Pharmacokinetics of Efavirenz dosed according to the WHO weight-bands in children in Uganda

Sabrina Bakeera-Kitaka, Lindsay Kendall, Eva Natukunda, Quirine Fillekes, Addy R Kekitiinwa, Constance Tumusiime, Peter Mugyenyi, Ann Sarah Walker, Diana M Gibb, David Burger and the ARROW TRIAL

National Paediatrics HIV Conference, Kampala, Sept 2010
The ARROW Trial

- The ARROW Trial is a multi-centered study in Uganda and Zimbabwe.
ARROW Study Design

CDM vs. LCM

(Clinically Driven Monitoring vs. Laboratory and Clinical Monitoring)

Meet WHO criteria; ART naïve; age 6 months-17 years; no contra-indications to antiretroviral therapy

- **CDM**
 - n=600

- **LCM**
 - n=600

Arm A ABC+3TC+NVP
Arm B ABC+3TC+NVP/EFV+ZDV (at 36 weeks drop ZDV)
Arm C ABC+3TC+NVP/EFV+ZDV (at 36 weeks drop NVP)

Clinical Endpoints - follow-up 3½ to 5 years
Background:

- Efavirenz (EFV) is commonly used in children over 3 years worldwide,
- There is only limited pharmacokinetic (PK) information available in African children.
- This study was aimed at understanding the PK of EFV at different weight bands.
Methods:

- 41 HIV-infected Ugandan children aged 3-12 years on generic EFV plus 3TC+ABC were enrolled in a cross-over PK study of twice to once daily 3TC+ABC 36 weeks after ART initiation in the ARROW trial.

- Once-daily EFV doses following WHO weight-bands were 200/250/300*/350* mg for children weighing 10-15/15-20/20-25/25-30kg respectively using EFV capsules or *halved 600mg tablets.
Methods

- Intensive plasma PK sampling (t=0,1,2,4,6,8,12h post observed ingestion) was performed on twice-daily ART at steady state (PK1) and repeated 4 weeks later (PK2, including a further 24h sample).

- EFV daily area under the curve (AUC\textsubscript{0-24}) and clearance (CL/kg) were estimated using WinNonlin.

- Predictors of \(\log_{10}\)AUC and CL were assessed using multivariate mixed models, fitting random effects for each child.
Baseline demographics

<table>
<thead>
<tr>
<th>N with 1 or more evaluable PK*</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female, n (%)</td>
<td>23 (59%)</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>19.5 (16.5-23.0)</td>
</tr>
<tr>
<td>weight-band 10-15 kg, n (%)</td>
<td>5 (13%)</td>
</tr>
<tr>
<td>weight-band 15-20 kg, n (%)</td>
<td>16 (41%)</td>
</tr>
<tr>
<td>weight-band 20-25 kg, n (%)</td>
<td>15 (38%)</td>
</tr>
<tr>
<td>weight-band 25-30 kg, n (%)</td>
<td>3 (8%)</td>
</tr>
<tr>
<td>Age, years</td>
<td>7.4 (5.5-8.7)</td>
</tr>
<tr>
<td>3-6 years, n (%)</td>
<td>18 (46%)</td>
</tr>
<tr>
<td>7-12 years, n (%)</td>
<td>21 (54%)</td>
</tr>
<tr>
<td>Weight-for-age, z-score</td>
<td>-1.41 (-2.12 to -0.65)</td>
</tr>
<tr>
<td>Height-for-age, z score</td>
<td>-1.80 (-2.80 to -1.11)</td>
</tr>
</tbody>
</table>
Results

- 39 & 37 children had evaluable EFV profiles at PK1 & PK2 respectively.
- 16/39 (41%) children were boys,
- 18 were aged 3-6 years and 21 7-12 years.
- The geometric mean (%CV) AUC$_{0-24}$ was 50.4 (91.7%) and 54.0 (80.8%) h.mg/L at PK1 and PK2 respectively, with no significant variation across weight-bands (p=0.51)
Results

3 sub-populations were identified from normal mixture modeling:

- 40% children with geometric mean AUC_{0-24} 27.2 h.mg/L,
- 32% with 49.9 h.mg/L,
- and 28% with 137 h.mg/L.
EFV levels

- A large inter- and intra-subject variability was found in EFV PK parameters (eg 81% and 28% for AUC0-24)

- 15% (6/39) children at PK1, 19% (7/37) children at PK2 (7 children in total) had a subtherapeutic C8h and/or C12h level (<1.0 mg/L).
EFV Levels

- 38% (14/37) had a subtherapeutic C24h level at PK2
- 23% (9/39) children at PK1 and 27% (10/37) children at PK2 (11 children in total) had a toxic C8h and/or C12h level (>4.0 mg/L)
Mean EFV levels at week 36 (PK1) and week 40 (PK2)
Overall mean(SD) clearance was 6.8(3.9) and 6.2(3.7) L/h at PK1 and PK2 respectively (p=0.04).

CL increased by 0.50L/h for every year older (p=0.05), but did not depend on weight (p=0.30), weight-for-age (p=0.56) or height-for-age (p=0.82).
Conclusion:

- African children aged 3-12 years, on daily EFV using WHO weight-bands, had lower and highly variable EFV PK parameters compared to data from adults.

- There were no differences across weight-bands, suggesting no major effect of some using half tablets.
Recommendations

- Increased EFV doses for children should be investigated, but risk increasing the proportion of children with toxic levels further.
Acknowledgement

COLLABORATORS and ACKNOWLEDGEMENTS