach, the IV is helpful in signing the bias on HAZ in the pooled regression. Earlier, we

found evidence of a downward bias in the OLS estimator as compared with the IV.

The results of a Poisson fixed effects model are presented in Columns [4-6] of Tables 8 and

9. For the fixed effects, we use a quasi-maximum likelihood estimator that allows for robust

standard errors to be calculated (Wooldridge, 2002), which is consistent even when the Poisson

distribution is misspecified.28 There is no equivalent FE model using the negative binomial

distribution (Allison & Waterman, 2002).29 We are thus using a partially parametric approach,

since we are not fully specifying the variance function (Cameron & Trivedi, 1999). This lets

us sidestep the typical overdispersion problems with the Poisson estimator (highlighted by the
26We also ran the same regression in Columns [1] and [2] of Tables 8 and 9 using a GLM estimator that corrects

for overdispersion by adjusting (scaling) the standard errors for σ > 1—this does not change the coefficients. We
do not report GLM standard errors because they are very similar to the robust standard errors reported in the
table and do not change the interpretation of the results in any way.

27The Poisson IV is implemented using the ivpois command in Stata 10.0 written by Austin Nichols (Nichols,
2007).

28We use the command xtpqml in Stata 10.0.
29Using individual dummies to capture FE as an alternative is not feasible due to large number of children and

the excessive degrees of freedom needed to estimate the model.
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superiority of Column [2] over [1]). The Poisson FE results add further evidence to our claim that

HAZ has a positive, causal impact on achievement. These results are very precisely estimated,

even after correcting for overdispersion, which typically raises the nominal Poisson standard

errors. Their magnitudes are also consistent with the results of the linear model, but because

the estimators are better matched to the data’s distribution, we obtain more precision.

The household fixed effects can be found in Column [6] for both Hindi and math. This regression

uses the Poisson FE estimator at the household level and is robust to heteroskedasticity and

is clustered at the village level. We find a large, statistically significant positive effect of HAZ.

Using FE at the household level raises the point estimate, providing yet more evidence of a

downward bias (though the size of the bias is still quite small). We surmise that the downward

bias is probably mostly attenuation bias, caused mainly by measurement error.

Similar to the linear model, we find that the average test scores go up for all of the children,

and that recent absences from school lower test scores. We point out once again that the size

of the HAZ coefficient is large relative to the other variables, implying that nutrition is one of

the biggest measurable determinants of test performance.

Although we ameliorate the overdispersion problem, we are still left with the issue of excess

zeros. Zero-inflated models and hurdle models can address this problem, but lack any IV or

FE applications. Therefore we present these results in Appendix E for completeness. In fact,

the results from the zero-inflated Poisson and NegBin I are very similar to our results in this

Section, and supply further evidence that HAZ is a key driver of test scores. Moreover, we

show that HAZ is negatively associated with a score of zero. The hurdle models also agree,

though they suggest a higher coefficient for HAZ and thus an even higher impact of long-term

nutrition on academic achievement. We leave a deeper exploration of hurdle models for future

work.
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5.3 BAZ and H2

An alternative specification to Equation 13 is to include H2, if we think that current nutritional

status could have an effect on test scores as well.30 Though there is no reason to think that

short-term fluctuations in nutrition in period 2 has an effect on cognitive development, it may

still affect a child’s ability to do well in school. For example, children with short-run nutritional

deficiencies are probably less able to pay attention and concentrate; more likely to stay home

from school; and might have less energy for lessons, learning and homework.

OLS, fixed effects, and IV results are shown in Tables 10 for Hindi and 11 for math. The

evidence on BAZ is mixed. In Columns [1-4] in each table, there seems to be some evidence

that both HAZ and BAZ matter, at least once household fixed effects are controlled for. For

Hindi, the inclusion of BAZ reduces the coefficient on HAZ by about 0.02, but the coefficient

on HAZ for math is still around 0.08. However, we cannot reject that the coefficients on HAZ

are statistically the same both with and without BAZ as an additional control.

