Access to Safe Water for the Bottom of Pyramid : Strategies for Disseminating Technology Research Benefits Secondary Research Report

Submitted by

Society for Technology and Action for Rural Advancement (TARA) Village – Ghitorni, Near NBCC Complex, Mehrauli Gurgaon Road, New Delhi- 110030, India

Submitted to DFID Department for International Development Abercrombie House, Eaglesham Road, East Kilbride, G75 8EA

November 2010

Contents

Executive Summary	1
Background to the Study	3
Overview of Nanotechnology	6
Nanotechnologies in the Water Sector	7
Nanotechnology Research in India	11
Nanotechnologies Marketed In India	13
Market Scenario	15
Enabling access to safe drinking water	17
Environmental and Health Impacts	18
Policy Concerns	19
Way Forward	20
Annex 1: Technologies	22
Annex 2 : Agencies In Nanotechnology in the Water Sector	35
Annex 3 : Centre of Excellence (CoE) in India	

Executive Summary

One in eight people in the world today lack access to clean drinking water. A child dies every 15 seconds from a lack of clean water. One in four children who die before age five worldwide, die of a water related disease. Most people without access to clean water live right above it. In many cases the only thing preventing access to clean water is money¹. Access to clean water is the foundation of development. Food, health, hygiene, habitat, education, employability, productivity are all dependent upon access to water. Without clean water, none of these is possible and poverty is inevitable. Majority of these people are in the developing world.

Over the years, India has made improvements to both the availability and quality of municipal drinking water systems. However the exponentially growing population has stressed existing water systems and resources. The pressures of urbanization have stretched government solutions. Rural areas are still left out. Many water sources are contaminated with both bio and chemical pollutants, and over 21% of the country's diseases are water-related.

The Department for International Development (DFID) leads the UK Government's fight against global poverty. To take this agenda forward DFID is establishing a research programme to help engage with those new and emerging technologies with the potential to impact on poverty in a way that enables developing countries to take advantage of what they have to offer. Through this research, Technology and Action for Rural Advancement (TARA) seeks to identify key challenges and barriers that may reduce the impact of technologies such as Nanotechnologies for providing clean drinking water reaching the underprivileged in developing countries, its possible environmental implications and remedial measures.

Nanotechnology has introduced a new generation of water filters and purification systems. Research on Carbon nanofiltration membranes and nano catalysts like iron, silver and titanium dioxide for water treatment applications is a fast growing field. Universities like Stanford, Aberdeen, Rice, etc. as well as their Indian counterparts like the Indian Institutes of Technology, Benares Hindu University, Indian Institute of Science etc. are actively involved in nanotechnology research focused on the water technology. Some technologies have recently also been introduced in the market by companies like Eureka Forbes Limited, TATA Chemicals, etc. for point of use application.

¹ The Water Project

This report is a secondary review of available technologies in the laboratory and the market. It is structured in three chapters. Chapter 1 offers a background to the study, focusing on current water issues globally and nationally. It also throws light on the reasons and approach for this study. Chapter 2 presents an overview on Nanotechnology, especially the role of nanotechnologies in the water sector. Prominent research from around the world is featured in the chapter. Specifically for India, it draws attention to research agencies that have initiated nano research. Also highlighted are nanotechnologies marketed in India in the water purification sector. The overview sheds light on the present market scene for nanotechnology. Policy issues and health and environmental impacts of nanotechnologies in the water sector, though little understood as of date, are mentioned. This is an area that requires further work.

Chapter 3 presents the way forward in the research study. This report is derived from scanning and mapping of the current scenario. Further the study involves consultations and primary surveys to identify potential technologies and partners.

The aim of this report is to develop and provide a basic understanding of the current research and market scenario with respect to nanotechnologies in the water sector.

We sincerely hope that this review has been able to place us on a sound footing from where to start the consultation process which will help us in achieving the aim of the project.

Background to the Study

Only 2.53 % of earth's water is fresh, and some two-thirds of that is locked up in glaciers and permanent snow cover. Nearly one billion people - one in eight persons in the world - lack access to safe water supply. Over 3.5 million people die each year from water-related disease; 84 % are children. 98 % occur in the developing world. Sixty five million people are at risk of arsenic poisoning in the Bangladesh, India and Nepal area. The water and sanitation crisis claims more lives through disease than any war claims through guns².

Indian government surveys reveal that only 30 % of the rural population had access to safe drinking (tap) water in the country. 55 % depend on tube well or hand pumps to meet their drinking water requirement. 15 % of rural populations were still looking for a dependable source of water. In urban areas, 74 % depend on tap water and 18 % on tube well/hand pump³.

Despite the very real danger of future global water shortages, today's water crisis is not an issue of scarcity, but of $access^4$. Poor people living in the slums often pay five to ten times more per liter of water than wealthy people living in the same city⁵. However investment in safe drinking water and sanitation can contribute to economic growth. For each \$1 invested, the World Health Organization (WHO) estimates returns of \$3 – \$34, depending on the region and technology⁶.

Altogether the cost of environmental damage is estimated to be \$9.7 billion per year, of which the most vital is the health impacts of water pollution accounting for 59% of the total value of degradation⁷. Waterborne diseases (the consequence of a combination of lack of clean water supply and inadequate sanitation) cost the Indian economy 73 million working days a year⁸. Water quality is a major problem in both ground and surface water. Although in their upper reaches most rivers are of good quality, the middle and lower reaches of almost all rivers face major degradation. Some of the key pollutants and their sources are summarized below.⁹

• **Microbial contamination (faecal)** mainly arises from inadequately treated or untreated sewage. Lack of sanitation and sewage treatment facilities is the main cause for this.

⁹ The Energy and Resources Institute (TERI). 2009, Nanotechnology developments in India - a status report

^{2 2006} United Nations Human Development Report.

³ National Sample Survey Office (NSSO) study on Housing Condition and Amenities in India, 2008-09.

⁴ One Billion Affected, Water.Org

^{5 2006} United Nations Human Development Report.

⁶ United Nations World Water Development Report, "Water in a Changing World"

⁷ Brandon, Carter, and Homman K. 1996. The cost of Inaction. Valuing the Economy-wide Loss of environmental Degradation in India, Washington: World Bank. 8 WaterAid

- **Heavy metal** contaminated waste water from industrial activities such as electroplating, textile dyeing; tanneries etc reach the surface or ground water sources if it's inadequately treated. In addition leaching from solid waste dumps (e.g. fly ash ponds, sludge from above industries) also contributes towards heavy metal accumulation.
- **High salinity** arises from decreasing groundwater levels and seawater intrusion. This is also aggravated by agricultural run offs, which are rich in salts.
- Arsenic, fluoride, and nitrate contaminants enter groundwater aquifers from their presence in the sediments of the region. This has been further aggravated by excessive groundwater withdrawals.
- Micropollutants include pesticides, endocrine disrupting substances, and surfactants. These arise from agricultural run offs and from sewage.

Water that does not meet drinking water standards should be treated to ensure that the health of the consumer or community is not compromised through exposure to toxic pollutants. Water supply systems in urban India are mainly centralized and managed by municipal bodies. Certain levels of treatment and purification occur at source before distribution via a piped network. Chlorination is the most common measure. Rural India depends on varied localized sources to meet its water needs. Traditionally households boil water before consumption. Urban markets today are flooded with household water purifiers catering to the middle and upper classes. The technologies used vary from reverse osmosis to UV purification to ionization, iodine filters, etc.

Polluted water is often treated by conventional or pressure-driven membrane processes to make it comply with drinking water standards. Conventional water treatment process consists of several stages. These include pre-treatment, coagulation, flocculation, sedimentation, disinfection, aeration, and filtration. The pre-treatment stage removes suspended solids. Coagulation and flocculation are carried out to precipitate dissolved impurities through sedimentation. The water is then filtered to remove any suspended particles. One of the disadvantages of the conventional water treatment method is that it cannot remove dissolved salts and some soluble inorganic and organic substances.

The DFID Research Strategy 2008 – 2013 recognises a key role for research to help anticipate and respond to future trends with respect to new and emerging cutting edge technologies that could have a real relevance to the needs of poor people. The Research Strategy also recognises that the challenge for DFID lies not in the development or commercial application of these technologies, but in translational research to support the longer term development agenda. Research is needed into the most effective, safe and

affordable approaches to applying these new technologies in developing country situations and to ensuring the benefits are derived by the poorest. Purifying drinking water is one of the strategic areas for the research with a special focus on nanotechnology. TARA has undertaken this research to identify the key challenges and barriers that may be reducing the impact of these technologies on the lives of poor people and help to identify some of the key technologies that could form the basis of further work.

The research will focus on both; technologies under R&D stage with potential to bring great impact in developing countries as well as technologies that have penetrated limited markets but for some reasons are not able to penetrate mass markets for reasons that we are proposing to research. The key focus would be to scan the potential technologies where, if principles of design for environment are incorporated right in the development stage can address the needs of the bottom of the pyramid markets and are amenable to support of related institutional and financial systems.

This report is a secondary review of available technologies in labs and in the market. Based on this review, we will be short listing the technologies for further research and partners will be identified to take forward the research in phase 2.

Overview of Nanotechnology

Nanotechnology is defined as a technology where dimensions and tolerances are in the range of 0.1-100 nm. It is the application of these nano structures and principles behind them to make nano scale devices and to produce new materials.

Mihail Roco of the U.S. National Nanotechnology Initiative has described four generations of nanotechnology development. The current era is that of passive nanostructures, materials designed to perform one task. The second phase, which we are just entering, introduces active nanostructures for multitasking; for example, actuators, drug delivery devices, and sensors. The third generation is expected to begin emerging around 2010 and will feature nano-systems with thousands of interacting components. A few years after that, the first integrated nano-systems, functioning much like a mammalian cell with hierarchical systems within systems, are expected to be developed¹⁰.

Although there has been much hype about the potential applications of nanotechnology, most current commercialized applications are limited to the use of "first generation" passive nano-materials. These include titanium dioxide nano-particles in sunscreen, cosmetics and some food products; silver nano-particles in food packaging, clothing, disinfectants and household appliances; zinc oxide nano-particles in sunscreens and cosmetics, surface coatings, paints and outdoor furniture varnishes; and cerium oxide nano-particles as a fuel catalyst. The principal way nanotechnologies might help alleviate water problems is by removing water contaminants including bacteria, viruses, arsenic, mercury, pesticides and salt pose.

