

CD4 T cell depletion, and not age, may be a driver of abnormal CD4 cell compartments in HIV-infected children initiating ART in Uganda

<u>V Musiime¹</u>, AS Walker², P Musoke³, P Nahirya-Ntege⁴, G Pimundu¹, M Spyer², D Sefe⁵, P Pala⁴, DM Gibb², N Klein⁵

¹Joint Clinical Research Centre, Kampala, Uganda ²MRC Clinical Trials Unit, London, UK ³Mulago PIDC, Kampala, Uganda ⁴MRC/UVRI, Entebbe, Uganda ⁵Institute of Child Health, UCL, London, UK

Background

- The naïve CD4 T-cell pool is maintained by:
 - Production of new cells by the thymus
 - Proliferation within the naïve pool
 - Cell loss through death or differentiation to memory cells

Murray JM et al, 2003

- The homeostatic mechanisms operating to maintain naïve and memory pools are not fully understood in healthy children
- Even less is known in HIV infection, particularly in resource-limited settings where ART is often initiated with advanced immunodeficiency

Study objective

 To determine the CD4 T-cell populations in HIV infected Ugandan children initiating antiretroviral therapy

Methods

- 1207 ART-naive children meeting WHO criteria for ART in Uganda/Zimbabwe were enrolled into the ARROW clinical trial and started on ART
- 199 children in Uganda underwent CD4 immunophenotyping at ART initiation using a combination of CD4, CD45RA and CD31 antibodies
- Study participants were:
 - 54% girls
 - Aged 5months to 18yrs

Methods 2

- Three CD4 cell sub populations were investigated:
 - CD4RA+CD31+ : Recent Thymic Emigrants (RTE)
 - CD45+CD31- : Central Naïve (CN)
 - CD45RA-CD31- : Memory (M)

Results: Variations of CD4 cell sub-populations with age

Results: Pre ART CD4 depletion Versus Age as a predictor of CD4 sub populations

At ART	Effect (95% CI) of Pre-ART factors on:		
initiation	%RTE	%CN	%M
1 unit lower CD4 count for age Z-score	-4.4%	+2.1%	+3.6%
	(-5.4%, -3.5%)	(+1.5%, +2.7%)	(+2.6%, 4.6%)
	P<0.001	P<0.001	P<0.001
1 year older	+0.4%	-0.1%	-0.2%
age	(-0.2%, 1.4%)	(0.4%, +0.3%)	(-0.8%, 0.4%)
	P=0.16	P=0.78	P=0.55
1 unit lower weight for age	-0.0%	+0.7%	-0.5%
	(-1.5%, +1.4%)	(-0.2%, +1.6%)	(-2.0%, +0.9%)
	P=0.96	P=0.12	P=0.47
Girl Vs Boy	+0.6%	+0.7%	+0.0%
	(-3.6%, +4.9%)	(-1.9%, +3.4%)	(-4.3%, +4.3%)
	P=0.76	P=0.57	P=1.00

Multivariable modelling showed that the relationship with age was the result of lower CD4 for age in older children

Conclusions

- In all age groups, the cell populations in the 3 CD4 compartments were lower than have been reported in healthy Caucasian children (Huenecke S et al, 2008)
- Total CD4 count may be an important driver or consequence of lower Recent Thymic Emigrants and higher central naïve/ memory populations, with a far stronger association than age alone

Conclusions 2

- In children surviving without ART, there may be a shift to maintain the CD4 cell pool through the relative expansion of central naïve and memory pools at the expense of Recent Thymic Emigrants
- This may indicate that with time the capacity of the thymus to keep pace with CD4 cell loss is diminished
- The long term consequences of this trend for subsequent ART response are under investigation in ARROW

Acknowledgments

- The ARROW Trial teams at:
 - Joint Clinical Research Centre, Kampala
 - Mulago hospital PIDC
 - MRC/UVRI Entebbe, Uganda
 - UZ College of Health Sciences, Harare, Zimbabwe
 - MRC CTU, London, UK
- Institute of Child health, UCL, London, UK
- ARROW funders: MRC UK, UK DfID
- GlaxoSmithKline (GSK) for trial drugs

