Controlling Avian Flu and Protecting People’s Livelihoods

DFID-Funded Collaborative HPAI Research Project: Risk Management Options

J. Otte, D. Pfeiffer, and D. Roland-Holst

International Meeting on Pro-Poor HPAI Risk Reduction
Phuket, 26 October 2010
Disease Control Measures

Risk Reduction

Reducing Exposure
- Bio-security
 - Conceptual
 - Structural
 - Operational

Reducing Susceptibility
- Vaccination
 - Targeted
 - Spatially
 - Temporally
 - Prod system
 - Blanket

Risk Coping

Early Detection

Surveillance
- Farm
- LBM
- Abattoir
- Wet Market

Traceability

Culling
- IP
- Contacts
- ‘Ring’
Poultry Density China, 2005

GLW, 2007

Controlling Avian Flu and Protecting People’s Livelihoods | Mekong Region
Poultry Density India, 2005

GLW, 2007
SE-Asia Chicken & Duck Density

Chicken distribution map

Duck distribution map

REFERENCE:
Cambodia - DAHP 2003 Census (AVSF 2004), year 2002
Lao - Data elaborated from National Statistical Centre, State Planning Committee, 2000, year 1999
Myanmar - School of Veterinary Science, University of Queensland, Australia, year 2007
Thailand - Census 2004, Department of Livestock Development

REFERENCE:
Cambodia - DAHP 2003 Census (AVSF 2004), year 2002
Lao - Data elaborated from National Statistical Centre, State Planning Committee, 2000, year 1999
Myanmar - School of Veterinary Science, University of Queensland, Australia, year 2007
Thailand - Census 2004, Department of Livestock Development
Viet Nam: Outbreaks & Control Measures

- Compensation 10-15% market value increasing to 50% June 05
- First round vaccination campaign Oct-Dec 2005
- Twice yearly follow-up campaigns
- Sero-survey estimated 55% overall protection
- During 2007 only infected flocks culled with ring vaccination
Pre- & Post-Vaccination Comparison: Reproductive Numbers

Wave 2004-05, pre-vaccination

Wave 2005, post-vaccination

Walker et al., 2009.
Effect of Vaccination (1)

- Significant reduction in infectivity (daily spread) following vaccination
- Relative infectivity after vaccination comparable to 45% effective coverage
- Agrees with estimate from serology (55% coverage well within C.I.s)
- But need to know how long communes were infectious
Effect of Vaccination (2)

- **Increase in infectious period after vaccination**
- May indicate ‘silent spread’ of infection in vaccinated flocks
 - Infection spreads amongst vaccinated but harder to detect due to delay/reduction in clinical signs.
- **Shift in species distribution - unprotected ducks?**

Walker et al., 2009.
Effect of Vaccination (3)

- Reduction in infectivity offset by increased opportunity to spread
- Produced slower but more persistent wave post-vaccination
- RRD once again area of high risk
- Emphasizes need for more rapid detection and reporting
Impact of Improved Detection, 2005 Wave

<table>
<thead>
<tr>
<th>Max. nr. of days to detection</th>
<th>Outbreaks averted (%)</th>
<th>Reduction in duration of wave (%)</th>
<th>Prob. of ≤ 10 outbreaks (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>12</td>
<td>22</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>49</td>
<td>50</td>
<td>18</td>
</tr>
<tr>
<td>10</td>
<td>84</td>
<td>73</td>
<td>53</td>
</tr>
<tr>
<td>04-05 rate of detection</td>
<td>67</td>
<td>56</td>
<td>20</td>
</tr>
</tbody>
</table>

Walker et al., 2009
<table>
<thead>
<tr>
<th>System</th>
<th>Vaccinations required</th>
<th>Min. Vaccination costs per prod. cycle (USD cents)</th>
<th>Max. Value at risk of loss (USD)</th>
<th>Min. Break even outbreak risk per prod. cycle (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grant parent chicken hen</td>
<td>4</td>
<td>16</td>
<td>182</td>
<td>0.1</td>
</tr>
<tr>
<td>Layer chicken hen</td>
<td>4</td>
<td>16</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Broiler chicken (white)</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Broiler chicken (crossbred)</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Chicken Flock: Mixed/Backyard</td>
<td>up to 4</td>
<td>72</td>
<td>33</td>
<td>3</td>
</tr>
</tbody>
</table>
Flock Type / Size & HPAI Risk, Viet Nam