Materials at the nano scale often have different optical or electrical properties from the same material at the micro or macroscale. E.g. nano titanium oxide is a more effective catalyst than microscale titanium oxide. It can be used in water treatment to degrade organic pollutants. But in other cases, manufactured nano particles small size may make the material more toxic than normal¹¹. Many researchers and engineers claim that nanotechnologies offer more affordable, effective, efficient and durable ways of achieving this. Using nano particles for water treatment will allow manufacturing that is less polluting than traditional methods and requires less labour, capital, land and energy¹². There is a need to develop new sustainable business models for nanotechnologies to solve real problems, identified in participation with local communities.

11 Hillie Thembela, Munasinghe Mohan,; Hlope mbhuti,; Deraniyagala Yvani,; 2006, Nanotechnology, water Development, Global Dialogue on Nanotechnology and the poor: Opportunities and Risks, meridian Institute, Chennai, October 2006;

12 Nanotechnology, commodities and development. Meridian Institute background paper (2007)

¹⁰ U.S. National Nanotechnology Initiative

Nanotechnologies in the Water Sector

A range of water treatment devices that incorporate nanotechnology are already on the market, with others either close to market launch or in the process of being developed. Various examples of nanotechnology in water treatment and purification and detoxification are:

- Nanofiltration membranes
- Attapulgite clays, nonporous Zeolites, and Nano porous Polymers
- Nano particles for catalytic degradation of water pollutants
- Magnetic nano particles
- Nano sensors

Nanofiltration (NF) membrane technology is widely applied for removal of dissolved salts (i.e., desalination) from salty (i.e., brackish) water, removal of micro pollutants (e.g., arsenic and cadmium), water softening (i.e., removal of calcium and magnesium ions), and wastewater treatment. The main advantages of the membrane process for water treatment is that it does not require chemicals, requires relatively low energy, and is easy to operate and maintain. NF membranes using carbon nano tubes and alumina fibres are already being used to remove dissolved salts and micro-pollutants, soften water and treat wastewater.

A team of Indian and US scientists have developed carbon nano tube filters that remove bacteria and viruses more effectively than conventional membrane filters¹³. A study in South Africa has shown than Nanofiltration membranes can produce safe drinking water from brackish groundwater¹⁴. Researchers at Stellenbosch University, South Africa have developed a sachet sucks up toxic contamination when fitted into the neck of a water bottle. The sachets are made from the same material used to produce the rooibos tea bags that are popular in South Africa. But inside are ultra-thin nanoscale fibres, which filter out contaminants, plus active carbon granules, which kill bacteria¹⁵.

The membranes act as a physical barrier, capturing particles and micro-organisms bigger than their pores, and selectively rejecting substances. NF water treatment plants typically consist of two types of treatment stages in series. These are the pre-treatment and membrane systems. The pre-treatment system removes particulate matter; in particular, suspended solids. The membrane removes some soluble substances and minute

¹³ Efficient filters produced from carbon nano tubes through Rensselaer Polytechnic Institute-Banaras Hindu University collaborative research. Rensselaer (2004)

¹⁴ Hillie, T. and Hlophe, M. Nanotechnology and the challenge of clean water. Nature Nanotechnology 2 (2007)

¹⁵ Munyaradzi Makoni, 2010, Nano 'tea bag' purifies water, Science and Development Network

substances that were not rejected by the pre-treatment system. NF membranes selectively reject substances. The characteristic selectivity of NF has advantages because it enables the retention of nutrients present in water that are required for the normal functioning of the body. For example, calcium ions are necessary for the healthy development of bones¹⁶.

Naturally occurring attapulgite clays are also used in nano filters. Attapulgite is a naturally mined clay. It is a needle-like clay mineral composed of magnesium-aluminium silicate. These are locally available in many places around the world and have innate nanometre-size pores¹⁷. A study using attapulgite clay membranes to filter wastewater from a milk factory in Algeria has shown they can economically and effectively reduce whey and other organic matter in wastewater, making it safe to drink¹⁸.

Nano technology also utilizes the existence of nanoscopic pores in zeolite filtration membranes. Zeolites are microporous, aluminosilicate minerals commonly used as commercial adsorbents. These materials are also known as molecular sieve – they contain tiny pores of a precise and uniform size that are useful as adsorbent for gases and liquids. Zeolites can also be fabricated. Zeolites can be used to separate harmful organics from water and to remove heavy metal ions. Researchers at Australia's Commonwealth Scientific and Industrial Research Organization (CSIRO) have created a low-cost synthetic clay, hydrotalcite that attracts arsenic removing it from water. They have suggested a novel packaging for this product for low-income communities — a 'teabag' that can be dipped into household water supplies for about 15 minutes before drinking. And selling the used teabags back to the authorities might increase recycling and help with waste disposal of concentrated arsenic¹⁹.

Nano catalysts could make heavily polluted water fit for drinking, sanitation and irrigation. Nano catalysts owe their better catalytic properties to their nanosize or to being modified at the nano scale. They can chemically degrade pollutants instead of simply moving them somewhere else, including pollutants for which existing technologies are inefficient or prohibitively expensive. Immobilisation is a good technique since it would keep water free of nano particles during and after water treatment. Researchers at the Indian Institute of Science, in Bangalore, are developing such a technique for degrading organic molecules using nano titanium dioxide²⁰. A water filter under development at Stanford University uses a piece of cotton treated with nanomaterial (silver nanowires and carbon nano tubes) to

²⁰ Nano scale water treatment needs innovative engineering. Ashok Raichur 2009

¹⁶ Hillie Thembela, Munasinghe Mohan,; Hlope mbhuti,; Deraniyagala Yvani,; 2006, Nanotechnology, water Development, Global Dialogue on Nanotechnology and the poor: Opportunities and Risks, meridian Institute, Chennai, October 2006;

¹⁷ David J. Grimshaw Nanotechnology for clean water, Science and Development Network

¹⁸ Khider, K., Akretche, D.E. and Larbot, A. Purification of water effluent from a milk factory by ultrafiltration using Algerian clay support. Desalination 167 (2004)

¹⁹ Gillman, G.P. A simple technology for arsenic removal from drinking water using hydrotalcite. Science of the Total Environment 336 (2006)

remove bacteria from water quickly by killing it with electrical fields using just 20 % of the power required by pressure-driven filters²¹.

Researchers at the Nanotechnology and Integrated BioEngineering Centre (NIBEC), University of Ulster are working on are working on solar disinfection of water using photocatalytic nanoparticles (titanium dioxide) to remove chemical pollutants and pathogens from water, for developing countries.

Magnetic nano particles can be used to bind with contaminants like arsenic or oil. Magnetic nano particles have large surface areas relative to their volume and can easily bind with chemicals. Then they be removed using a magnet. Scientists at Rice University in the United States are using magnetic "nanorust" to remove arsenic from drinking water. Size 12 particles can remove upto 99.2% arsenic from solution²². They are developing a way of creating nanorust from inexpensive household items. This could significantly reduce production costs, making it a viable product for communities throughout the developing world²³. Several companies are commercialising such technologies and researchers are frequently publishing new discoveries in this area.

Nano sensors for the detection of contaminants and pathogens can improve health, maintain a safe food and water supply, and allow for the use of otherwise unusable water sources. They can detect single cells or even atoms, making them far more sensitive than counterparts with larger components. Detection technology for water purification would allow people to more quickly find out what the contaminants are, without having to send samples to laboratories for testing. Nano sensors, such as those based on titanium oxide nano wires or palladium nano particles are used for analytical detection of contaminants in water samples.

A team at Pennsylvania State University in the United States has developed a way of detecting arsenic in water by using nano wires on a silicon chip²⁴. Research is experimenting with single- and double-walled Carbon nano tube (CNT) that can detect chemicals in water²⁵. The European Committee funded project BioFinger in developing a portable, versatile, and low-cost molecular detection tool. BioFinger is developing a handheld device that

²⁵ H.Verdala et al., "Surface Modification of Carbon Nanotubes Using Poly (Vinyl Alcohol) for Sensor Applications," International Latin American and Caribbean Conference for Engineering and Technology, Miami, June 2 – 4, 2004,

²¹ Louis Bergeron, Stanford News Service, High-speed filter uses electrified nanostructures to purify water at low cost

²² Vicki Colvin , Using magnetic nanoparticles in water treatment, ACS Green Nano technology and the environment symposium 2006

²³ Yavuz, C.T., Mayo, J.T., Yu, W.W. et al. Low-field magnetic separation of monodisperse Fe3O4 nano crystals. Science 10 (2006)

²⁴ Patel, P. Nano sensors made easy. Technology Review (2009)

incorporates nano- and micro-cantilevers on a disposable microchip to analyze chemicals and bacteria in water²⁶.

A Binghamton University chemist has been awarded a three-year grant from the U.S. Environmental Protection Agency to develop advanced nano sensors for continuous monitoring of heavy metals in drinking water and industrial effluent²⁷. In Brazil, The National Nanotechnology Laboratory Applied to Agribusiness, housed at Embrapa's agricultural instrumentation unit in São Paulo, has developed a cheap optical sensor incorporating nano-assembled films to evaluate the acidity of natural water supplies. And 'electronic tongues' — another kind of polymer sensor developed at Embrapa — can be used to distinguish between different mineral waters and between pure water and water contaminated by organic matter²⁸.

Technology	Description	Current Status
Hydrotalcite	Low-cost synthetic clay, hydrotalcite that attracts arsenic removing it from water packaged as a 'teabag' that can be dipped into household water supplies for about 15 minutes before drinking by CSIRO	Prototype developed
Silver Nanofiltration	High-speed, low-cost filter using plain cotton cloth dipped in a broth of silver nanowires and carbon nanotubes by Stanford researchers	Prototype being developed
Nanorust	Nano Iron binds with arsenic and is removed from water using a magnetic field. Technology developed by Rice University	Prototype being tested in Mexico
Nanofiber	Tea bags with ultra-thin nanoscale fibres, which filter out contaminants, and active carbon granules, which kill bacteria by Stellenbosch University	Under approval by SA Bureau of Standards
Nano Photocatalysts	Solar disinfection of water using photocatalytic nanoparticles (titanium dioxide) to remove chemical pollutants and pathogens from water being developed by NIBEC	Research
Carbon nano tubes	Simple method to produce carbon nanotube filters that efficiently remove micro- to nano-scale contaminants from water being developed by BHU	Research
Nano antimicrobials	Silver-based antimicrobial filter water bottle developed by IonArmour	Market by InnovaMaterials
Nano silver catalyst	UV disinfection with adsorption on nano silver based activated carbon blocks developed by IIT-C	Marketed by Eureka Forbes
Nano silver catalyst	Rice Husk Ash impregnated with Nano Silver particles, activated silica and carbon developed by TATA group	Marketed by TATA Chemicals
Nano silver catalyst	Coating technology for incorporation of nano silver in traditional candle filters for disinfection developed by ARCI	Field testing by SBP Aquatech Pvt. Ltd.

