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Abstract

A natural concern with multivariate poverty measures, as well as with other composite indices,
is the robustness of their ordinal comparisons to changes in the indices’ parameter values.
Applying multivariate stochastic dominance techniques, this paper derives the distributional
conditions under which a multidimensional poverty comparison based on the popular
counting measures, and ordinal wvariables, is fully robust to any values of the
indices.parameters. As the paper shows, the conditions are relevant to most of the
multidimensional poverty indices in the literature, including the Alkire-Foster family, upon
which the UNDP.s "Multidimensional Poverty Index" (MPI) is based. The conditions are
illustrated with an example from the EU-SILC dataset.
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Introduction

The case for an assessment of poverty considering multiple deprivations has been well
argued for a long time.! While there is a broad consensus about the multidimensionality
of poverty, there is a debate as to whether the multiple indicators of deprivations should
be brought together into a composite index or not.? On the other hand, it seems that a
composite measure of multiple deprivations is unavoidable when the purpose is to quantify
the incidence of multiple deprivations within the same individuals. In practice, one of the
approaches proposed to measure multidimensional poverty with a composite index is the

!See for instance, Sen (2001, chapter 4), and Sen (2009, chapter 12).
?Ravallion (2010), among others, discusses the pros and cons of each option.
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counting approach, which is based on counting the number of dimensions in which people are
deprived.> The approach has gained recent popularity with the Alkire-Foster (AF) family of
poverty indices (Alkire and Foster, 2010). These indices identify the multidimensionally poor
by counting the number of dimensions in which they are deprived. First, deprivation in any
particular dimension is determined by comparing the achievement in that dimension against
the respective dimension-specific poverty line. This is done for all dimensions/variables
and then the (weighted) number of deprivations is compared against a multidimensional-
deprivation cut-off.? By changing the cut-off from some minimum value up to the total
number of dimensions, counting measures like the AF family can adopt identification criteria
ranging from the union to the intersection approach.’ The intuitiveness and easy applicability
of their identification and aggregation methods are reflected in the recent decision by the
UNDP to estimate members of the AF family, including the adjusted headcount ratio, M?,
for the first time for 104 countries (See Alkire and Santos, 2010). This is part of an ongoing
trend of the AF measures being applied in poverty measurement as well as in other fields
unrelated to poverty measurement.’

An immediate concern with any composite index, including counting measures like the
AF family, is that the orderings they produce, when comparing different groups, may not be
robust to changes in the index’s parameters.” For instance, in the case of counting measures,
changes in the dimension-specific poverty lines could reverse the rankings of different coun-
tries or provide contradictory results when ascertaining the direction of changes in poverty
over time. With these concerns in mind, this paper derives the distributional conditions
that ensure the robustness of ordinal comparisons to changes in the parameter values of
counting measures characterized by relying on the weighted count of deprivations for the
identification of the multidimensionally poor. Based on multivariate stochastic dominance
techniques, the conditions are relevant for a broad range of counting measures including the
AF family and most of the multidimensional poverty measures in the literature (e.g. Tsui
(2002), Bourguignon and Chakravarty (2003), Chakravarty and D’Ambrosio (2006), Bossert
et al. (2009)). The latter also rely on a counting approach, albeit some implicitly. The
conditions are derived for poverty comparisons with ordinal variables (e.g. like the UNDP’s
MPI), because in such domain derivation is easiest. By contrast, applications to continuous
variables (or continuous-discrete combinations) require more sophisticated techniques (e.g.
generalized function theory), mainly due to the pervasiveness of discontinuities in the count-
ing approach. These interesting problems are beyond the scope of this paper, and left for
future research.

First, the paper provides full-robustness conditions for counting measures in bivariate
settings. The conditions require making pairwise comparisons of cumulative and survival

3For a comparative discussion of approaches to measuring multidimensional poverty, see Atkinson (2003).
For an alternative approach based on a multidimensional poverty line see Duclos et al. (2006, 2007).