In Columns [5-8] in Tables 10 and 11, we instrument for both HAZ and BAZ. For BAZ, we use

health environment characteristics: time to health providers (chemist, private doctor, health

clinic, and hospital) collected in the village questionnaire, as well as two district-level tubercu-

losis statistics from India’s Ministry of Health and Family Welfare on TB detection rate and the

TB testing rate.31 These characteristics should be valid exclusions, since we condition on H2

and H1. The first four instruments are constant across villages and through time, so they are

only used in Columns [1] and [5]. The tuberculosis statistics are at the district level, they vary
30As a measure of short-term health, BAZ is preferred to weight-for-height (WHZ), as explained by both the

Centers for Disease Control and the World Health Organization (Flegal, Wei, & Ogden, 2002). In fact, the use
of WHZ is no longer recommended for children over the age of 5, and the available anthropometric software does
not calculate z-scores for weight-for-height (see http://www.who.int/growthref/en/). This is primarily because
BAZ allows an adjustment of the weight-for-height concept that takes into account age (Cole, Flegal, Nicholls, &
Jackson, 2007). In contrast, WHZ is age-independent in its calculation, so comparing across children of several
ages is problematic because for a given height, median weight will differ by age and sex. In addition, WHZ is
expected to change seasonally and is therefore difficult to use over longer periods. However, BAZ cut-offs for
“thinness” according to BAZ vary with age and sex until one reaches adulthood, so interpretation of the absolute
values across ages can be difficult.

31The TB statistics are from the years 2006 and 2007; the testing data are from 2007 and 2008, so the match
is not perfect. However, it is reasonable that the effects of public health improvements or changes would take
time to have a measurable effect on public health.
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over time and therefore vary within a given household’s set of observations. Thus the identifi-

cation in the rest of the regressions comes from the TB statistics, which vary across time, but

not across individuals within the same district. Therefore we expect, as with the weather data,

the TB stats to be weak instruments. Nonetheless, we present the IV results in order to offer

an alternative specification that is worth reporting.

The IV results for HAZ remain very consistent with those in Section 5.1. HAZ is significant

in the Hindi IV-HH fixed effects regression, but not in the math IV-HH fixed effects. Once in-

strumented, BAZ is insignificant for Hindi test scores, but is significant for math (Column [8]).

This suggests that both short-term and long-term nutrition matter for academic achievement in

math and reading/writing, and that their effects may be underestimated without instrument-

ing.

5.4 Child-level fixed effects

A further extension of our analysis is to see how the results fare when using child-level fixed

effects. This is a final examination of the robustness of our results. Advancing on the siblings

analysis, fixed effects at the individual should remove any remaining characteristics of each child

that do not change over the period of observation. Furthermore, if we consider the individual-

level fixed effects specification as an equation in first differences, then the narrative alters slightly

from one of the impact of height/nutrition on academic performance to one of physical growth

and academic performance changes over time. While this question of intertemporal change is

not the primary focus of this paper, it is nonetheless interesting.

Table 12 presents results for fixed effects at the child level for both linear and nonlinear specifi-

cations. As is evident in the table, the results in the linear model break down as the standard

errors rise. On the other hand, the Poisson FE model shows that significant, positive coeffi-

cients on HAZ do hold up at the child level in a nonlinear model. This may be a product of the

difficulty of the FE estimator to fit the data under linear constraints. Overall, these results are

consistent with what we have seen in earlier sections of the paper.
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Table 12: Child-level Fixed Effects, Linear and Nonlinear Models, Selected Regressors

Hindi Math
Linear Child FE Poisson Child FE Linear Child FE Poisson Child FE

(1) (2) (3) (4)

HAZ .002 .061 .013 .075
(.023) (.030)∗∗ (.025) (.028)∗∗∗

Days of illness (last 3 mos) -.0002 .0003 -.0004 -.0001
(.0005) (.0007) (.0006) (.0006)

Absent 3+ days (last 2 wks) -.063 -.049 -.047 -.015
(.018)∗∗∗ (.019)∗∗ (.020)∗∗ (.019)

Wave 2 .250 .220 .315 .218
(.027)∗∗∗ (.029)∗∗∗ (.026)∗∗∗ (.024)∗∗∗

Obs. 7842 7648 7842 7668
Groups 3921 3824 3921 3834
R2 .167 .054 .254 .052

The dependent variables in Columns [1] and [3] are normalized to have a mean of 0 and standard deviation of 1; the
dependent variables in Columns [2] and [4] are raw scores. Standard errors in parentheses are robust to heteroskedasticity
and are clustered at the village level. Regressions include several other controls—see Table 13 in Appendix B for a full set
of RHS variables. Stars (*, **, ***) indicate levels of significance of 90%, 95% and 99%, respectively. R2 is calculated as
the square of the correlation between scorei and ˆscorei.