Table 1: Current Status of some prominent nanotechnologies

²⁸ Developing world advances nanotech for clean water, Paulo Sergio de Paula Herrman Jr.

²⁶ BioFinger, and Information Society Technologies, "Portable Molecular Detection Tool to Revolutionise Medical Diagnosis"

²⁷ S. E. Barker, "A Featherweight Solution for a Weighty Problem: BU Chemist Wins \$351K EPA Grant to Develop Nanoreactor to Detect, Trap Heavy Metals in Water," discover-e, 2003,

Nanotechnology Research in India

Department of Science and Technology (DST) is the chief agency engaged in the development of nano science and nanotechnology. It is at the helm of the principal program, the Nano science and Technology Mission (NSTM) between the years 2007-2012; established to develop India as a key player in nano science and technology.

Building upon the promotional activities carried out as part of the Nano Science and Technology Initiative (NSTI) in the highly promising and competitive area of Nano Science and Technology, the Government of India launched a Mission on Nano Science and Technology (Nano Mission) in May 2007. An allocation of Rs. 1000 crore for five years has been made. The Department of Science and Technology is the nodal agency for implementing the Nano Mission²⁹. The IBSA (India-Brazil-South Africa) nanotechnology initiative, a collaborative research and development programme between the Departments of Science and Technology in India, Brazil and South Africa, shows how South-South collaboration can promote the use of nanotechnology for clean water and points to progress being made in these countries IBSA identifies three areas of research as high priority: Nanofiltration and ultrafiltration membranes; nano-based water purification systems for remote and rural areas; and carbon nano gels, nano tubes and nano fibres³⁰.

Beside DST, several other agencies with diverse mandates are also actively engaged in supporting nanotechnology in the national arena. This follows from the potential of nanotechnology to dovetail with diverse disciplines as well as serve multiple sectors. The Council for Scientific & Industrial Research (CSIR) has also commissioned R&D in nanotechnology in diverse areas. The Defence Research & Development Organisation (DRDO) is also contributing to the expansion of nanotechnology in India.

Public sector research and development (R & D) institutions play a predominant role in nanotechnology research. Research in nano science and nanotechnology is being carried out in various academic and scientific institutions. Foremost are the, 'Centres of Excellence (CoE) for Nano science and Technology' established under the NSTI by the DST. The "Centres" seeks to undertake R&D to develop specific applications in a fixed period of time. Nineteen CoEs have been spread across 14 distinct institutions. The S.N. Bose National Centre for Basic Sciences (SN Bose NCBS), Association for the Cultivation of Science (IACS), the Indian Institute of Science (IISc), Jawaharlal Nehru Centre for Advanced

29 Mission on Nano Science and Technology 30 http://www.ibsa-nano.igcar.gov.in/

Scientific Research ((JNCASR) and IIT Kanpur, each host a Unit of Nano science as well as Centre for Nanotechnology. These CoE's as well as the others at IIT Mumbai, Chennai and Delhi are considered amongst the leading institutes for nano science and technology research.

Aside these institutes, others involved in nano science and technology include CSIR labs like Centre for Cellular and Molecular Biology (CCMB), National Institute of Pharmaceutical Education and Research (NIPER), Chandigarh as well as universities like the University of Delhi31. Academic research in nanotechnology is also gaining momentum. Researchers at Banaras Hindu University (BHU) have developed a method to produce carbon nano tube filters that efficiently remove micro-to nano-scale contaminants from water and heavy hydrocarbons from petroleum. CNT filters have been prepared and tested successfully for bacteria removal. This was a joint research effort by BHU Varanasi and Rensselaer Polytechnic Institute USA. More recently, CNT based water filters have also been developed and tested on the laboratory scale by Bhabha Atomic Research Centre (BARC), Mumbai³².

In a study by IIT Kharagpur iron oxide nano particles were synthesized for arsenic removal using chemical method with an average size of 45 nm. Under the experimental conditions studies, maximum adsorption of 96% was obtained^{33.} In another study nano iron-titanium oxide was used. Sorption test using a fixed bed column gave water with arsenic content less than 0.01 mg/L³⁴. In a research carried out by The Birla Institute of Technology & Science (BITS), Goa; International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad; Agharkar Research Institute (ARI), Pune, use of Fe-Ni nano catalyst was found effective for degradation of orange G dye in water. Nano TiO₂ photocatalyst has been studied for removal of chlorophenol, bisphenol, metal ions, nitrobenzenes³⁵. Indian Institute of Chemical Technology(IICT)Indian Institute of Chemical Technology (IICT), Hyderabad, has developed nano silver coated alumina catalyst using electrochemical method. These catalysts were found to be efficient for microorganism control in water^{36.}

³⁶ Shashikala V, Siva Kumar V, Padmasri A H, David Raju B, Venkata Mohan S, Nageswara Sarma P and Rama Rao K S. 2007. Advantages of nano-silver-carbon covered alumina catalyst prepared by electro-chemical method for drinking water purification, Journal of Molecular Catalysis A: Chemical, 268, 1-2, 95-100.

³¹ Nidhi Srivastava, The energy and Resources institute (TERI), 2010. Nanotechnology development in India: the need for building capability and governing the technology

³² Kar S, Bindal R C, Prabhakar S, Tewari P K, Dasgupta K, Sathiyamoorthy D. 2008. Potential of carbon nanotubes in water purification: an approach towards the development of an integrated membrane system, International Journal of Nuclear Desalination, 3(2), 143–150.

³³ De D, Mandal S M, Bhattacharya J, Ram S, Roy S K. 2009. Iron oxide nanoparticle-assisted arsenic removal from aqueous system, Journal of Environmental Science and Health, Part A, 44 (2), 155 – 162.

³⁴ Gupta K and Ghosh U C. 2009. Arsenic removal using hydrous nanostructure iron(III)-titanium(IV) binary mixed oxide from aqueous solution, Journal of Hazardous Materials, 161(2-3), 884-892.

³⁵ Project report No. 2006ST21: D5, Nanotechnology developments in India, April 2009, part of a project: Capability, Governance and Nanotechnology Developments: A focus on India,

Nanotechnologies Marketed In India

While a lot of this research is still at the laboratory stage, some systems incorporating nano materials have reached the market. Point-of-use (PoU) water treatment systems being developed in India are targeting both urban and rural markets. In this context, simple systems which do not require electricity for their operation have been developed for areas where electricity availability is a problem³⁷. Kenstar Appliance India is marketing water purifiers that use nano silver antibacterial technology. Micro Polyvinyl acetate (PVA) and ceramic Pre-filters are combined with Nano Silver Ceramic Balls to ensure purity of the water. Philips Electronics India has launched drinking water filters based on Nanofiltration.

The International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad developed a coating technology for incorporation of nano silver in traditional candle filters for disinfection³⁸. About 100 such Nano silver coated candles have been field tested in 40 villages over an 8 month period with both pond water and locally treated water. The technology has been transferred to SBP Aquatech Pvt. Ltd. Hyderabad which will mass produce and market the candle filters. There seems to be a clear emphasis on serving the needs of rural masses.

Nano-silver activated carbon block has been developed in collaboration with Indian Institute of Technology (IIT), Chennai and is being marketed by Eureka Forbes as part of its new water purifier, Aquaguard Total Gold Nova³⁹. The treatment scheme includes UV disinfection, along with adsorption on nano silver based activated carbon blocks. This water

purifier was launched in early 2008 and costs Rs 9,000-10,000. It appears to have been developed for urban populations.

Tata Chemicals has introduced a nanotech water purifier called Tata Swach, a result of years of collaboration between Tata Consultancy Services (TCS), Tata Chemicals and Titan Industries. The Swach does not require electricity or piped water to work. Tata Swach uses Rice Husk Ash (RHA)⁴⁰ impregnated with Nano Silver particles. RHA TATA Swach® Bulb™ works on patented TSRF[™] technology that removes harmful bacteria and viruses from water and makes it safe to drink. Its performance capabilities have been tested across reputed laboratories in India, United Kingdom and Netherlands. A household unit has a total capacity 18 litres and consists of an upper and a lower container of 9 litres each. Its purification system consists of 3 meshes. Mesh 1 and 2 remove the minutest visible impurities and make water clean & clear. Mesh 3 is a unique detachable component which ensures clear & pure water, even when subjected to very high levels of dirty water. It is being marketed by TATA Chemicals for > 999 /- making it affordable for the common man

37 The Energy and Resources Institute (TERI). 2009, Nanotechnology developments in India – a status report [Project Report No. 2006ST21: D5] 38 http://www.indiawaterportal.org/blog/wp-content/uploads/2008/10/nano.doc

⁴⁰ Rice Husk Ash (RHA) is the filtering medium for water and the nano-silver particles kills bacteria, germs and other organisms.

³⁸ http://www.indiawaterportal.org/blog/wp-content/uploads/2000/10/hand.doc

³⁹ http://www.thehindubusinessline.com/2008/02/27/stories/2008022751082300.htm

contains activated silica and carbon, where the activated silica reduces the turbidity or cloudiness of the water entering the filter and the Activated Carbon adsorbs most of the toxic organic impurities. The Tata Swach water filter took this year's top Gold award prize in The Wall Street Journal's Asian Innovation Awards⁴¹.

⁴¹ Rural water purifier hits the market in India , WASH Technology, December, 2009

Market Scenario

Notwithstanding hopes or fears, nanotechnology is finally moving beyond the confines of the research laboratories to the marketplace. There is feverish activity as the nanotech-based products begin to enter the market in a big way. Industry majors such as TATA, Samsung, Reliance, Thermax and others have introduced a host of products such as nano-based water filters, washing machines, refrigerators, air conditioners, deodorants and cosmetics. Nano scale materials are also being used in electronic, magnetic and optoelectronic, biomedical, pharmaceutical, cosmetic, energy, catalytic and materials applications.

The global spending on nanotechnology grew by 29% in 2006 with government share standing at 52% followed by corporate and venture capitalist spending. Nanotechnology investments by the government were initially led by Europe, North America and Japan. However, countries such as Russia, China, Brazil, Turkey and India have joined the trend and are making significant investments into the sector. Asia-Pacific is anticipated to be the most important region for the sales of nanotechnology products in near future, followed by the US and Europe at similar level.⁴².

According to the US National Science Foundation, the nanotech market would be approximately \$1 trillion worldwide by 2015. "There is a potential for Indian companies to engage in \$20 billion worth of products, services and technology during this period," feels Puneet Mehrotra, director of New Delhi-based industry body called Nano Science and Technology Consortium (NSTC)⁴³.

