The Development of AntiRetroviral Therapy in Africa (DART) trial

Risk of WHO 4 events and death by current CD4 on ART in the DART trial: the impact of CD4-dependent reporting bias

AS Walker, AG Babiker, C Kityo, J Hakim, P Munderi, F Ssali, A Reid, H Grosskurth, CF Gilks, TEA Peto on behalf of the DART Trial Team
Background

- In resource-rich countries, standard of care on ART includes routine laboratory monitoring for:
 - toxicity (haematology, biochemistry)
 - efficacy (CD4 cell count, viral load)
- In Sub-Saharan Africa, laboratory monitoring:
 - is not widely available (infrastructure, personnel etc)
 - is costly to maintain (reagents, quality control etc)

- DART Trial objective: to evaluate the need for on-ART routine laboratory monitoring for toxicity and CD4 cell counts in African adults starting ART having fulfilled clinical and CD4 criteria for ART initiation
3316 ART-naive adults with stage WHO 2, 3 or 4 HIV disease, CD4<200 cells/mm3 (median 86 cells/mm3) initiating triple drug ART

Laboratory and Clinical Monitoring (LCM)
- 12 weekly biochemistry, FBC & CD4
- Other investigations & concomitant medications if clinically indicated
- Switch to second-line for:
 - new/recurrent WHO 4 (or multiple WHO 3)
 - CD4<100 cells/mm3

Clinically Driven Monitoring (CDM)
- 12 weekly biochemistry, FBC & CD4; FBC & biochemistry only returned if clinically indicated (or grade 4 toxicity); CD4 never returned
- Other investigations (not CD4) & concomitant medications if clinically indicated
- Switch to second-line for:
 - new/recurrent WHO 4 (or multiple WHO 3)

As per WHO guidelines, switching before 48 weeks discouraged in both arms
New WHO 4 event or death (co-primary endpoint) and death (secondary endpoint)

![Graph showing the proportion of patients alive and alive without a new WHO 4 event over time.](image)

- **Alive:**
 - LCM/CDM: 0.95/0.94
 - Proportion: 1.0

- **Alive without a new WHO 4 event:**
 - LCM/CDM: 0.88/0.88
 - Proportion: 1.0

Years from randomisation (ART initiation):

<table>
<thead>
<tr>
<th>Years</th>
<th>LCM (in follow-up)</th>
<th>CDM (in follow-up)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1656</td>
<td>1660</td>
</tr>
<tr>
<td>1</td>
<td>1552</td>
<td>1542</td>
</tr>
<tr>
<td>2</td>
<td>1501</td>
<td>1494</td>
</tr>
<tr>
<td>3</td>
<td>1468</td>
<td>1445</td>
</tr>
<tr>
<td>4</td>
<td>1436</td>
<td>1395</td>
</tr>
<tr>
<td>5</td>
<td>796</td>
<td>749</td>
</tr>
</tbody>
</table>

HR(CDM:LCM: death) = 1.35 (95% CI 1.10-1.65) p=0.004

Number needed to monitor for 1 year to prevent 1 death = 130

HR(CDM:LCM: WHO 4/death) = 1.31 (95% CI 1.14-1.51) p=0.0001
DART trial results
(Lancet 2010;375:123-31)

• 5-year survival in 3316 participants with advanced HIV disease pre-ART (33% < 50 cells/mm3) was excellent
 - loss to follow-up was very low (7% at 6 years; median 4.9 years FU)

• Routine 12-weekly laboratory monitoring for toxicity did not impact any adverse event outcome

• Routine 12-weekly CD4 monitoring had no impact on disease progression during the first 2 years on ART
 - after 2 years, a small but significant impact on clinical disease progression favouring LCM appeared to be driven by later switch to second-line ART in CDM
Objective

- To compare the risk of death and disease progression events between randomised groups at various CD4 counts
 - Poisson models, including multiple WHO 4 events (ie subsequent events after the first during the trial)