4For instance, if considering 10 dimensions of wellbeing, a multidimensional deprivation cut-off of 5 means
that a person is considered multidimensionally poor if the person is deprived in 5 or more of the 10 dimensions.

® According to the union approach, any person deprived in at least one dimension is considered multidimen-
sionally poor. On the other extreme, the intersection approach demands considering as multidimensionally
poor only people who are deprived in every dimension.

CFor instance, Batana (2008), Santos and Ura (2008), Alkire and Seth (2008), Battiston et al. (2009),
Foster et al. (2009), Azevedo and Robles (2009), Singh (2009), Trafton (2009) and Roche (2009).

"For a recent articulation of this concern see, for instance, Ravallion (2010).



distributions. However, even though bivariate applications have been popular in poverty
and wellbeing analysis (e.g. Atkinson and Bourguignon (1982), Duclos et al. (2006, 2007)),
recent empirical applications of counting measures, chiefly (but not exclusively) the Alkire-
Foster family, consider more than two variables. The paper shows that, with three or more
variables, robustness conditions based on multivariate generalizations of the work by Atkin-
son and Bourguignon (1982) are not applicable to counting measures, in general. However,
for narrower classes of counting measures, robustness conditions can be derived. The restric-
tions characterizing the subfamily of counting measures for which multivariate dominance
conditions are applicable, include focusing on extreme identification approaches: intersection
and union.

An empirical application using the EU-SILC dataset illustrates the use of the conditions
for ordinal variables. Measuring multidimensional poverty in terms of educational achieve-
ment, self-reported health, and ability to keep the house warm, it turns out that Austria,
Finland, Sweden, Norway and the UK dominate three or more European countries whereas
Italy, Latvia, Poland, Portugal and Spain are dominated by three or more countries.

The next section introduces the notation and the family of counting measures for which
robustness conditions are sought. The subsequent section provides the robustness condition,
in the form of a first-order dominance condition, for the whole family of counting measures
in applications with bivariate distributions. Then the problem of applying traditional domi-
nance conditions to three or more variables is discussed in the fourth section. The subsequent
section shows the conditions that can be derived, when three or more variables are consid-
ered, by narrowing the class of counting measures to more explicit functions. This is followed
by the empirical application and some concluding remarks.

A general family of counting measures

Consider a matrix X, whose N rows have information on the attainments of NV individuals.
Each column, therefore, hosts the distribution of each attainment across the population. The
number of columns/variables is D. A typical attainment element of the matrix is: z,,4 (€ N, ),
that is, the attainment of individual n in dimension/variable d. The poverty lines, specific
to each variable, are denoted by z4;® and a person is deemed poor in variable d if: z,q < zg4.
The count of deprivations is computed weighting each deprivation with weights, wy, such

D
that: wy € Ry A Zd wg = D.° Hence the weighted number of deprivations suffered by
individual n is: ¢, = 25:1 wgl (24 > nq) X° This paper considers the following family of
counting measures that rely on the weighted deprivation count, ¢,, for the identification of
the multidimensionally poor:

N N
1 1 Tnl TnD
PE—Zp(cn;xnl,...,an,Z):—ng(cn)g({i} ,...,[— : (1)
Nn:l Nn:l “1 + “D +
8From a vector of poverty lines, Z : (z1,...,2d,...,2D) .
9From a vector of weights, W : (w1, ...,wq,...,wp).

107 () is an indicator function equal to 1 if the expression in parenthesis is true. Otherwise it takes the
value of 0.



where p is the individual poverty function and ¢ : [0, D] — {0, 1}, ¢’ <0, is the poverty
identification function. ¢ = 1 if (and only if) the individual is deemed multidimensionally

poor. [“"”—Ld} = min {1, Iz’;d} ,and g : [0,1]P — R, is the part of p that responds to the
+

Zd

gaps between the attainments in each variable and their respective poverty lines, such that:
g <0;¢9(1,...,1) = 0 and maxg = 1. The choice of a social poverty function in the
form of a social average of individual poverty functions, i.e. P = % 25:1 p, is required
for the purpose of applying the ordinal-variable equivalents of the multivariate extensions
of Atkinson and Bourguignon (1982) to the derivation of robustness conditions, since their
dominance conditions apply to social welfare functions that are "additively separable and
symmetric with respect to individuals"(Atkinson and Bourguignon, 1982, p. 190).!