Total market for water purifiers in India is valued at INR 9 billion in 2009 and is expected to grow significantly in near future. Market comprises of three segments Ultra Violet (UV) based Purifiers, Reverse Osmosis (RO) purifiers and storage / resin based purifiers⁴⁴. Nanotechnologies though introduced have not yet captured significant market share. However the potential for nanotechnology in this sector is large. Nanotechnology is expected to further improve membrane technology and drive down the prohibitively high costs of desalination and other water treatment.

New sensor technology combined with micro- and nanofabrication technology is expected to lead to small, portable, and highly accurate sensors to detect chemical and biochemical parameters. Several research consortia are field testing such devices and some expect to

⁴⁴ Water Purifier Market in India 2010, Netscribes (India) Pvt. Ltd.

⁴² Research Evaluates the Past, Current and Future Scenario of Global Nanotechnology Market , Nanobusiness

⁴³ NANO MAGIC , Sudhir Chowdhary , financial express

commercialise these soon. The nanosensor market in the United States is currently estimated at USD 190 million and is expected to grow at an average annual growth rate of 26% to reach USD 592 million by 2009. Several organizations are developing systems that provide real-time detection of waterborne viruses and particles. These systems may be commercialized soon.

Enabling access to safe drinking water

The need to provide safe drinking water to poor people in developing countries cannot be overemphasised. The close links between poverty and access to safe drinking water serve to highlight this need especially in the perspective of achieving the Millennium Development Goals. While nanotechnology has a huge potential in the commercial market, it can play a pivotal role in the development sector.

Research suggests that materials suitably treated or impregnated with nanotechnologybased methods can filter more effectively and thereby increase the health benefits. Several researchers are testing their nanotechnology based devices in developing countries. E.g. the tea bag arsenic removal device in South Africa, ARCI testing their silver nanofilters in villages in South India.

Though many technologies are still in the research phase, they are also looking at low cost material and manufacturing options to be able to cater to the needs of the developing world. E.g. Rice University researchers are looking at creating nanorust from household items. Researchers at Stanford used cotton from Wal-Mart to reduce costs of their nanofilters. Hydros bottles of InnovaMaterials have incorporated nanotechnology to filter tap water thus reducing the recurring spending on bottles water.

There is a need to develop sustainable and innovative business models for these technologies. Cross subsidizing costs between the rich and poor communities can offer a solution. Mass production will also lead to models becoming more affordable. Thus nanotechnology has a huge market potential that can be exploited to cater to the needs of the bottom of the pyramid populations.

Environmental and Health Impacts

There is anxiety over how used filters and media containing nano materials might affect the environment. The International Council on Nanotechnology maintains a database and Virtual Journal of scientific papers on environmental, health and safety research on nanoparticles. The database currently has over 2000 entries indexed by particle type, exposure pathway and other criteria.

In water purification applications, the nano material is typically coupled to, or embedded in, other materials like filters that keep it trapped. But this may not always be the case. For example, silver nano particles used as odour neutralisers in fabrics have been known to leach after soaking in water. If nano materials find their way into water bodies, they could affect population and food dynamics, harming aquatic life. Studies in the United States have shown that if nano particles end up in sewage sludge subsequently used as fertiliser, they could damage plant growth⁴⁵.

Research says that some nano scale materials can pass through the blood brain barrier and people can be exposed to nano particles through inhalation, ingestion, skin uptake and injection of nano scale material⁴⁶. Another danger is the disposal of nano materials, when used in large numbers especially in household and community-level applications. Unsuspecting developing countries could suddenly face a completely new set of pollution problems. Extended producer / supplier responsibility might be an option for collecting and managing used nano-based products, else it will very likely end up in local dumpsites and landfills.

The UK Royal Society has recommended that existing regulation be modified on a precautionary basis because they expect that "the toxicity of chemicals in the form of free nano particles and nano tubes cannot be predicted from their toxicity in a larger form and... in some cases they will be more toxic than the same mass of the same chemical in aggregate form⁴⁷.

⁴⁷ Royal Society and Royal Academy of Engineering (2004). Nanoscience and nanotechnologies: opportunities and uncertainties.

⁴⁵ Kristen M. Kulinowski, November 2008. Environmental Impact of Nan silver

⁴⁶ Hillie Thembela, Munasinghe Mohan,; Hlope mbhuti,; Deraniyagala Yvani,; 2006, Nanotechnology, water Development, Global Dialogue on Nanotechnology and the poor: Opportunities and Risks, meridian Institute, Chennai, October 2006;

Policy Concerns

Currently there is no international regulation on nanotechnology and nano products. Nor are there any internationally agreed definitions or terminology for nanotechnology, no internationally agreed protocols for toxicity testing of nano particles, and no standardized protocols for evaluating the environmental impacts of nano particles⁴⁸. The Material Safety Data Sheet that must be issued for some materials often does not differentiate between bulk and nanoscale size of the material in question and even when it does these MSDS are advisory only⁴⁹.

Governments and regulatory bodies such as the United States Environmental Protection Agency and the Food and Drug Administration in the U.S. or the Health & Consumer Protection Directorate of the European Commission have started dealing with the potential risks posed by nano particles. Berkeley, CA is currently the only city in the United States to regulate nanotechnology. The regulation requires businesses to annually identify any materials they use or produce with at least one dimension of 100 nanometers or less, no matter how small the quantities. They must also share what they know about how toxic the particles might be and describe procedures for tracking, handling and disposing of them⁵⁰. The European Union has formed a group to study the implications of nanotechnology called The Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR).

The Royal Society's 2004 report identified two distinct governance issues; that of the "role and behaviour of institutions" and their ability to "minimise unintended consequences" through adequate regulation and the extent to which the public can trust and play a role in determining the trajectories that nanotechnologies may follow as they develop⁵¹.

Given the perceived risks to environment and human health, the Indian government has stepped in by deciding to put in place a regulatory body. As nanotechnology is also being used for medicine and health, policy makers in the government insist that the technology must be used safely and there should be greater awareness about nanotech products.

⁵¹ Royal Society and Royal Academy of Engineering (2004). Nanoscience and nanotechnologies: opportunities and uncertainties

⁴⁸ International Standardisation for Nanotechnologies. Institute for Food and Agricultural Standards.

⁴⁹ Wikipedia

⁵⁰ Teeny-Weeny Rules for Itty-Bitty Atom Clusters, By BARNABY J. FEDER Published: January 14, 2007

Way Forward

This research study strives to explore the most effective, safe and affordable approaches of new cutting edge technology for water purification that might benefit poor people, and what research is needed to turn these benefits into reality. There is a need to explore successful service delivery models and absorptive capacities of the population.

From the literature survey carried out, a strong trend is observed with respect to the use of Nano silver for water purification. Various technologies using silver are being researched as well as marketed. The market potential of this among others, especially catering to the bottom of the pyramid market will be explored in the study.

The research will be undertaken in two phases. In phase 1, the key focus would be to scan and short list potential technologies that are eligible for further research based on set criteria keeping in mind the research objectives. This phase also will be used to frame and firm up the research methodology. Research partners will be identified as well as making those agreements to take forward the research in phase 2.

The current secondary research report scans the existing scenario and attempts to map the potential technologies that can be taken forward. Further in phase 1, pilot studies will be undertaken to firm up the research questions that require detailed action research in phase 2. Multi-stakeholder engagement and dialogue will be the key in this phase. Consultations, round table discussions and meetings with industry and academicians will be conducted across the country. Primary survey to determine community needs and aspirations will be undertaken. Inputs from these interactions and the literature review will help in identifying technologies with most potential for dissemination. A detailed market analysis for selected technologies depending on their potential will be conducted. TARA will engage and involve different stakeholders ranging from Government agencies, Policy makers, Technology providers distributors, NGO functionaries , scientific institutions like Indian Institutes of Technologies (IITs), CSIR Labs , Department of Science and Technology (DST) and finally with the beneficiaries in the study right from the inception. Since this is a multistakeholder platform, consensus of each stakeholder will be taken into consideration and decisions will made accordingly.

TARA through the various outreach channels of DA will disseminate the results of the current study in the public domain. It will use all the communication channels like DFID's Research portal RD4, and other prominent portals like India water Portal (IWP), Solution Exchange of UNDP, DST's Vigyan Prassar, etc.

Therefore, phase 1 will be broad based, providing key inputs for action research in phase 2. In phase 2 it will be action research involving key stakeholders to derive strategic responses for technology uptake by BOP and Governments. development agencies and other institutions

Annex 1: Technologies⁵²

Technol	Description	Technical Details	Cost Constraints	Ease of Use	Additional
ogy					Considerations
ogy Carbon Nano tube Membra nes	CNT can be uniformly aligned to form membranes with nano scale pores that are able to filter out contaminants. Their nano scale pores make these filters more selective than other filtration technologies. CNT also have high surface areas, high permeability, and good mechanical and thermal stability. Though several other methods have been used, CNT can be made by coating a silicon wafer with a metal nano particle catalyst that causes carbon nano tubes to grow vertically aligned and tightly packed. The spaces between the CNT can then be	Laboratory studies report that CNT membranes can remove almost all kinds of water contaminants, including turbidity, bacteria, viruses, and organic contaminants. These membranes have also been identified as promising for desalination and as an alternative to reverse osmosis membranes.	The cost of producing CNT membranes continues to decrease as researchers develop new and more cost effective methods to mass produce them. CNT membranes are expected to be more durable and easier to clean and reuse than conventional membranes without a decrease in filtering efficiency.		Considerations CNT desalination membranes are expected to reach the market in 5 to 10 years. Researchers are currently working to overcome challenges associated with scaling up the technology.
Nanom esh	filled with a ceramic material to add stability to the membrane. Seldon Laboratories, a small company in the U.S., has developed several device prototypes based on its nanomesh filter media. Nanomesh is composed of CNT that are bound together and placed on a flexible, porous substrate. CNT can be placed on a flat substrate to form a paper-like filter or on a rolled substrate that can be wrapped around any conventional	Nanomesh can be engineered to remove a wide range of biological, organic, and inorganic contaminants. The filter media can be constructed of several layers of CNT, with each layer functionalized to remove a different type of contaminant. the nanomesh currently used in the waterstick can be used to remove more than 99.99 % of bacteria, viruses, cysts, spores,	Seldon has reportedly developed a cost-effective mass production system for manufacturing nanomesh media.	The waterstick is designed for individual use and is used like a drinking straw, producing clean water as the user drinks. The waterstick is currently designed to be disposable, though in time, it may develop a unit	A water stick prototype is currently being used by doctors in Africa. Seldon is currently working to enhance this technology so that it can be used to desalinate seawater.