6 Summary and conclusion

India has a long way to go to improve schooling outcomes for its rural population, and it is

important for policymakers to understand ways in which education reform can be most effective.

The hurdles faced by the Indian school system are several: inadequate schooling facilities and

insufficient resources like textbooks, teacher training deficiencies, sub-standard teacher com-

petence to deliver the curriculum (Banerji & Kingdon, 2009), high teacher absenteeism, and

more.

This paper is a new step in the debate surrounding the role of health in schooling outcomes

in developing countries. We use new and unique data from rural India to examine how health

affects academic achievement. Due to the unusual distribution of the test score data, we present

linear and nonlinear models, all of which reach the same conclusion. In addition, fixed effects

at the child level and instrumental variables applications offer convincing evidence that health

is an important determinant of test scores for children living in rural areas of northern India.

Our unique panel data allow us to address endogeneity issues caused by omitted variables and

measurement error, and we find some evidence of endogeneity and attenuation bias of height-

for-age, with limited downward bias resulting. Using several specifications and an exhaustive
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list of explanatory variables, we present a lot of evidence that long-term health, as measured by

HAZ, has a significant positive effect on schooling achievement. We also find some evidence that

short-term nutrition, measured with BAZ, is important too, at least for mathematics.

There is evidence that household literacy, maternal education, orphanhood, and the quality of

local health infrastructure and services are all important determinants of child health in devel-

oping countries (Gibson, 2001; Lavy, Strauss, Thomas, & de Vreyer, 1996; Thomas, Strauss, &

Henriques, 1991; Thomas, Lavy, & Strauss, 1991; Sandiford, Cassel, Montenegro, & Sanchez,

1995; Beegle, De Weerdt, & Dercon, 2006). Maternal education is a promising way to improve

child health (Glewwe, 1999; Rosenzweig & Wolpin, 1994), as are improvements in sanitation

facilities (Lee, Rosenzweig, & Pitt, 1997), family planning (Rosenzweig & Wolpin, 1986) and

health knowledge in general (Jalan & Ravallion, 2003). Moreover, insurance for rural families

may be an additional way to secure against especially detrimental nutrition shocks during the

early years of childhood (Alderman et al., 2001; Hoddinott & Kinsey, 2001; Dercon & Krishnan,

2000; Dercon & Hoddinott, 2003). In India specifically, Borooah (2005) finds that in rural areas,

safe drinking water and village health infrastructure are all positively correlated with HAZ; in

addition, Brennan, McDonald, and Shlomowitz (2004) conclude that promoting better feeding

of infants for Indian mothers may also be a way forward. The evidence as a whole does suggest

that there may be several policy tools with which to impact on health, and thereby schooling

outcomes, for Indian children. Our results imply that efforts to improve children’s nutrition

may have payoffs far beyond individual and public health.
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A Data appendix

The data used in this paper were collected by the Centre for the Study of African Economies

(CSAE), Oxford, in 2007-2008. Rukmini Banerji of Pratham, an Indian NGO specializing

in primary education in India, contributed to the design of the testing tools. The survey was

funded by the Spencer Foundation. A data collection firm based in Patna hired the enumerators

and was responsible for the data entry. Enumerators were trained by Geeta Kingdon of Oxford

and the University of London and Rukmini Banerji of Pratham.