<table>
<thead>
<tr>
<th>Flock Type / Size & Size</th>
<th>Risk per 1,000 Flocks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2004/05</td>
</tr>
<tr>
<td>Backyard</td>
<td>0.013</td>
</tr>
<tr>
<td>Small commercial</td>
<td>0.633</td>
</tr>
<tr>
<td>Medium commercial</td>
<td>21.359</td>
</tr>
<tr>
<td>Large commercial</td>
<td>90.000</td>
</tr>
<tr>
<td>Total</td>
<td>0.126</td>
</tr>
</tbody>
</table>
Private Financial Incentives

- For (risk neutral) farmers the financial incentives to use vaccination are too low to reach high coverage levels.
- Even free of charge vaccination may not be accepted by all flock owners (e.g. hens in lay).
- Higher vaccination incentives and subsequent coverage are only likely to be observed when the perceived private risk increases due to reports/news of surrounding outbreaks.
- Vaccination costs for 1,000 industrial broiler flock owner vary between 325 and 651 USD per year.
 - Simple improvements such as purchase and use of cleaning and disinfection equipment may cost less and have an equal risk reduction effect.
Poultry Trade & Live-bird Markets

Wholesale market

Poultry movement from farm to wholesale market

Poultry movement from wholesale to retail markets

Regional market

Farm

Cluster

Controlling Avian Flu and Protecting People’s Livelihoods | Mekong Region

Fournie et al., 2009
The potential for the virus to circulate silently within the LBM depends on the time a bird remains in the market system.
Virus Amplification within LBM

Introduction of a cohort

Time spent by the cohort in the market

Prevalence

Time (in days)

Controlling Avian Flu and Protecting People’s Livelihoods | Mekong Region
Poultry Trade & Live-bird Markets

Controlling Avian Flu and Protecting People’s Livelihoods | Mekong Region

Fournie et al., 2009
Comparison of Interventions in Markets vs. Farms

Main sources of infection: markets

- Detection & stamping out, vaccination

Main sources of infection: other farms

In Farms:
- Rest days, closure

In Markets:

Fournie et al., 2009
Compared Impact of Interventions on Flock Reproduction Number r

Main sources of infection: markets

- Rest days
- Rest days + early detection
- Rest days + early detection, vacc 50%

Main sources of infection: other farms

- Rest days
- Rest days + early detection

Fournie et al., 2009
Targeting Control Measures

<table>
<thead>
<tr>
<th>Scenario*</th>
<th>Probability of extinction at day 48 (%)</th>
<th>Prop. cases averted (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1: Backyard flock ‘biosecurity’ up</td>
<td>22</td>
<td>77</td>
</tr>
<tr>
<td>B2: Comm. flock ‘biosecurity’ up</td>
<td>8</td>
<td>60</td>
</tr>
<tr>
<td>B3: B1 & B2</td>
<td>43</td>
<td>92</td>
</tr>
<tr>
<td>V1: Backyard flock vaccination</td>
<td>21</td>
<td>71</td>
</tr>
<tr>
<td>V2: Commercial flock vaccination</td>
<td>2</td>
<td>60</td>
</tr>
<tr>
<td>V3: V1 & V2</td>
<td>31</td>
<td>99</td>
</tr>
</tbody>
</table>

*Population structure of 1,000 backyard & 250 commercial flocks

Magelhaes et al., in prep.
Disease Control Measures

Risk Reduction

Reducing Exposure

Bio-security

Conceptual

Structural

Operational

Reducing Susceptibility

Vaccination

Targeted

Blanket

Spatially

Temporally

Prod system

Risk Coping

Early Detection

Surveillance

Farm

LBM

Abattoir

Wet Market

Traceability

Culling

IP

Contacts

‘Ring’

Industrial replica of integrated smallholder farming (pigs, poultry, fish)
Conclusions

• Don’t expect the magic recipe and quick victory!!

• Adapt ‘traditional’ approaches to prevailing circumstances, including:
 – disease zoning, compartments, within countries, accreditation schemes, etc

• Pilot new approaches building on advances in:
 – Diagnostics (quick and cheap)
 – Information technologies (SMS, RFIDs, etc.)
 – Market developments

• H5N1 is not the ONLY risky virus!!!
Shortridge et al., 2000. Interspecies transmission of influenza viruses: H5N1 virus and a Hong Kong SAR perspective, Veterinary Microbiology, 74, 141-147

‘Who cares about H5N1, our jobs are in jeopardy'