52Background paper for the international workshop on nanotechnology, water and Development, October 2006, Chennai

Nanofilt ration Membra nes and Devices	cylindrical filter or other support structure. Flat nanomesh can also be pleated to maximize filter surface area. Seldon currently has several portable water purification device prototypes based on this technology, most prominently a pencil sized, straw-like filtration device known as the "waterstick." A number of NF membranes are available as alternatives to reverse osmosis and ultra- and microfiltration. For instance, Korean company Saehan Industries offers a line of NF membranes for use in a wide range of scales, including household POU. Additionally, Saehan has developed a device that incorporates NF with pre- and post-treatment filters for household water purification without the use of a storage tank. Storage water tanks can increase the risk of water recontamination if	moulds, coliform, parasites, and fungi and also significantly reduces lead and arsenic. Functionalized versions of nanomesh can remove organic contaminants such as pesticides and herbicides, as well as inorganic contaminants such as heavy metals, fertilizers, industrial effluents, and others. The filter media can also be coated with an antibacterial agent to prevent bio-film formation. Saehan's NF device can be used to remove almost all water contaminants, including bacteria and heavy metals. It is also effective for desalination because it removes 90 % ion contaminants and salts.	NF may be significantly less expensive than reverse osmosis because of its lower energy input needs.	with replaceable filter cartridges. Additionally, the waterstick is designed to automatically stop flowing when its useful life is over. Loose nanomesh media can be incorporated into existing filtration devices. These membranes must be stored in dry, room temperature conditions. They should not be exposed to excessive cold or heat. The membranes are sold in air tight bags to prevent bacterial growth, After initially used; the membrane should be kept wet at all times.	Saehan's technology has been field tested in a variety of applications and locations, including drinking water treatment in China, desalination in Iran, and others.
Nanofib rous	water is stored too long or with improper sanitation. U.Sbased Argonide Corporation ⁵³ offers nanofibrous	NanoCeram® filters remove and retain over 99.99 % of viruses,	NanoCeram® filters are cheap to produce because	NanoCeram® filters do not require pre-	Argonide indicates that coolants and
Alumin a Filters	adsorbent technology with its line of NanoCeram® filter media and cartridge filters, which are made	bacteria, parasites, natural organic matter, DNA, and turbidity. The filters have also	they can be manufactured using papermaking technology. The filter	or post-treatment, cleaning, frequent filter changes, or	ultra-fine metal powders removed by NanoCeram® filters

53 Argonide, http://www.argonide.com/

	with electropositive alumina nanofibers on a glass filter substrate. The alumina nanofibers have more available surface area than conventional filter fibers and exhibit a higher electropositive charge, which allows them to adsorb significantly more negatively charged contaminants such as viruses, bacteria, and organic and inorganic colloids at a faster rate.	been shown to adsorb 99.9 % of salt, radioactive metals, and heavy metals such as chromium, arsenic, and lead, even the particles are nanoscale or dissolved NanoCeram® filters function best between pH 5 and 9. A granular version reportedly removes over 99 % of salt, heavy metals, viruses, bacteria, and turbidity. NanoCeram® cartridge filters have a pleated design that increases surface area, which gives them greater holding capacity. The filter medium is also reported to be more clog resistant than ultraporous membranes.	media currently cost US\$ 10 per square meter, but may cost US\$ 3 per square meter once mass produced. Cartridge filters cost US\$ 75 per 20 to 200 filters, depending on diameter. Filter media sheets can be wrapped around a metal tube, placed between two conventional filters, or held in a screened container, minimizing the cost of acquiring a filter device. Because NanoCeram® filters adsorb ultra-fine particles instead of collecting them on their surfaces; they have a relatively long useful life.	hazardous waste disposal. Most set ups have a pour- through design. The filters have been shown to simultaneously remove biological and chemical contaminants, even in salty of highly turbid water, without chemical disinfectants or coagulant flocculants.	can be recovered and recycled for industry applications.
Nanofib er Gravity- Flow Devices	U.Sbased KX Industries has developed World Filters, a line of gravity-flow filtration devices containing nanofibers specifically for use in developing countries. The filter medium consists of a prefiltration layer that removes dirt, an adsorption layer that removes chemical contaminants, and a nanofiber layer that removes colloidal-sized particles and contaminants. The nanofiber medium is made from a variety of hydrophilic polymers, resins, and ceramics, cellulose, alumina, and other materials. The technology is available in household and community-level scales.	World Filters reportedly remove over 99 % of bacteria, viruses, parasites, organic contaminants, and other chemical contaminants. The household scale World Filter device can produce 378 litres of water per filter at a rate of 4 to 6 litres per hour. The village-scale device produces more than 7,500 litres per day at a rate of 5.6 litres per minute. Each village scale filter is effective for up to 95,000 litres of water.	The household device is expected to retail for US\$ 6.00 to US\$ 11.00, with replacement filters costing US\$ 0.80 to US\$ 0.90 each, translating to US\$ 0.002 per litre of water. The village-scale device is expected to cost US\$ 100 to US\$ 150, which is approximately US\$ 0.0003 per litre.	World Filters are designed to be easy to use without training or extensive instructions. Both the household and village-level devices require no maintenance and have no moving parts.	KX Industries plans to establish local facilities in developing countries for the production of the device hardware, as well as local distribution systems similar to those used by the beverage bottling industry. KX is also contracting NGOs to distribute the devices in some regions.

Nanopo	Pourous Ceramic Shapes, LLC,	The aerobic bacteria hosted	Ceramic filters are	Cell-Pore [™] requires	Cell-Pore's™
rous	recently acquired by MetaMateria	within the ceramic material	expected to become	some maintenance,	manufacturing
Cerami	Partners in the U.S., offers a line	reportedly convert organic	increasing cost-effective as	including allowing	process is flexible
c Bio-	of lightweight ceramic products	pollutants and some harmful	rising oil prices drive up the	the aerobic bio-	and a wide range of
Media	with controlled porosity called Cell-	bacteria into non-toxic	cost of plastics used in	material to form	starting materials
Filtratio	Pore [™] , which is currently	substances. The ceramic can	•	within the material	can be used for
n	commercially available for treating	also be combined with nano-	organic and polymer membranes, filters, and	prior to use and,	production.
	water in fish tanks. The ceramic	engineered reactants to remove	substrates. Cell-Pore's™	occasionally,	
	material hosts aerobic bacteria	phosphates, biological	porosity prevents clogs in	scrubbing the filter's	MetaMateria is planning to expand
		contaminants, heavy metals such	prefiltration devices it might	surface.	use of the material,
	within its porous structure. These bacteria convert different		be combined with.	sunace.	
		as lead and arsenic, and other			
	pollutants into nontoxic	contaminants. Pourous Ceramic	reducing the costs		manufacturing
	substances.	Shapes indicates that Cell-	associated with filter		process, to drinking
		Pore [™] has 100 times more	replacement.		water treatment.
		available surface area than other			
		comparable bio-media products.			
		The ceramic material can also be			
		used to support inorganic			
		membranes as an alternative to			
		reverse osmosis, which uses			
		organic membranes.			
Nanopo	Nanovation AG in Germany offers	Nanopore® membrane filters	Nanopore®-based	Nanopore®	
rous	a line of nanoporous ceramic	effectively remove bacteria,	membrane filtration	membrane filters	
Cerami	membrane filters under the name	viruses, and fungi from water.	systems can be produced	and filtration	
С	Nanopore® and membrane	Additionally, water quality tests	inexpensively through a	systems require	
Membra	filtration systems with multiple filter	did not find coliforms, faecal	continuous manufacturing	infrequent cleaning	
ne	modules. Nanopore® membrane	coliforms, salmonella, or	process that	because of their	
Filter	filters are made from ceramic	streptococci in treated water.	simultaneously assembles	strong anti-fouling	
	nano powders on a support	The amount of water provided by	and fires all the layers of	properties. The	
	material such as alumina, and	a Nanopore® membrane filter	the filter. Nanopore®	membranes can also	
	they are available in a variety of	depends on its size and shape,	membrane filters are	be steam sterilized,	
	sizes and in two basic shapes: a	as well as the quality of the water	indicated to be cost	instead of chemically	
	tube-shaped round filter and a	being treated. A filtration unit with	competitive with polymer	cleaned. Nanopore®	
	disk-shaped flat filter. These	dimensions of 120 by 60 by 15	membranes when all the	membranes are	
	products are made using the	centimetres provides 11 square	filtration process costs,	resistant to bacterial	
	company's proprietary ceramic	meters of filter area and can treat	including maintenance,	and fungal decay,	
	nano powders and continuous	8,000 litres of wastewater per	replacement filters,	friction, concentrated	
	manufacturing process.	day.	cleaning agents, and	acids and bases,	
			operating costs, are	high temperatures,	