The School-Tells study was designed to learn about schools, teachers, and overall achievement

in some of the most educationally disadvantaged parts of rural India. We first ran a pilot study

in February and March 2007 in Bihar to vet the testing tools and the questionnaires. Building

on the pilot, we then ran the full survey in the field from July 2007 to April 2008 (corresponding

to the north Indian academic year). The survey was administered in 11 districts, five in Uttar

Pradesh (UP) and six in Bihar.32 Although we initially chose five districts in Bihar (as in UP),

and thus started the survey in five districts of Bihar, one had to be abandoned due to flooding

part way through the first visit, and another district which was not flood-affected was chosen

as a replacement. However, between these two districts we only sampled the same number

of schools as for any one of the rest of the districts. The districts were chosen to represent

the different geographical regions of the two states. Within each district 3 blocks were chosen

randomly and within each block four villages were sampled randomly from the census list of

villages with a population of 600-5,000. In each sample village, we included one government

and one private school. If total enrollment in the government school was less than 100, we

chose a nearby village as a replacement. If there was no private school in the sample village, we

replaced it with a government school in a nearby village. We surveyed 16 schools per district,

making a total of 80 sample schools per state, and 160 schools overall.

The study consisted of several questionnaires designed to measure all aspects of the children’s
32Districts are: Agra, Bijnor, Lucknow, Mahoba, Shrawasti, Banka, Bhojpur, Gaya, Madhepura, Madhubani,

and Saran.
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learning environment. Altogether, we collected information at the child, household, teacher,

school, and village levels. The enumerators visited the schools four times, at roughly equal

intervals, over the nine months of the school year 2007-08, and collected school level information

during each of these visits. The testing of the children occurred in the first visit and the last

visit. Anthropometric data and short-term health measures were collected on the same day as

the test, at the start and at the end of the school year (nine months apart). Detailed household,

village and teacher questionnaires were also administered, but most of the information on these

was collected only on the first visit to each school. Within the school, enumerators visited class 2

and class 4, took attendance, and then chose children randomly from the list of attendees.

Enumerators administered the tests directly to the children. Some of the testing, such as the

recognition of letters and numbers, required face-to-face interaction. Enumerators were trained

to have a standardized scoring system, which applied to all children equally. At the schools,

headmasters or acting principals were interviewed, and the enumerators collected information

about the school infrastructure based on personal observation, e.g. the presence of a boundary

wall, etc. Household heads were interviewed for the household questionnaire. This questionnaire

was deliberately shortened from the pilot to the full survey.

The total number of observations in the data is 11,253. After the HAZ variable was cleaned (see

Section A.1 below), the number of observations with matched health and test score information

is 9,008. After dropping observations that do not have a second period match and a teacher

match, we are left with with 7,842 paired observations with test scores and HAZ observed in

both periods.

A.1 Height and weight

We calculate anthropometric z-scores using the 2000 CDC growth charts (O’Donnell et al.,

2007).33 These are implemented using zanthro in Stata 10.0. There is some evidence that

using the revised 2006 WHO growth charts is preferred for developing countries because of a
33Ogden et al. (2002) offers a clear explanation of the advantage of the 2000 version over the original 1977

growth statistics.
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better underlying sample from which the statistics are derived. However, there are two reasons

why we use the CDC charts. First, the WHO standards are most relevant for early infancy.

Indeed, the WHO standards were revised to target children under five (for example the WHO

Anthro 2005 software only goes up to 1856 days of age), while the children in our sample are

ages 6 and above. Second, the CDC and WHO standards for HAZ are actually very similar

for children over 5, implying that using the CDC reference population as opposed to the WHO

should not make a substantial difference for the conclusions reached in this paper. In fact, if

anything, we underestimate the degree of stunting by using the CDC charts, as the American

children are on average shorter than the children in the WHO sample (de Onis, Garza, Onyango,

& Borghi, 2007).

The data required some cleaning of the anthropometric measurements. In particular, we set

height to missing for children who were shorter (in terms of raw height) in period 2 than in period

1, or who grew more than 15 centimeters—clearly such cases are caused by either measurement

error, since the amount of time between periods was only nine months, or by ID mismatches.

We also set weight to missing if the children gained or lost more than 10kg. Given our sample

restrictions discussed in Section 3.4, this effectively means that these children are dropped from

the sample used in this paper.