- Hypothesis: low CD4 in CDM may have more serious consequences because of clinicians not knowing this
Outcome ascertainment

- Clinicians were encouraged to report and investigate all potential WHO 4 events
 - patients not returning to clinic had home visits to ascertain deaths and other outcomes
- However, randomisation was open

 ➢ All reported WHO 4 events (and cause of death) were adjudicated against pre-specified protocol criteria by an Endpoint Review Committee with independent Chair and members, blinded to randomised group and to CD4 counts

 - 780/992 (79%) reported WHO 4 events met protocol criteria (“accepted” events)
 - most common reasons for rejecting events as endpoints were missing tests or other plausible diagnoses (Borok IAS 2009 TUPEB098)
Absolute change in CD4 over 5 years

Mean absolute CD4 (cells/mm³) (pointwise 95% CI)

Weeks from randomisation (ART initiation)

Global p = 0.02

NB: some participants were on STIs at weeks 60, 84 and 108
CD4 over follow-up time

0-<2 years after ART initiation

Most recent CD4

- **0-49**
- **50-99**
- **100-199**
- **200-349**
- **350-499**
- **500+**

33% <50 cells/mm³ pre-ART
CD4 over follow-up time

33% <50 cells/mm³ pre-ART

Note: LCM CD4 switch criteria was 100 cells/mm³ (confirmed) on ART

Most recent CD4

0-49, 50-99, 100-199, 200-349, 350-499, 500+
Risk of death by current CD4

- Median CD4 at death: 86, IQR 22-177; range 1-769
- Death rates per 100 PY:
 - LCM & CDM: 12.6 (215) events
 - Death: (382 deaths)

rates/100PY (events)

Most recent CD4
Risk of death by current CD4

- No difference between CDM/LCM in the risk of death at a given CD4 (p=0.54)

- Median CD4 at death: 86, IQR 22-177; range 1-769

- Death: LCM & CDM

Deatthe events:

- LCM&CDM: 12.6(215) 1.0(54) 0.9(23) 0.6(7) (382 deaths)
Risk by current CD4

Rates/100PY (events)
WHO 4 (acc)
CDM 27.5(268) 4.8(91) 2.3(65) 1.7(21) 1.1(6)
(452 events)
Death: LCM & CDM
LCM&CDM 12.6(215) 2.0(75) 1.0(54) 0.9(23) 0.6(7)
(382 deaths)

Death: LCM & CDM
WHO 4 accepted: CDM
Risk by current CD4

Rates/100PY (events)

WHO 4

<table>
<thead>
<tr>
<th>CDM</th>
<th>WHO 4 accepted: CDM</th>
<th>WHO 4 reported: CDM</th>
<th>Death: LCM & CDM</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.5(268)</td>
<td>27.5(268)</td>
<td>27.5(268)</td>
<td>27.5(268)</td>
</tr>
<tr>
<td>4.8(91)</td>
<td>4.8(91)</td>
<td>4.8(91)</td>
<td>4.8(91)</td>
</tr>
<tr>
<td>2.3(65)</td>
<td>2.3(65)</td>
<td>2.3(65)</td>
<td>2.3(65)</td>
</tr>
<tr>
<td>1.7(21)</td>
<td>1.7(21)</td>
<td>1.7(21)</td>
<td>1.7(21)</td>
</tr>
<tr>
<td>1.1(6)</td>
<td>1.1(6)</td>
<td>1.1(6)</td>
<td>1.1(6)</td>
</tr>
</tbody>
</table>

(452 events) (382 deaths)

Most recent CD4
WHO 4 events at high CD4s

- **CD4s at which WHO 4 event reported**
 - CDM: 33 (6%) events >350 cells/mm³ (max 895, 6 above 540)

- **CD4s at which WHO 4 event accepted**
 - CDM: 27 (6%) events >350 cells/mm³ (max 895, 4 above 540)
WHO 4 events at high CD4s