Page **25** of **38**

			combined, with these cost	and oxidation.	
			savings attributed to		
			Nanopore® filters' longer		
			life, greater durability, and		
			less labour intensive		
0.11	The HO Desifie Netherest		cleaning process.		
Self-	The U.S. Pacific Northwest	SAMMS [™] remove 99.9 % of	SAMMS™' reportedly	SAMMS [™] require	SAMMS™ are
Assem	National Laboratory (PNNL) has	mercury, lead, chromium,	costs US\$ 150 per	occasional	available as powders
bled	developed SAMMS™, a	arsenic, radionuclides, cadmium,	kilogram, compared to a	regeneration with an	and extrudates that
Monola	technology made from glass or	and other metal toxins.	typical ion exchange resin	acid solution to	can be retrofitted for
yers on	ceramic materials with nanoscale	SAMMS [™] can also reportedly be	at US\$ 42 per kilogram	remove the captured	ion exchange
Mesopo	pores to which a monolayer of	functionalized to remove specific	and activated carbon at	contaminants.	devices. Spent
rous	molecules can be attached. Both	metals or metal groups or not	US\$ 1.78 per kilogram,		waste from
Support	the monolayer and the	remove specific metals, such as	and 13 kilograms of		SAMMS [™]
S	mesoporous support can be	calcium, magnesium, and zinc.	SAMMS [™] are need to		regeneration is
	functionalized to remove specific	SAMMS [™] are not effective for	remove 1 kilogram of		considered nontoxic
S™)	contaminants. SAMMS [™] have	removing organic or biological	mercury, versus 154		according to U.S.
	exhibited faster adsorption, higher	contaminants.	kilograms of ion exchange		Environmental
	capacity, and superior selectivity	SAMMS [™] can reportedly be	resin and 40,000 kilograms		Protection Agency
	than many other membrane and	scaled for POU water treatment	of activated carbon.		standards and can
	sorbent technologies. SAMMS™	to industrial waste stream			be disposed of as
	are designed for removing metal	treatment. They provide 600 to			conventional waste.
	contaminants from drinking water,	1,000 square meters of surface			
	groundwater, and industrial waste	area for each gram of material.			
ArsenX	streams. U.S. company SolmeteX ⁵⁴ , Inc.	ArsenX [™] has been shown to	As it does not loss acresity	ArsenX™ does not	ArsenX [™] 's polymer
AISEIIX	produces ArsenX [™] , an adsorbent		As it does not lose capacity		
	resin made of hydrous iron oxide	remove arsenic, vanadium, uranium, chromium, antimony,	during regeneration, ArsenX [™] may cost less	require pre- or post- treatment treatment	substrate is reportedly durable
	nanoparticles on a polymer	and molybdenum. It does not	than other adsorbents over	or backwashing. The	and can operate in
	substrate that is used for removing	remove sulphates, carbonates,	its life cycle. The initial cost	material does	temperatures
	arsenic and other metal	fluoride, chloride, sodium,	of the system depends on	require occasional	ranging from 1 to 80
	contaminants. The nanoparticles	magnesium, or biological	various different design	regeneration with a	degrees Celsius.
	provide high surface area, large	contaminants. Flow rate depends	considerations, but is	mild caustic solution.	ArsenX [™] can be
	capacity, and rapid absorption	mostly on the type of device in	reported to generally range	Depending on	scaled for industrial,
	kinetics. ArsenX [™] can be scaled	which ArsenX [™] is being used.	from US\$ 0.07 to \$ 0.20	contaminant levels.	community, or
	for small scale POU applications	Regardless of system design, 2.5	per thousand litres,	ArsenX [™] will be	household use
	or large-scale industrial and	to 3 minutes of contact time	including amortized capital	exhausted after 3	
	of large-scale industrial and	to 5 minutes of contact time	including amonized capital	exhausted after 5	

54 Solmetex, http://www.solmetex.com/

	community use, and it can also be	between ArsenX [™] and the water	costs and operation and	months to 1 year.	
	used in existing devices designed	is needed. Each gram of	maintenance costs.	monuis to Tyear.	
	for ion exchange resins.	ArsenX [™] holds about 38			
	for for exchange resins.				
		milligrams of arsenic.			
Cyclod	Cyclodextrin is a polymeric	Cyclodextrin has been shown to	Cyclodextrin polymer is	Cyclodextrin polymer	Cyclodextrin polymer
extrin	compound composed of particles	remove a range of organic	reportedly cheap to	is not affected by air	powder can be
Nanopo	with well-defined cylindrical	contaminants, including benzene,	manufacture and can be	moisture and can be	packed into column,
rous	cavities that can trap organic	polyaromatic hydrocarbons	produced directly from	used in humid	cartridge, or bed
Polyme	contaminants. Cyclodextrin	(PAHs), fluorines, nitrogen-	starch with 100 %	regions without	filters through which
r	polymer can be produced as a	containing contaminants,	conversion. Mass	becoming saturated	water is passed,
	powder, granular beads, or thin	acetone, fertilizers, pesticides,	production is expected to	and deactivated.	granular cyclodextrin
	film for use in different applications	explosives, and many others.	bring the cost of	Since the	can be placed
	and devices. In addition to being	Tests indicate that cyclodextrin	cyclodextrin polymer below	cyclodextrin polymer	directly in the water
	used for POU water treatment,	polymer reduces these	the price of activated	material is both	source or vessel,
	cyclodextrin polymer can also be	contaminants to parts-per-trillion,	carbon and zeolites.	hydrophilic and	and thin film
	used for in situ groundwater	versus activated carbon and	Scientific Polymer	hydrophobic, it can	cyclodextrin can be
	treatment or for cleaning oil and	zeolites, which reduce	Products, Inc. indicates	be used to draw	placed on a glass
	organic chemical spills.	contaminants to parts-per-million.	that it has developed a	water through the	substrate to form a
		The polymer has also exhibited	method to scale this	pores without the	membrane. All these
		100,000 times greater bonding	process for mass	addition of pressure.	different forms can
		with organic contaminants than	production of the material.	The polymer will	be used in existing
		activated carbon. The polymer	Manhattan Scientifics, Inc.	need occasional	devices designed for
		has shown the same removal	is currently developing the	regeneration using a	filters, membranes,
		efficiency for water with low	technology for consumer	simple alcohol such	and adsorbents. The
		contaminant concentrations.	applications and says that	as ethanol or	material reportedly
		Cyclodextrin polymer has been	mass production will make	methanol.	does not lose
		shown to have a loading capacity	the polymer less expensive	Cyclodextrin polymer	capacity from
		of 22 milligrams of organic	than other organic	may require more	regeneration and
			contaminant removal	labour than activated	can be reused
		contaminant per gram of polymer, compared to 58	methods.	carbon and other	indefinitely It has
			methods.		5
		milligram per gram for activated carbon. It requires about 5		adsorbents because its loading capacity	also been shown to not leach the
				.	
		seconds of contact time with the		is lower.	contaminants it has
		contaminated water.			adsorbed. The
					contaminants
					absorbed by
					cyclodextrin polymer
					can be recycled after
					regeneration for

Polypyr role- Carbon Nanotu be Nanoco mposite	The U.S. Pacific Northwest National Laboratory has developed a nanocomposite membrane made with a thin film of an adsorbent polymer called polypyrrole on a matrix of CNT, which add surface area and stability to the membrane. Unlike other adsorbent products that require chemical regenerants, these membranes can be regenerated electrically.	Polypyrrole- CNT membranes that are positively charged and can remove perchlorate, cesium, chromium, and other negatively charged contaminants. The nanocomposite membrane can also be designed to remove salt. The polypyrrole can also be negatively charged so that it removes positively charged particles such as calcium and magnesium. The polypyrrole- CNT nanocomposite membrane is reusable and tests have shown that the membranes lose very little effectiveness after 100 use cycles. These membranes have also exhibited rapid flow rates because of the fast mass transport properties of the CNT.	Polypyrrole-CNT membranes are expected to be relatively low-cost, especially with long-term use, because they can be regenerated and repeatedly used without significant loss in adsorptive capacity. These membranes may save on costs associated with purchasing and storing regenerative chemicals, disposal, and chemical handling training. Additionally, the cost of CNT is expected to decrease by a factor of 10 to 100 in the next 5 years.	Polypyrrole-CNT membranes are expected to be moderately easy to use because they do not require chemical regeneration or handling of hazardous secondary waste. The adsorbed contaminants are released from the membrane by applying an electrically current to neutralize the charge of the polymer. Once the contaminants are removed, the polymer can be recharged and reused.	fertilizers, pesticides, and various other industry products. Pacific Northwest National Laboratory's operating company, Battelle, has made this technology available for licensing and joint research projects.
Natural, Synthet ic, Coal Fly Ash, and Compo und Zeolites	Zeolites are adsorptive materials with lattice-structures that form pores. They can be acquired from natural sources or fabricated in laboratories. Synthetic zeolites are usually made from silicon- aluminium solutions or coal fly ash, and are used as sorbents or ion exchange media in cartridge or column filters. AgION Technologies, Inc. in the U.S. produces a compound made from zeolites and naturally-occurring	Zeolites are generally used for the removal of metal contaminants. Natural zeolites from Mexico and Hungary have been shown to reduce arsenic from drinking water sources to levels deemed acceptable by the World Health Organization. Zeolites made from coal fly ash can adsorb a variety of heavy metals including lead, copper, zinc, cadmium, nickel, and silver from wastewater. Under some	Zeolites can reportedly be produced cheaply because their source materials are naturally and abundantly available. For consumer products, it costs US\$ 0.50 to \$ 4.50 per kilogram.	The ease of use of zeolites depends mostly on the type of devices they are used in., which can include ion exchange resin, cartridge, and column devices, and others. Additionally, zeolites require occasional regeneration with an	AgION's silver antimicrobial protection may be preferable to chemical disinfection because the microbes are less likely to develop resistance to silver.

Page **28** of **38**

silver ions that exhibit	s conditions, fly ash zeolites can	acid solution. Waste	
antibacterial properties.	also adsorb chromium, arsenic,		
anubacteriai properties.			
	and mercury. The adsorptive	and procedures are	
	capacity of zeolites is influenced	comparable to those	
	by several factors including their	for ion exchange	
	composition, the water pH, and	resins. Disposal o	
	the concentrations and types of	fly ash zeolites may	
	contaminants. Also, because	be problemation	
	lead and copper are more easily	because studies	
	adsorbed by fly ash, high	have shown that	
	concentrations of these metals	trace amounts o	
	decreases the amount of	lead, cadmium	·
	cadmium and nickel removed.	chromium, copper	,
	AgION's zeolite-silver compound	mercury, zinc, and	
	has been proven effective	other contaminants	S
	against microorganisms,	can be leached from	1
	including bacteria and mould.	the fly ash, causing	3
	Additionally, the silver in this	water, groundwater	,
	compound provides residual	and so	1
	protection against re-growth of	contamination. Also	,
	these biological contaminants.	the levels of arsenie	
	Zeolites do not adequately	and manganese in	1
	remove organic contaminants.	fly ash leachate	9
	Also, air moisture contributes to	have previously	/
	zeolites' saturation and makes	been found to be	÷
	them less effective. The amount	higher than the	9
	of water that zeolites can treat	levels recommended	1
	depends on the zeolites' source	by the World Health	1
	and the device in which they are	Organization.	
	used. In the case of fly ash	AgION's zeolite	-
	zeolites, the carbon content of	silver compound	1
	the fly ash significantly influences	requires infrequen	
	surface area and, consequently,	cleaning because	
	the adsorptive capacity of the	the silve	
	zeolites.	antimicrobial coating	
		prevents the build-up	
		of biologica	
		contaminants on the	
		filter. This also	
			·