Lasso de la Vega (2010) shows that ¢ (¢,) = I (¢, > k), where k € [0, D], is the only
"non trivial dichotomized identification function" (p. 6) that fulfills a property of poverty
consistency. A poverty identification function is poverty consistent if, when identifying a
person with a deprivation count equal to m as poor, it also considers as poor anybody whose
count is at least as high as m. Considering the desirability of this property, this paper focuses
on counting measures whose identification function has the form: ¢ (c,; k) = I (¢, > k) .'? As

for the form g (Z—T, ceey “”Z"—DD) , all the multidimensional poverty functions in the literature

depend on the ratios “;de, as opposed to alternatives. It ensures their fulfilment of the
desirable property of scale invariance.

Measures belonging to the class defined by (1), with ¢ (¢,) = I (¢, > k), include the
whole AF family, plus most of the multidimensional poverty indices proposed in the liter-
ature. While the AF family explicitly adopts a dichotomized identification function, i.e.
I (¢, > k), other multidimensional poverty indices can also be expressed as functions of such
identification functions. Table ( 1) provides a list of the multidimensional poverty measures
that work with ordinal variables and belong to the general class described in this section.!

To summarize, the measures of the ordinal-variable class (1) include all the measures in
the multidimensional poverty literature that are applicable to ordinal variables . They are
axiomatically characterized by the fulfillment of the following properties: additive decompos-
ability, scale invariance, population replication invariance, weak monotonicity, dimensional
monotonicity, poverty focus, deprivation focus, symmetry, normalization, weak rearrange-
ment and poverty consistency. Except for the last one, all these properties are described by
Alkire and Foster (2010). The last property has been formally studied by Lasso de la Vega
(2010) .

UTheir conditions are also applicable to poverty functions of the form: R = h (P), where h’ > 0. This is
true because, for countries A and B, R* > RB «— P4 > PB. Some of the multidimensional poverty functions
in the literature are of the R form (e.g. Chakravarty and D’Ambrosio (2006), Bossert et al. (2009)).

12This two-stage, poverty identification function was introduced by Alkire and Foster (2010). The first
stage involves the identification of deprivations in each variable/dimension. Then the second stage requires
computing the weighted count of deprivations, ¢,, and then comparing it against a cut-off value k. If ¢,, > k
the the person n is identified as multidimensionally poor.

131n the table, only g () denotes an implicit function that depends on the arguments within the parenthesis.
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The bivariate case

An intuitive derivation

Consider countries A and B. Under which distributional circumstances P4 > P? for
any choice of weights (17), poverty lines (Z) and multidimensional cut-offs (k)? This is a
problem of finding suitable first-order stochastic dominance conditions that can be applied
to members of the class (1). Due to the arguments mentioned in the previous section, it
is possible, in principle, to follow Atkinson and Bourguignon (1982) and integrate, or sum,
by parts (1) and derive the required full-robustness conditions that ensure P4 > PZ. For
such purpose (1) must be expressed either as a function of a density function (in the case of
continuous variables) or as a function of a probability distribution function (in the case of
ordinal variables). Since in this paper, the focus is on ordinal variables, the following version
of (1) is considered:

dy dp
P = Z...ZPr[wl:i,...,mD:m]p(z’,...,m;VV,Z,k) (2)
=1 m=1
4 o 1 m
= Z...ZPr[wl:i,...,xD:m]go(c;k)g({—} ,...,{—] >,
i=1  m=1 1]y ZD] 4

where the subscript n is no longer necessary. While P is the social poverty function
analogue to a social welfare function, p is the individual poverty analogue of an individual
welfare function. Hence a first-order stochastic dominance condition for the class could be
derived by summing by parts. But since these dominance results are known,'* in this section
the condition is derived intuitively for the case of two variables, relying on the following two
results:

1. The difference of the individual welfare function, p (x1, x2; W, Z, k), with respect to x1is
non-positive:
p1=9%1+ 910 <0, (3)

where py (i,..., m;W, Z, k) =p(i,... m;W,Z k) —p(i—1,...,m;W, Z k); and similar
definitions apply, e.g. for ¢g; and ¢,. Now p; < 0 because, by definition, g; < 0, and ¢; <0

since:
01 (1) = =T (wal (mg < 29) < k)I(i—1< 2z <1) (4)

Expression (4) states that a change in z; changes the individual multidimensional poverty
status if and only if being poor in x5 is not sufficient to be deemed multidimensionally poor
and the change in z; also changes the deprivation status with respect to x;. Otherwise no
change in the indicator function is produced. In either case, the derivative is non-positive
(T xqg —| I, as it were).

14 Atkinson and Bourguignon (1982) define the social welfare functions as integrals of individual welfare
functions, and integrate them by parts in order to derive the dominance conditions. Yalonetzky (2013) shows
that analogue results can be derived for social welfare functions based on ordinal variables, and expressed
as sums, instead of integrals. In that case summation by parts is required.

6



2. The cross-partial difference, p12 (¢;4,7,...,2p, Z), can be either positive, negative, or
equal to zero:

P12 = gP1o + G21 + 9105 + G2 (5)

Note in (5) that the second and third right-hand side elements are non-negative but the
fourth element could take any sign (because of the undefined sign of g12), and also the first
element could take any sign because, with two variables:

010 =1 (wy <kANwy <k)—1(wy >kANwy>k) (6)

Expression (6) indicates the circumstances under which the difference ¢, may change
from 0 to —1, and vice versa, when x5 changes. It also states the circumstances under which
the difference p, may change from 0 to —1, and vice versa, when z; changes. The different
signs that this cross-partial difference can take reflect the different ways in which the two
variables may affect each other’s effect on multidimensional poverty. For instance, when
poverty identification follows the intersection approach (w; < k A wy < k), then the impact
of an increase in z; is eliminated by a previous increase in x if the person was poor to begin
with (expression (4) changes value from —1 to 0). This is a case of ALEP substitution.
By contrast, when poverty identification follows the union approach (w; > k A wy > k), the
impact of an increase in z; is enhanced by a previous increase in x5 if the person was poor to
begin with (expression (4) changes value from 0 to —1). The latter is an example of ALEP
complementarity, in which the cross-partial difference (6) is negative.

Now, in the bivariate stochastic dominance literature there are four well-established first-
order conditions, all of which are relevant to counting measures. The four conditions for
ordinal variables stem from the following equations:'6

d da

AS = = U (i,do) AFy (i = 1) = Y Us (dy, j) AF (j — 1) (7)
i=1 j=1
di  da

33 U (i) AP (i~ 1)~ 1)

i=1 i=j

and:

AS = SULGATI() + Y1) AT () ®)

di  da

+3 ) Ui (i, j) AFi (i)

i=1 =1

where Uy is the difference of an individual welfare function U with respect to variable x4;
AS = 84— 5P and S is a social welfare function, and F}, F};, etc. are survival functions.

5For a definition of ALEP substitution and complementarity see Kannai (1980).
16See Yalonetzky (2013).



A condition associated with AFy,(i,7), AF, AF, < 0Vi,j € [1,d;] X [1,ds], requires the
cross-partial difference to be negative, i.e. the two variables must be ALEP substitutes.
An alternative condition, associated with AFy, (i,5), AF1, AFy > 0Vi,j € [1,d1] x [1,dy),
requires the cross-partial difference to be positive, i.e. the variables must be ALEP com-
plements. A third condition stems from merging the first two distributional conditions. If
these are met simultaneously, then the comparison, AS, is robust for all individual welfare
functions U, characterized by weak increasing monotonicity with respect to each variable,
that is Uy (,.),Us (j,.) > OVi, j € [1,d1] x[1, dy]. The condition is stringent, but once fulfilled
it guarantees robustness for all increasingly monotonic functions irrespective of the sign of
their cross-partial difference.