These measurement errors were less likely to occur for taller children, children who score higher

on the tests, and those who live in the state of Bihar. This is not likely to be a function of

enumerator training, as they were all trained in the same way. Having a height measurement

missing in period 2 is not a function of one’s height in period 1 after controlling for gender, age,

and state. Addressing the selection bias caused, if any, by such mis-measurement is beyond the

scope of this paper, as identification would be extremely difficult. It may cause us to under-

estimate effect of height on test scores, as we are leaving out children with disproportionately

low scores—those who are younger and who live in UP. Altogether, this cleaning forces us to

drop about 8% of the observations in period 2. Following suggestions by the WHO, we also put
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HAZ (BAZ) to missing if it is below -6 (-5) or above 6 (5).34

34See http://www.who.int/nutgrowthdb/software/Differences NCHS WHO.pdf. The World Bank recommends
a narrower range for HAZ (-5 to 3); we do not adopt this narrower range, but even if we did, the restriction
would eliminate only about 1% of the sample. Therefore it has no impact on our analysis.
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B Extra tables

Table 13: Summary Statistics, Righthand Side Variables

Variable Mean Std. Dev. Min. Max. N
Individual, time-invariant
Girl 0.464 0.499 0 1 7924
Class 4 0.505 0.5 0 1 7924
Age 9.036 1.528 7 14 7924
Oldest 0.307 0.461 0 1 7924
Only child 0.134 0.341 0 1 7924

Individual, time-variant
HAZ -1.273 1.371 -5.999 4.618 7924
BAZ -1.57 1.054 -4.995 1.633 7625
Days of illness (last 3 mos) 4.823 9.829 0 90 7924
Absent 3+ days 0.195 0.396 0 1 7924
Wave 2 0.5 0.5 0 1 7924

Household, time-invariant
Banka 0.075 0.263 0 1 7924
Bhojpur 0.047 0.212 0 1 7924
Bijnor 0.128 0.334 0 1 7924
Gaya 0.083 0.276 0 1 7924
Lucknow 0.103 0.304 0 1 7924
Madhepura 0.118 0.322 0 1 7924
Madhubani 0.026 0.158 0 1 7924
Mahoba 0.12 0.325 0 1 7924
Saran 0.108 0.31 0 1 7924
Shrawasti 0.082 0.274 0 1 7924
Reference category: Agra
Mother reads 0.131 0.337 0 1 7924
Father reads 0.218 0.413 0 1 7924

Note: These reading statistics are low because missing values are replaced with zero.

Mother’s education 1.613 3.211 0 18 7924
Father’s education 5.020 4.952 0 18 7924

Note: These education levels are low because missing values are replaced with zero.

Mother’s education missing 0.053 0.225 0 1 7924
Father’s education missing 0.063 0.243 0 1 7924
Muslim 0.104 0.306 0 1 7924
ST/SC caste 0.282 0.45 0 1 7924
OBC caste 0.596 0.491 0 1 7924
BPL card 0.495 0.5 0 1 7924
Non-productive assets 5.583 5.51 0 35.5 7924
Electricity 0.14 0.347 0 1 7924
Wage employment 0.048 0.214 0 1 7924
Manufacturing 0.117 0.321 0 1 7924
Farmer 0.271 0.445 0 1 7924
Productive assets 1.943 1.792 0 11 7924

School, time-invariant
Private 0.118 0.322 0 1 7924
School, time-variant
School time table 0.618 0.486 0 1 7924
Number of rooms 2.514 1.304 0 7 7924
Verandah 0.479 0.5 0 1 7924
Library 0.59 0.492 0 1 7924

Class, time-variant
Teacher table 0.915 0.279 0 1 7924
Fan 0.021 0.142 0 1 7924
Window opens 0.647 0.478 0 1 7924
Blackboard 0.859 0.348 0 1 7924