- **CD4s at which WHO 4 event reported**
 - **CDM:** 33 (6%) events >350 cells/mm3
 (max 895, 6 above 540)
 - **LCM:** 18 (4%) events >350 cells/mm3
 (max 540)

- **CD4s at which WHO 4 event accepted**
 - **CDM:** 27 (6%) events >350 cells/mm3
 (max 895, 4 above 540)
 - **LCM:** 16 (5%) events >350 cells/mm3
 (max 540)
WHO 4 events at high CD4s

- **CD4s at which WHO 4 event reported**
 - CDM: 33 (6%) events >350 cells/mm3
 (max 895, 6 above 540)
 - LCM: 18 (4%) events >350 cells/mm3
 (max 540)

- **CD4s at which WHO 4 event accepted**
 - CDM: 27 (6%) events >350 cells/mm3
 (max 895, 4 above 540)
 - LCM: 16 (5%) events >350 cells/mm3
 (max 540)

- Risks of both reported and accepted WHO 4 events for a given CD4 differed significantly between CDM vs LCM (p=0.002 and p=0.02 respectively), **being greater in CDM only at higher CD4 where most time was spent**
Risk by current CD4

Heterogeneity between LCM & CDM in risk of WHO 4 events for given CD4

- **p=0.02**

Rates/100PY (events)

<table>
<thead>
<tr>
<th>WHO 4 accepted</th>
<th>Most recent CD4</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCM</td>
<td>24.9(184)</td>
</tr>
<tr>
<td>CDM</td>
<td>27.5(268)</td>
</tr>
<tr>
<td>LCM & CDM</td>
<td>12.6(215)</td>
</tr>
</tbody>
</table>

Death LCM & CDM

- **24.9(184)**
- **27.5(268)**
- **12.6(215)**
Possible explanation

• In CDM, the clinician does not know the CD4 count

• Any serious clinical episode could be a WHO 4 event because the patient could have a low CD4 count without the clinician knowing
 - full work up, diagnostic tests, event reported on CRFs etc
 ⇒ identify WHO 4 events which can occur at high CD4 counts (hence interest in “when to start ART” at high CD4 counts)

• In LCM, the clinician “knows” the episode cannot be a WHO 4 event, because the patient has a high CD4 count
 - no work up, event not reported
Possible explanation

- In CDM, the clinician does not know the CD4 count
- Any serious clinical episode could be a WHO 4 event because the patient could have a low CD4 count without the clinician knowing
 - full work up, diagnostic tests, event reported on CRFs etc

 - identify WHO 4 events which can occur at high CD4 counts
 (hence interest in “when to start ART” at high CD4 counts)

- In LCM, the clinician “knows” the episode cannot be a WHO 4 event, because the patient has a high CD4 count
 - no work up, event not reported

Predicting the expected number of events
given observed CD4s in LCM
suggests 40 missed LCM WHO 4 events at CD4>200 cells/mm³
Conclusions

• Despite numerous strategies to reduce bias (standardised follow-up schedule, home visits, objective criteria, blinded ERC etc), open randomisation likely led nevertheless to CD4-dependent reporting bias in WHO 4 events
 - under-reporting and under-investigation of potential WHO 4 events at higher CD4 in LCM

• 356 LCM vs 459 CDM primary endpoints (Δ=103)
 - estimate 40 missed LCM events but as primary endpoint was first new WHO 4/death impossible to predict number of missed endpoints

• True differences between CDM/LCM in time to WHO 4/death, but not death, may be smaller than estimated

• Implications for open trials with clinical endpoints (let alone observational studies)
Acknowledgments

We thank all the patients and staff from all the centres participating in the DART trial.

GlaxoSmithKline, Gilead Sciences and Boehringer-Ingelheim donated first-line drugs for DART, and Abbott provided Kaletra/Aluvia as part of the second-line regimen for DART. DART was funded by the UK Medical Research Council, the UK Department for International Development (DFID), and the Rockefeller Foundation.