The first difference of p is non-positive. Yet a society is better-off than another one when
its value for P is the lowest. Therefore the distributional conditions related to (7) and (8)
are also relevant for P. Since the cross-partial differences of p can take any sign, then only
the third bivariate condition applies. The dominance condition then becomes:

2
P < PPVEE(0,2Vws €RADY wy=2YZ =  (9)
d=1
AFIZ (27]) 7AF17AF2 S OV@,] € [17d1] X [17d2]
/\AF_H ($1,$2),A71,A72 Z OVZ,] € [1,d1] X [1,d2]

According to condition (9), multidimensional poverty in society A is never higher than
in B, as measured by any member of the counting family defined by (1), if and only if the
joint cumulative probability function of A is never above that of B, and the joint survival
probability function of A is never below that of B, for all choices of specific poverty lines
(Z), weights (W), multidimensional poverty cut-offs (k) and ¢ functions.

The case of three or more variables

In this section I show why the above results cannot be extended to the general case of
counting measures with three or more variables. In the next sections I show why and how
the approach is applicable to counting measures and any multivariate distribution as long
as extreme identification approaches are considered (i.e. union or intersection) and more
structure is imposed on g.

The reason why the results are not generally applicable to cases of three, or more, vari-
ables is that with more than two variables, the multivariate versions of (7) and (8), for
first-order dominance conditions, require checking the signs of all cross-partial differences
involving all combinations of variables (i.e. including three and more variables). Existing
multivariate conditions that work on cumulative and survival functions can handle any sign
of cross-partial differences involving even numbers of variables. However, for odd numbers
of variables (e.g. 1, 3, 5, etc.) the conditions only apply to non-negative cross-partial dif-
ferences (or non-positive, in the case of poverty functions). This is clear by examining the
multivariate versions of (7) and (8):



AS

!
|
]
Ing
-~
S
s
>
S
T

(10)
D
+ Z Uab (Z.ajw"dc;émb) AFab(Z_la]_l)

D
— Z ZZUabC Z,];7~--7du¢a,b,c)AFabc<i_17j_1al_1>"'
i1

and:

AS = UL G, 1) AT () (11)

da

dy

ZUab 7/]7 1)AFab(27])
b=a+1 i=1 j=1
D da de

D—-1 dp
ST DD Ve lingil, o 1) AF e (i, 1) -+ -
=1

a=1 b=a+1 c=b+1 i=1 j=1 =1
3 Y AT ),

where the notation is the same as in (7) and (8).
A condition associated with AF,... AFyu.,...,AF, < 0Vi,...,l € [1,dy] x ...[1,dp],

+Zi+

17

requires that the cross-partial differences alternate signs starting with U, (i, ..., dpz,) > 0,
followed by Ugp (4,7, - - ., detap) < 0, and so on until U;_p < 0 if D is an even number, or
Uy p > 0 otherwise. An alternative condition, associated with AF, ..., AF.,...AF, >
OVi,...,l € [1,dy] x ...[1,dp], requires that all cross-partial differences be non-negative.

A third condition stems from the merger of the first two distributional conditions. If the
two first conditions are met, then the comparison, AS, is robust for all individual welfare
functions U, characterized by weak increasing monotonicity with respect to each variable,
(Uq (4, ...) > 0Va) and by positively (or zero) signed cross-partial derivatives for odd numbers
of variables. Hence, for the conditions stemming from (10) and (11) to be suitable for
the derivation of a multivariate version of (9), it is necessary that the odd cross-partial
differences of p be non-positive (because it is a poverty function). By examining the simplest

7"The result (10) has been shown by Crawford (2005), although it was alluded to by Hadar and Russell
(1974). The result (11) is a simple multidimensional extension of the three dimensional derivation by
Anderson (2008).