Hindi teacher, time-invariant
10 years of education and below 0.078 0.268 0 1 7842
12 years of education 0.413 0.492 0 1 7842
BA 0.357 0.479 0 1 7842
Reference category: MA
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BTC 0.247 0.431 0 1 7842
BEd 0.037 0.188 0 1 7842
Reference category: Any other training or none
Regular teacher 0.303 0.46 0 1 7842
Parateacher 0.621 0.485 0 1 7842
Reference category: Headmasters & acting headmasters
Male 0.525 0.499 0 1 7842
Experience 6.567 8.323 0 56 7842
Age 32.584 10.669 17 62 7842

Maths teacher, time-invariant
10 years of education and below 0.06 0.237 0 1 7842
12 years of education 0.347 0.476 0 1 7842
BA 0.425 0.494 0 1 7842
Reference category: MA
BTC 0.219 0.413 0 1 7842
BEd 0.039 0.194 0 1 7842
Reference category: Any other training or none
Regular teacher 0.34 0.474 0 1 7842
Parateacher 0.601 0.49 0 1 7842
Reference category: Headmasters & acting headmasters
Male 0.648 0.478 0 1 7842
Experience 6.545 7.417 0 39 7842
Age 32.106 10.046 17 62 7842

Price of schooling, time-invariant
Distance to school (minutes) 10.195 7.192 0 60 7924
Free books 0.629 0.483 0 1 7924
Free uniform 0.027 0.161 0 1 7924
Scholarship 0.024 0.155 0 1 7924
HH spending on education per child 860.498 693.675 0 7540 7924
School fees 79.605 186.308 0 1800 7924

Instruments for HAZ
jan-rain-birthyear 15.907 10.084 0 65.19 7924
feb-rain-birthyear 12.795 10.936 0 44.34 7924
mar-rain-birthyear 6.588 7.34 0 41.62 7924
apr-rain-birthyear 6.355 6.009 0 29.45 7924
may-rain-birthyear 35.705 34.015 0.34 147.19 7924
jun-rain-birthyear 89.958 44.546 14.01 279.77 7924
jul-rain-birthyear 210.565 81.097 42.59 594.310 7924
aug-rain-birthyear 260.582 77.863 94.180 476.53 7924
sep-rain-birthyear 166.744 57.482 29.61 382.84 7924
oct-rain-birthyear 42.867 47.54 0.2 256.56 7924
nov-rain-birthyear 11.6 17.4 0 84.63 7924
dec-rain-birthyear 5.29 8.512 0 37.98 7924
jan-rain-age1 11.607 9.525 0 65.19 7924
feb-rain-age1 13.19 10.782 0 44.34 7924
mar-rain-age1 8.088 8.418 0 41.62 7924
apr-rain-age1 8.817 6.972 0 28.85 7924
may-rain-age1 33.811 31.387 0.34 147.19 7924
jun-rain-age1 91.118 49.114 14.01 279.77 7924
jul-rain-age1 211.492 71.181 42.59 440.37 7924
aug-rain-age1 246.128 79.711 94.180 476.53 7924
sep-rain-age1 150.493 68.180 29.61 311.43 7924
oct-rain-age1 55.626 63.758 0.2 256.56 7924
nov-rain-age1 6.953 12.207 0 84.63 7924
dec-rain-age1 1.907 5.139 0 37.98 7924
jan-rain-age2 14.228 9.043 0 44.28 7924
feb-rain-age2 12.554 10.641 0 44.34 7924
mar-rain-age2 7.567 9.134 0 41.62 7924
apr-rain-age2 6.955 6.926 0 22.05 7924
may-rain-age2 28.553 26.975 0.79 147.19 7924
jun-rain-age2 83.850 44.099 14.01 226.03 7924
jul-rain-age2 204.352 83.345 26.96 440.37 7924
aug-rain-age2 235.968 68.802 94.180 476.53 7924
sep-rain-age2 150.266 69.346 39.12 304.29 7924
oct-rain-age2 48.243 43.632 0.2 256.56 7924
nov-rain-age2 5.376 10.331 0 84.63 7924
dec-rain-age2 2.34 4.47 0 37.98 7924
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Instruments for BAZ
Time to chemist 28.503 30.894 0 150 7924
Time to doctor 46.978 37.389 1 180 7924
Time to clinic 33.446 32.505 0 150 7924
Time to hospital 58.492 44.414 0 240 7924
TB detection rate 43.506 16.587 12 73 7924
TB treatment rate 414.21 214.587 169.833 915.195 7924
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C Gender and class differences