				eliminates the need	
				for storage, use, and	
				disposal of chemical	
				disinfectants.	
Nanosc	Nanoscale zero-valent iron (NZVI)	NZVI can be used to treat a wide	NZVI reportedly may still	NZVI is relatively	
ale	is used for both in situ and ex situ	range of common environmental	be more cost effective	easy to use both in	
Zero-	treatment of contaminated	contaminants including	because small amounts	situ and ex situ. For	
Valent	groundwater. It functions	chlorinated methanes,	are needed due to its	in situ remediation,	
Iron	simultaneously as an adsorbent	chlorinated benzenes, pesticides,	significantly greater	NZVI powder is	
	and a reducing agent, causing	organic dyes, thrihalomethanes,	surface area and reactivity.	mixed with water in a	
	organic contaminants to	PCBs, arsenic, nitrate, and heavy	NZVI has a reactive	tank to produce an	
	breakdown into less toxic simple	metals such as mercury, nickel,	surface area of 33.5	iron slurry that is	
	carbon compounds and heavy	and silver. It may also be able to	square meters per gram,	then injected with a	
	metals to agglomerate and stick to	reduce radionuclides. Palladium	versus less than 1 square	pump and injection	
	the soil surface. NZVI can be	coated NZVI has been shown to	meter per gram for	well directly into	
	injected directly into the source of	reduce all chlorinated	commercial ZVI powders,	contaminated soil.	
	contaminated groundwater as	compounds to below detection	and allows for 10 to 100	No special well	
	slurry for in situ treatment, or it can	levels in 8 hours, while regular	times faster treatment	construction is	
	be used in membranes for ex situ applications. Bimetallic NZVI, in	NZVI achieved greater than 99 % removal in 24 hours. The	rates.	necessary since the	
	which the iron nanoparticles are	nanoparticles remain active		same equipment used for other	
	coated with a second metal such	towards the contaminants for a		injectable	
	as palladium to further increase	period of 6 to 8 weeks. NZVI has		remediation is	
	the reactivity of the iron, is also	been shown to be effective		sufficient. NZVI is	
	available. NZVI is more reactive	across a broad range of soil pHs,		reportedly easier to	
	and has a large surface area than	temperatures, and nutrient levels.		inject than granular	
	granular ZVI.	Competing anions, however, may		ZVI because of its	
	5	reduce its effectiveness.		smaller particles,	
		Additionally, NZVI that is		and it can achieve	
		regenerated for reuse will		deeper subsurface	
		corrode overtime and become		penetration. NZVI	
		less effective. The amount of		nanoparticles can	
		groundwater that NZVI can treat		also be secured to a	
		may depend on the quality of the		solid matrix of	
		iron, including the number of		activated carbon,	
		times it has been reused, the		zeolites, CNT, and	
		type of substrate used (for ex situ		others to produce	
		use), and the quality of the water		membranes for ex	
		used to make the injectable		situ remediation.	

		olurny including the emerged of			1
		slurry, including the amount of			
		oxygen and the amounts and			
		types of particulates in contains			
		(for in situ use).		.	
Nanosc	Titanium dioxide functions as both	Titanium dioxide breaks down	Nanotechnologies, Inc. In	Suspended titanium	
ale	a photocatalytic reducing agent	almost all organic contaminants.	the U.S., has recently	dioxide	
Titaniu	and an adsorbent, and it is used	It is also super-hydrophilic and,	patented a production	nanopowders can be	
m	for both in situ and ex situ water	therefore, able to adsorb	system that they indicate	complicated to use	
Dioxide	treatment. In the presence of	biological contaminants and	can produce tonnage	because recovering	
Photoc	water, oxygen, and UV radiation,	heavy metals, including arsenic.	quantities of titanium	or separating out the	
atalysts	titanium dioxide produces free	Its effectiveness is influenced by	dioxide nanopowder very	particles after the	
-	radicals that decompose a variety	the quality of the titanium dioxide,	inexpensively. Altair also	treatment is difficult.	
	of contaminants into less toxic	the UV intensity, the water's pH,	plans to sell small-scale	Suspended particles	
	carbon compounds. Nanoscale	the oxygen supply, and the	production units based on	are usually	
	titanium dioxide provides larger	concentration of contaminants.	this technology. These	separated through	
	surface area and faster	Different titanium dioxide	production units will be	ultra- or	
	photocatalysis than larger titanium	systems provide different flow	available in two sizes, 40	microfiltration, but a	
	dioxide particles. Titanium dioxide	rates and speeds of removal,	kilograms per hour and 1	significant amount of	
	is available in nanopowder form	though all are generally reusable.	to 2 kilograms per hour.	the powder can be	
	for use in suspensions or granular	Suspended titanium dioxide	The units produce titanium	lost during this	
	media filters. It is also available in	nanopowders provide the most	dioxide from titanium	process.	
	several other forms, including, but	efficient photocatalysis because	tetrachloride, which can be	Nanocrystalline	
	not limited to, coatings for fixed	their entire surface area is	bought for about US\$	microspheres are	
	membranes, nanocrystalline	exposed for UV and contaminant	1,100 per metric ton, or	easier to use. They	
	microspheres, and composite	contact. Titanium dioxide	US\$ 1.10 per kilogram.	are suspended in	
	membranes with silica.	nanoparticles used as coating or		water by air bubbling	
		fixed to glass, ceramic, or other		and naturally sink to	
		substrates have been shown to		the bottom of the	
		exhibit 0.5 % of the		vessel or body of	
		photocatalytic efficiency of		water for easy	
		suspended nanoparticles. This is		recovery.	
		due to a combination of reduced		Membranes and	
		contact area and passivation		granular media filters	
		from interactions with the support		that are coated.	
		material. The porosity of the base		filled, or made with	
		membrane or substrate will also		titanium dioxide will	
		influence the flow rate and useful		have similar ease of	
		life of these systems. Titanium		use as the base	
		dioxide nanocrystalline		technology.	
				toormology.	

		antonoonlaana keesse e esst			1
		microspheres have a surface			
		area that is comparable to			
		nanopowders, but slower			
		photocatalysis.			
Titaniu	Adsorbsia™GTO™ is a granular	Adsorbsia [™] can be used to	Adsorbsia's™ base price is	Adsorbsia [™] is	Adsorbsia™ is safe
m	adsorptive media from Dow	remove arsenic across a range of	US\$ 14 per cubic	designed to be	for landfill disposal
Oxide	Chemical Company that removes	water pH and conditions. Under	decimetre of media, with	compatible with	under current U.S.
Nanopa	arsenic from water through the	typical conditions, Adsorbsia™	lower pricing for larger	existing system	Environmental
rticle	combined oxidative and adsorptive	has been shown to remove 12 to	quantities. Because the	designs. The media	Protection Agency
Adsorb	properties of titanium oxide. It is	15 grams of arsenic (V) and 3 to	costs of conventional	can be used in	standards which
ent	designed for small and mid-sized	4 grams of arsenic (III) per	technologies rise	existing devices	eliminates
	systems or POU applications.	kilogram of media. In addition to	significantly as water	designed for other	hazardous waste
		pH, removal efficiency is also not	systems become smaller,	granular media,	disposal costs. Dow
		affected by the presence of	Adsorbsia [™] is designed to	sand, activated	Chemical Company
		sulphate, phosphate, iron,	be cost-effective for small	carbon, activated	has distribution
		chlorine, or other anions in the	and medium sized	alumina, and others.	routes throughout
		water. Since it is not affected by	systems. Adsorbsia™ does	The media was also	North America,
		chlorine, Adsorbsia™ can be	not have costs associated	developed to be	South America,
		combined with disinfection to	with purchasing and	disposable in order	Europe, Asia, and
		eliminate biological	storing chemicals because	to eliminate	the Pacific.
		contaminants. Removal	it does not require	potentially difficult or	Adsorbsia™ has
		efficiency may be affected,	regeneration.	labour intensive	been field tested in
		however, by the amount of	0	processes such as	Bangladesh.
		arsenic that is present in the		regeneration and	C
		water, the ionic form of the		hazardous waste	
		arsenic, competing impurities		disposal. When the	
		and ions, and the design of the		media is past its	
		equipment. Additionally,		useful life, it can be	
		Adsorbsia™ has not		removed and	
		demonstrated any contaminant		replaced with fresh	
		leaching or reverse arsenic		media, though the	
		reaction. Adsorbsia™ is also said		use of a dust mask	
		to remove viruses and bacteria.		and safety glasses is	
		Adsorbsia [™] , because of its		recommended for	
		nanocrystalline form, exhibits ten		transferring the dry	
		times faster kinetics than iron		media. Unused	
		media, allowing for faster flow		media can be stored	
		rate. The media is designed to		in dry conditions and	
		operate with flow rates of 40 to		is not affected by	
I	l			is not anotica by	

		400 litres per minutes per square meter of media. The quantity of water that the media can filter in its useful life depends on the source water quality and the system design. Laboratory testing has found that Adsorbsia [™] granule-filled column filters with a volume of 29 cubic centimetres and a flow rate of 1.3 litres per hour can produce between 25 and 38 litres of water per gram of dry granules before losing effectiveness.		extreme cold or heat. Backwashing may be needed periodically depending on feed water particulate levels and the system design.	
Nanostr uctured Iron Oxide Adsorb ent	Adedge Technologies, Inc. in the U.S. offers AD33, a dry, granular nanostructured iron oxide media for removal of arsenic. AD33 combines the catalytic and adsorptive properties of iron oxide to breakdown arsenic into less toxic by-products and simultaneously filter it out of water. Adedge also offers a line of POU devices containing the AD33 media.	AD33 has been shown to remove over 99 % of arsenic. It can also reduce levels of lead, zinc, chrome, copper, and other heavy metals. AD33 has been shown to not leach adsorbed contaminants. AD33 media typically has a useful life of 2 to 4 years. Adedge's Medallion Series household treatment systems are available with three flow rates: 19, 26, and 38 litres per minute. Adedge also offers filter cartridges containing AD33 with an average flow rate of 2 litres per minute. These cartridges have a useful life of 3,800 to 11,400 litres, which is estimated to be 4 to 6 times longer than other commercially available adsorption products.	Medallion Series products are reportedly comparable to anion exchange products in cost. AD33 filter cartridges cost about US\$ 50 each. The cost of loose media depends on the quantity purchased, but typically ranges between US\$ 8 and \$13 per litre.	AD33 media and products require infrequent replacement, and do not require the use of chemicals or regenerants. Because it is dry, AD33 media is reportedly easier to handle than wet iron- based filtration media and can also be used in a broader range of system types. The media can be used in any standard granular media device with a downflow configuration. Such devices will require twice monthly backwashing to maintain their flow	Spent AD33 media is not hazardous and can be land filled according to U.S. Environmental Protection Agency standards.