cross-partial difference it is easy to realize that the conditions are not suitable. First, the
multivariate equivalent of (3), i.e. the partial difference is non-positive since ¢g; < 0 and:

o () =—=I(cpn—w <k)I(i—1<2z <i) (12)

The difference (12) does not pose any problem. By contrast, the multivariate equivalent
of (5) can also take any sign. Its expression is more complicated.'® With some further
manipulation one can show that 43 (,7,1) can also take any sign (not just non-positive)
and hence p23 can take any sign. Therefore neither (10) nor (11) provide suitable dominance
conditions for the class of poverty functions based on (1) when more than two variables are
considered, in general. However, as the next section shows, by restricting the identification
criteria to the extreme approaches and imposing more structure on g, the potential signs
of the cross-partial differences of p can be narrowed down so that first-order dominance
conditions become suitable for certain subsets of members of (1). As illustrated below, some
of the counting measures in the literature belong to these subfamilies.

Conditions for three or more variables

Since one of the reasons why the multivariate equivalent of (5) can take any sign is that the
cross-partial differences of ¢ (¢; k) can take any sign, then a natural starting point for finding
subfamilies of P for which dominance conditions are applicable, is to narrow down the poverty
identification criteria, i.e. ¢ (c; k). The first subsection of this section derives the subfamilies
of P for which full-robustness conditions are available from first-order multivariate dominance
conditions, when the identification of the poor is restricted to the union approach (as several
indices in the literature do). The second subsection focuses on the intersection approach. Any
alternative, intermediate identification approach is characterized by cross-partial differences
of v (¢; k) that can take any sign. Hence the first-order multivariate extensions of Atkinson
and Bourguignon (1982) only apply to the extreme identification approaches when three, or
more, variables are considered.

The case of the union approach

In the union approach, ¢ (¢;k) = I (¢, > min{w,}) = I (3s | x5 < 25) . Hence:

(13)

T

Pr[z; =i,...,2p = m|e (; min{wy}) g <[Z_]+"“’ [QZ_D} +)

1 ZD

)=

18Because it involves ¢4 (7,7), which depends not just on the two differentiation variables. The formula
appears in the Appendix 1.

iMs

P (k =min{w,}) = Z .

— Z...ZPr[mlzi,...,xD:m]g(lj—ik,---,

i=1 m=1

10



Note that, in the second line of (13), ¢ (¢; min{w,}) dropped out. The reason is that,
under the union approach, g = 0 for all the non-poor, because in their case: ry > z; Vs €
[1, D] .Therefore, due to the properties fulfilled by g, the computation of P as if everybody
were identified as poor (¢ (c;0)) always yields the same value as in the case of the union
approach. The implication, then, is that the first-order dominance conditions for P (k = 0)
are the correct robustness conditions for P (k = min{w,}).

Now the first-order dominance conditions for P (k = 0) only depend on the cross-partial
differences of g. That is, the sign of the cross-partial differences of p depend exclusively on
the signs of the cross-partial differences of g; because, when k = 0 : p = g. Without further
structure, the signs of the cross-partial differences of g are ambiguous. Hence multivariate
dominance conditions are not applicable for three, or more, variables even in the union
approach. Consequently the search for subfamilies of P for which dominance conditions are
applicable, under the union approach, must be restricted to functions g whose cross-partial
differences take different non-ambiguous signs. By an induction argument (i.e. using the
patterns stemming from the cross-partial differences of g), the following dominance condition,
and corresponding subfamily of P measures, can be derived:

D

P4 < PB,de€R+/\de:D;VZ;k:min{wd};<—>
d=1

AF (i,.. 1), AFue (i, 4,1) .. . AF, < O¥i,.... 1€ [1,dy] x ... [1,dp)] (14)
/\gaagabca'-- S O;gab>gabcda~-- 20

