Monitoring the Performance of Rural Roads Using GPS Surveys

Presentation by David Geilinger

Research conducted by David Geilinger, Larry Herman and Charles Bopoto

Financed by Government of Mozambique and AFCAP

Presented in Addis Ababa, Ethiopia – November 2010
GPS Monitoring of Rural Road Performance

Overview

- Why we need new ways to measure rural road performance.
- How financing agencies’ requirements differ from those of roads agencies.
- The set of Indicators which measure those aspects of rural road service of greatest value to users.
- The use of GPS monitoring for consistent, efficient and reliable data collection.
- The way forward to expand the application of the approach.
GPS Monitoring of Rural Road Performance

Need for New Monitoring Instruments

- The primary objective for rural roads networks is to provide basic accessibility
- Most indicators focus on road condition and do not measure accessibility
- Road Funds, financing agencies, and other stakeholders need simple, consistent measures of how well rural roads satisfy the needs of users.
GPS Monitoring of Rural Road Performance

What Rural Road Users Value

- Main vehicles are pick-ups, vans and small trucks carrying passengers and goods and traveling at slow speeds.
- Rupture points or sections of very low speed discourage transporters and reduce accessibility.
- Rural road users value roads that are transitable, permit reasonable speeds, and have few very slow sections.
- Roughness or ability to travel at high speeds are of secondary importance.
GPS Monitoring of Rural Road Performance

Why Not Use Road Condition Surveys?

- Roads agencies collect road condition data for engineering purposes, to plan and design maintenance.
- Visual condition assessments tend to be subjective
- Mechanized condition assessments are expensive and complex
- Condition survey results are often not reported regularly enough or comprehensively
- Condition survey results may focus on the paved road network
- Condition surveys are under the control of the roads agencies, leading to a conflict of interest
GPS Monitoring of Rural Road Performance

Requirements for Monitoring

- Data collection should be inexpensive, not require specialized skills, based on objective measures, and capable of being implemented independently of the roads agencies to reduce possible conflicts of interest.
- The indicators should generate simple and easily understood measures of accessibility.
- The indicators should be measurable at various levels of aggregation (road, class, province, network) permitting useful comparisons.
- The results should be consistent and robust
- The results should permit year-on-year and geographical comparisons.
GPS Monitoring of Rural Road Performance

Coefficients of Rural Roads Accessibility

- **Speed Efficiency Coefficient (SEC)**

 Extent
 How much of the network is substandard?

- **Time Efficiency Coefficient (TEC)**

 Intensity
 How bad is the problem?

- **Road Accessibility Coefficient (RAC)**

 Reach
 How much of the network is made inaccessible?
GPS Monitoring of Rural Road Performance

Thresholds and Rupture Points

- **Threshold speed**: the minimum acceptable speed for a low-volume rural road
 - Most users of rural roads don’t need to go fast
 - Threshold speeds should usually be lower than design or legal speeds
 - Use of thresholds eliminates the influence of potential faster sections of road.

- **Rupture Point**: an impediment in the roadway that prevents normal traffic from passing
 - Many rupture points result from the absence of water-crossing structures
 - Rupture points may in fact be longer sections that are impassable.
GPS Monitoring of Rural Road Performance

Speed Efficiency Coefficient

- **SEC** – the extent of road or network that performs at least as well as the target or threshold speed

In this case the value for the coefficient is:

\[SEC = \frac{AB + CD}{AD} \]

Figure: Speed Profiles: Actual Versus Target
GPS Monitoring of Rural Road Performance

Time Efficiency Coefficient

- **TEC** – a measure of how close to the target travel time the road performs, the **intensity** of the problem areas.

In this case the value for the coefficient is:

$$\text{TEC} = \frac{OADK}{OADK + BEFC}$$

Figure: Time Profiles: Actual versus Target
GPS Monitoring of Rural Road Performance

Road Accessibility Coefficient

- **RAC** - measures the share of the network that is accessible by normal vehicles, effectively the **REACH** of the network.

In this case the value for the coefficient is:

\[
\text{RAC} = \frac{\text{Accessible Network}}{\text{Total Network}} = \frac{A_{\sim K} - (EF + GH + HI + HJ + JK)}{A_{\sim K}}
\]

Figure: Measuring Intransitable Sections
GPS Monitoring of Rural Road Performance

The GPS and the Data

- Affordable and available navigation tool
- Low training requirements
- Compatible with Excel and GIS
GPS Monitoring of Rural Road Performance

The GPS and the Data

GPS output as a plot
GPS Monitoring of Rural Road Performance

The GPS and the Data

SEC = 0.27; TEC = 0.73 & RAC = 1.0
GPS Monitoring of Rural Road Performance

The Next Steps

- Tested in 2 Provinces on 14 roads
- Reproducibility tested
- Rationalize and publish the rules
- Create a baseline for the full network
- Create study sections for calibration so that realistic targets can be set for performance indicators
- Push the values up toward 1.0!
GPS Monitoring of Rural Road Performance

THANK YOU!