In this section, we investigate the differences between genders and classes, as it is an interest-

ing question whether the effects of HAZ on Hindi and math vary along these two important

dimensions. In terms of gender, girls are on average more stunted than boys—a t-test of the dif-

ference in means across genders shows there is a significant difference (p-value= 0.0009)—which

is consistent with the general evidence on gender equity in developing countries. It is possible

that the effect of HAZ could depend on gender, if cognitive development differs between boys

and girls, as it reasonably could. In addition, since the classes are comprised of children at

different ages who may be learning a different set of skills, long-term health could be more or

less important for the two classes.

We conduct these comparisons on the full sample (as opposed to the sibling sub-sample), for two

reasons. First, it makes sense to look at gender differences using the full sample, since limiting

the sample to sisters and brothers would necessitate small samples and would introduce serious

sample size limitations. Second, because of the fact that siblings are separated by age and likely

by class, a comparison across class is not possible in the siblings sub-sample.

Before running the regressions, we re-center the dependent variable, so that the normalized

score corresponds to the individual group being analyzed, and we then are able to compare like

with like. When we split the full sample along gender lines, the results are very similar. In

Tables 14 and 15, the point estimates are extremely close, suggesting that there is no discernable

difference across genders. Separate results for classes 2 and 4 are presented in Tables 16 and

17. These results are broadly consistent with the results in Table 5, though it does appear

that HAZ has a stronger relationship with both Hindi and math for the Class 2 children. In

addition, HAZ is not statistically significant in Class 4 school fixed effects regression for Hindi

(Column [3], Table 17). However, the coefficients for math are relatively close. Though these

results are interesting, there does not seem to be a compelling reason to break down the sample

in the analysis that follows.
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D First stage results

Table 18: First Stage Results for Linear Models, Coefficients on Instruments
Dependent Variable HAZ

2SLS HH FE
(1) (2)

jan-rain-birthyear .010 .012
(.015) (.015)

jan-rain-age1 -.005 -.015
(.031) (.029)

jan-rain-age2 .014 .016
(.025) (.028)

feb-rain-birthyear -.015 -.016
(.015) (.016)

feb-rain-age1 -.010 .004
(.028) (.026)

feb-rain-age2 .0004 .024
(.024) (.025)

mar-rain-birthyear -.011 -.020
(.034) (.031)

mar-rain-age1 .007 -.006
(.040) (.034)

mar-rain-age2 -.014 -.027
(.037) (.030)

apr-rain-birthyear .033 .074
(.035) (.036)∗∗

apr-rain-age1 .062 .082
(.041) (.040)∗∗

apr-rain-age2 .060 .070
(.033)∗ (.028)∗∗

may-rain-birthyear .008 .004
(.008) (.009)

may-rain-age1 -.008 -.008
(.008) (.009)

may-rain-age2 .007 .008
(.009) (.010)

jun-rain-birthyear -.0002 .001
(.004) (.004)

jun-rain-age1 .003 .003
(.003) (.003)

jun-rain-age2 .005 -.0001
(.004) (.004)

jul-rain-birthyear .002 .005
(.003) (.003)∗

jul-rain-age1 .0006 -.002
(.002) (.002)

jul-rain-age2 .006 .004
(.002)∗∗∗ (.002)∗∗

aug-rain-birthyear .002 .0006
(.003) (.003)

aug-rain-age1 .001 .0006
(.002) (.002)

aug-rain-age2 -.0002 -.003
(.004) (.004)

sep-rain-birthyear .0008 .005
(.003) (.002)∗∗

sep-rain-age1 .002 .003
(.005) (.004)

sep-rain-age2 .005 .002
(.003) (.003)

oct-rain-birthyear .005 .005
(.006) (.006)

oct-rain-age1 .006 .007
(.005) (.004)

oct-rain-age2 .003 .002
(.003) (.003)

nov-rain-birthyear -.0008 .017
(.013) (.014)

nov-rain-age1 .005 -.013
(.012) (.013)

nov-rain-age2 -.011 .009
(.024) (.020)

dec-rain-birthyear -.041 -.040
(.018)∗∗ (.017)∗∗

dec-rain-age1 .019 .030
(.028) (.027)

dec-rain-age2 .094 .025
(.029)∗∗∗ (.027)