				rate. Medallion	
				Series systems are	
				pre-packaged and	
				automatically	
				conduct pre-	
				programmed	
				backwashing.	
Magnet	Magnetic nanoparticles are	MagnetoFerritin-enabled forward	The long life and	A precise system for	MagnetoFerritin can
oFerriti	generally studied as adsorbents	osmosis is intended for	reusability of the material	MagnetoFerritin has	be recovered from
n	and nanocatalysts for water	desalination, though other	makes it more cost	not yet been	the purified water
	treatment. NanoMagnetics, Ltd., a	contaminants can also be	effective than reverse	designed, but	and reused without
	U.K. company, has developed a	removed, depending on the type	osmosis. Forward osmosis	sources indicate that	any specific limit.
	magnetic nanoparticle called	of membrane that is used.	also eliminates energy-	the magnetic	
	MagnetoFerritin and is studying its		related costs, which	nanoparticles would	
	ability to enable forward osmosis,		account for 40 % of the	be added to some	
	a potentially energy efficient		cost of reverse osmosis.	clean "draw" water	
	alternative to reverse osmosis.			on one side of a	
	Magnetic nanoparticles would be			membrane to create	
	used in such a system to produce			a concentration	
	the osmotic pressure needed to			imbalance with the	
	pull water through a filtration			source water. This	
	membrane, unlike reverse			difference in	
	osmosis that requires energy-input			concentration would	
	to produce osmotic pressure.			create the osmotic	
				pressure needed to	
				pull the source water	
				through the filter. The nanoparticles	
				could then be	
				recovered from the	
				purified water using	
				a magnetic field.	
		1		a magnotio notai	

Annex 2: Agencies in Nanotechnology in the Water Sector

Technol	Organization	Country	Type of technology	Link
ogy		•		
Nanofiltr	Rensselaer	United	Devised a simple method to produce	
ation	⁵⁵ Polytechnic	States	carbon nano tube filters that efficiently	
membra	Institute		remove micro-to-nano scale	
nes:	_		contaminants from water	
	Banaras Hindu	India	Devised a simple method to produce	
	University ⁵⁶		carbon nano tube filters that efficiently	
			remove micro-to-nano scale	
	A neversi el e	L lucitor al	contaminants from water.	
	Argonide	United States	Developed a filter comprising oxidised	
		Sidles	aluminium nano fibres on a glass fibre substrate	de.com/
	SolmeteX	United	Develop and manufacture	http://www.solme
		States	heavy metal binding resins	tex.com/
			that remove metals and	
			metal complexes, including	
			mercury, arsenic, cyanide,	
			and cadmium from water.	
	Filmtec	United	Nano membrane filtration	http://www.doww
	Corporation	States	technologies	aterandprocess.c
				om/products/ronf
	North Mod	Couth	None membrone filtration	.htm
	North West		Nano membrane filtration	http://www.puk.a
	University, Potchefstroom	Africa	technologies	c.za/fakulteite/na
	Polcherstroom			<u>tuur/scb/index_e.</u> html
	University of	South	Nano membrane filtration	http://academic.s
	Stellenbosch,	Africa	technologies	un.ac.za/polymer
	Institute for	Amea	leennologies	/
	Polymer Science			_
	Brazilian	Brazil	Develop a biodigestion system using	http://www.embr
	Agricultural		nano filters to clean irrigation supplies	
	Research Co-		and make water safe for drinking.	1 0
	operation,			
	operation, Embrapa ⁵⁷			
	IIT Chennai,	India	Filter using Nan silver to adsorb and	
	Eureka Forbes		degrade three pesticides commonly	itm.ac.in/
	Limited ⁵⁸		found in Indian water supplies	
Attapulg	Los Alamos		Developed a new class of nano porous	
	National	States	polymeric materials that can be used to	
Nano	Laboratory		reduce the concentration of common	
porous Zeolites			organic contaminants in water to parts per million level.	1
and				
Nano				
porous				
Polymer				
S				
Desalin	The Stephen and	Israel	Using reverse osmosis	http://gwri.techni
ation	Nancy Grand		whereby pressure is applied	on.ac.il/
	erand			

⁵⁵ Robert Pini, August 2004. Efficient Filters Produced from Carbon Nano tubes through Rensselaer polytechnic institute- Banaras Hindu University Collaborative Research

⁵⁸ David Grimshaw, 6 may 2009. Nanotechnolog for clean water: Facts and Figures

⁵⁶ Paulo Sergio de Paula Herrmann Jr. And Jose Antonio Brum, may 2009. Developing World Advances nanotech for clean water [online]:.

⁵⁷ Paulo Sergio de Paula Herrmann Jr. And Jose Antonio Brum, may 2009. Developing World Advances nanotech for clean water

	h			
	Water		to salt water, forcing fluid	
	Research Institute		through a very fine	
			membrane resulting in	
			virtually pure water.	
		United	Reduced overall energy	http://www.wateri
	Water	States	requirement of seawater	ndustry.org/New
	Department ⁵⁹		desalination using a relatively	%20Projects/des
			low pressure two staged	<u>al-20.htm</u>
			nano filtration process.	
Catalytic	Stanford	United	Electrified Nanostructures using nano	
Degrada	University,	States	silver wires and carbon nano tubes for	rd.edu/group/cui
tion	Department of		filtration	_group/
	Materials Science			
	and Engineering			
	Rice University	United	Exploring nano catalysts to	http://cohesion.ri
		States	remove trichloroethylene	ce.edu/centersan
			and organic aromatic	dinst/cben/resear
			contaminants from	ch.cfm?doc_id=5
			groundwater	099
	Inframat	United	Developing a material	http://www.infra
	Corporation	States	composed of highly porous	mat.com/
			nanofibrous structure that	
			can be used to remove	
			arsenic from drinking	
			water by combining a	
			nanofibrous MnO2	
			oxidative process with a	
			granular ferric hydroxide	
			adsorptive process	
	EnvironmentalCar	Hong	Developed a nano photocatalytic	http://www.enviro
	e	Kong	oxidation	nmentalcare.
	S	Rong	technology for the removal	com.hk/
			of bacteria and pollutants	00111.1110
			from water	
	Linivoroity of	United		http://www.uilling
	University of	States	Exploring the use of	http://www.uillino
	Illinois,	States	nano catalysts to reduce	is.edu/,
	University of		pollution of oxidized	http://www.pitt.ed
	Pittsburgh,		contaminants (e.g. nitrates)	u 1. 11
	Yeshiva			http://www.yu.ed
	University			u/
				http://pubweb.bnl
				.gov/users/frenke
	Indian Institute of	India		www.iisc.ernet.in
	Science,		Oxide which chemically degrade	
	Bangalore ⁶⁰		pollutants	
	University of		Solar disinfection of water using	http://nibec.yello
	Ulster ,	Kingdo	photocatalytic nanoparticles.	wdesign.tv/resea
	Nanotechnology	m		rch
	05			
	3			
	BioEngineering			
1	Centre			
		United	photoelectrocatalytic fuel cell to treat	http://www.clean
	University of	United		
	University of Aberdeen		dirty water and create electricity	waterproject.co.u
	University of Aberdeen	Kingdo m	dirty water and create electricity	waterproject.co.u k
	5	Kingdo	dirty water and create electricity simultaneously.	waterproject.co.u

⁵⁹ April 2005. Long Beach water department wins \$3 million California grant for innovative seawater desalination project

⁶⁰ David Grimshaw, 6 may 2009. Nanotechnolog for clean water: Facts and Figures.

c Nano particles		States	nano crystals for arsenic removal from groundwater	ce.edu/centersan dinst/cben/resear ch.cfm?doc_id=5 100
	Embrapa ⁶¹	Brazil	developing magnetic nano particles to treat water contaminated with pesticides. This class of technology seems especially suitable for removing organic pollutants, salts and heavy metals from liquids.	apa.br/english
Nano sensors	BioFinger ⁶²	Europe	Developing a portable molecular detection tool	http://www.biofin ger.org/
	University of Buffalo	United States	Developing a handheld sensor that car detect the presence of toxins potentially used as agents in biological warfare.	
	Pennsylvania State University ⁶³	United States	Developed a way of detecting arsenic in water by using nano wires on a silicon chip.	

61 Paulo Sergio de Paula Herrmann Jr. And Jose Antonio Brum, may 2009. Developing World Advances nanotech for clean water

62 Hillie Thembela, Munasinghe Mohan,; Hlope mbhuti,; Deraniyagala Yvani,; 2006, Nanotechnology, water Development, Global Dialogue on Nanotechnology and the poor: Opportunities and Risks, meridian Institute, Chennai, October 2006;

63 David Grimshaw, 6 may 2009. Nanotechnolog for clean water: Facts and Figures

Annex 3: Centre of Excellence (CoE) in India in the area of nano science and technology⁶⁴

Unit of Nano Science	Programme Coordinator
IIT Madras, Chennai	Prof. T. Pradeep
IACS, Kolkata	Prof. D. Chakravorty
University of Pune	Prof.(Mrs.) S.K. Kulkarni
S.N. Bose National Centre for Basic Sciences,	Prof. A.K. Raychaudhuri
Kolkata	
NCL, Pune	Dr. Sivaram
JNCASR, Bangalore	Prof. G.U. Kulkarni
BHU, Varanasi	Prof. O.N. Srivastava
IIT Kanpur, Kanpur	Prof. Ashutosh Sharma
IISc, Bangalore	Prof. S. Chandrasekaran
IIT Delhi, New Delhi	Prof. B.R. Mehta
SINP, Kolkata	Prof. M.K. Sanyal
Centre for Nano Technology	Programme Coordinator
Amrita Institute of Medical Sciences, Kochi,	Dr. Shantikumar V Nair, Biomedical
Kerala (Implants, Tissue Engineering, Stem Cell	Engineering Centre, Amrita Institute of Medical
Research)	Sciences
S.N. Bose National Centre for Basic Sciences,	Prof. A.K. Raychaudhuri, S.N.Bose National
Kolkata (NEMS & MEMS / Nano products)	Centre for Basic Sciences
Tata Institute of Fundamental Research (Nano	Dr. G.V. Shivshankar
scale phenomena in biological systems &	National Centre for Biological Sciences, TIFR
materials)	Prof. Ashok Misra
IIT-Bombay, Mumbai (Nanoelectronics, polymer nano sensors, nano biotechnology)	Director, IIT-Bombay
Indian Institute of Science, Bangalore (Nano	Prof. S. Chandrasekaran
devices, Nano composites, Nano biosensors)	Division of Chemical Sciences, Indian Institute
	of Science
IIT, Kanpur (Printable Electronics, Nano	Prof. Y.N. Mohapatra
patterning)	Department of Physics, IIT-Kanpur
Indian Association for the Cultivation of Science	Prof. D.D. Sarma
(Photovoltaics & Sensor Devices)	Centre for Advanced Materials, Indian
	Association for the Cultivation of Science,
Centre for Computational Materials Science	Programme Coordinator
Centre for Computational Materials Science at	Prof. Balasubramanian Sundaram, JNCASR,
Jawaharlal Nehru Centre for Advanced Scientific	
Research, Bangalore	

⁶⁴ Department of science and Technology, Nano mission