Obs. 1436 1436
F statistic 79.978 37.632

R2 .325 .427

Standard errors in parentheses are robust to heteroskedasticity and are clustered at the village level. Regressions include several other
controls—see Table 13 in Appendix B for a full set of RHS variables. Stars (*, **, ***) indicate levels of significance of 90%, 95% and 99%,
respectively.
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E Zero-inflated and hurdle models

We can improve upon the efficiency of our estimates by pursuing alternative parametric count

data models. In particular, because of the large number of zeros seen in the distribution in

Figures 2 and 3, a zero-inflated model may be appropriate. A zero-inflated model adjusts the

likelihood function so that there are two processes: one that creates a zero count, and one that

creates a zero or a positive count. As with other count models, one can assume an underlying

distribution for the data. In Tables 19 and 20, we show results for the zero-inflated Poisson and

negative binomial estimators.

Table 19: Zero-Inflated Counts and Hurdle Models for Hindi, Selected Regressors

Zero-Inflated Hurdle Hurdle
Poisson Poisson NegBin I

(1) (2) (3)

Positive counts: Total score > 0
HAZ .085 .087 .134

(.025)∗∗∗ (.025)∗∗∗ (.026)∗∗∗

Inflate/Hurdle: Pr(Total score = 0)
HAZ -.365 -.365 -.365

(.136)∗∗∗ (.136)∗∗∗ (.136)∗∗∗

Obs. 1436 1436 1436
No. of Zero Obs. 87 87 87
Log Likelihood -21778.36 -21778.36 -6553.536

Standard errors in parentheses are robust to heteroskedasticity. Regressions include several other controls—see Table 13
in Appendix B for a full set of RHS variables. Stars (*, **, ***) indicate levels of significance of 90%, 95% and 99%,
respectively. Columns [2] and [3] use the Stata commands hplogit and hnblogit, respectively.

Table 20: Zero-Inflated Counts and Hurdle Models for Math, Selected Regressors

Zero-Inflated Hurdle Hurdle
Poisson Poisson NegBin I

(1) (2) (3)

Positive counts: Total score > 0
HAZ .087 .087 .115

(.023)∗∗∗ (.023)∗∗∗ (.024)∗∗∗

Inflate/Hurdle: Pr(Total score = 0)
HAZ -.585 -.585 -.585

(.161)∗∗∗ (.161)∗∗∗ (.161)∗∗∗

Obs. 1436 1436 1436
Number of zeros 78 78 78
Log likelihood -16739.46 -16739.46 -6673.141

Standard errors in parentheses are robust to heteroskedasticity. Regressions include several other controls—see Table 13
in Appendix B for a full set of RHS variables. Stars (*, **, ***) indicate levels of significance of 90%, 95% and 99%,
respectively. Columns [2] and [3] use the Stata commands hplogit and hnblogit, respectively.

A final estimation strategy that we pursue is to consider more closely what we think is driving

the test score process. If we believe that the process that drives scores of zero is somehow
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fundamentally different from the process that drives positive scores, then a hurdle model is

a good alternative to a zero-inflated count regression.35 A hurdle model is in spirit like a

Heckman selection approach—a logit is used to determine whether one has a positive score

or a zero, and then a zero-truncated count regression (one that allows the distribution, either

Poisson or NegBin I, to lack zeros) is run on the positive counts. The flexibility inherent in this

approach is intuitively appealing.

35Following Cameron and Trivedi (1999), the zeros and the positive counts are determined by two different

densities, f1(.) and f2(.), such that Pr[y = 0] = f1(0) and f(y|y > 0) = f2(y)
1−f2(0)

. Logically, Pr[y > 0] = 1− f1(0).
It follows that data generating process is:

g(x) =

{
f1(0) if y = 0,
1−f1(0)
1−f2(0)

f2(y) if y ≥ 0.
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