According to condition (14), multidimensional poverty in society A is never higher than
in B, as measured by members of a subclass of the counting family (1) characterized by the
union approach, non-positive, odd-numbered cross-partial differences of g and non-negative,
even-numbered cross partial differences of g, if and only if the joint cumulative probability
function of A is never above that of B, for all choices of specific poverty lines (Z) and weights

An example of g for which condition (14) applies is:g = h (Zle aqK ([M] )) , where
+

Zd

h:Ry - Ry, K:[0,1] - Ry, ag € Ry A ZdD_l ag = D, K’ < 0 and the cross-partial
differences of h are non-negative if they are odd-numbered and non-positive if they are even-
numbered. Such an example can be provided by several generalized means functions, e.g.
expression (18) in Bourguignon and Chakravarty (2003).

Two additional conditions for the union approach, and three or more variables, can be
derived, departing from (14). By relaxing the requirements on the cross-partial differences
of g a more stringent distributional condition is available for a broader subfamily of P:

11



D

pA < PP deeR+/\de D;VZ; k = min{wg}; <
d=1
AF (iy... 1), AFuye (i,5,1),...AF, < O¥i,...,le[l,dy]x...[1,dp] (15)
/\AF(%ul)aA%(zujul)aAE Z OVZ, [) 1]X [ ]
/\gaagabca--- S 0

According to condition (15), multidimensional poverty in society A is never higher than
in B, as measured by members of a subclass of the counting family (1) characterized by the
union approach, and non-positive, odd-numbered cross-partial differences of g, if and only if
the joint cumulative probability function of A is never above that of B and the joint survival
probability function of A is never below that of B, for all choices of specific poverty lines
(Z) and weights (V).

Finally, the second additional condition stems from setting all cross-partial differences of
g equal to zero. In that case, the full-robustness condition is:

D
PAY < PP Vuwg € Ry A wa=DiVZ;k =min{wg};—  (16)
d=1
AF, < 0Vi,...,l€ []_,dl] X [1,dD]

Agab; Gabcy Yabed - -+ — 0

Robustness condition (16) applies to members of P whose g is additively separable into

D arguments that depend on each of the [“P”de} , respectively.!’ A prominent example of

these measures is the Alkire-Foster family. Another example is provided by BC'D when
7 =1 (see Table 1, Bossert et al. (2009)). Hence, under the union approach, condition (16)
is applicable to the Alkire-Foster family, among others. The condition is only sensitive to
the marginal distributions of the variables. It requires testing for first-order dominance over
each variable separately and declaring dominance only when one society dominates another
one in each and every variable, independently.

The case of the intersection approach

In the case of the intersection approach: ¢ (c,; D) = I (Vs : 2,5 < 2z5). Then the cross-partial
differences of ¢ follow a pattern whereby the odd-numbered differences are always non-
positive and the even-numbered ones are non-negative, i.e. possible signs are alternated.
For instance the first three cross-partial differencess are:

¢ (k=D) = —I(can=D—w)I(i—1<z <i); (17)
D
where Cht = de_f (Tna < zq)
d#1

19T am using additive separability in the same sense as Gorman (1968).
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1ok =D) = I(copia=D—wi—w)l(i—1<z<i)I(j—1<z<j); (18)

D
where Cnj12 = Z Wal (Tpg < za)
d#1,2
(,0123(1/0:D) = —](Cn/17273:D—w1—U}Q—’wg)I(i—l < z1 <l)](j—1 < 29 <j)](l—]_ < 23 <(lp,)
D
where Cnj12,3 = Z Wal (Tpa < 2q)
d#1,2,3

Identifying the subfamily of counting measures for which multivariate dominance condi-
tions apply, under the intersection approach, requires checking the signs that the cross-partial
differences of p can take. Considering the potential signs of the cross-partial differences of
¢ under the intersection approach (e.g. (18) and (19)), an inspection of the simplest cross-
partial differences of p (see Appendix 2), shows that the cross-partial differences of ¢ also
need to alternate potential signs in the same way as ¢, i.e. :p, <0, @, > 0, Y. < 0, and so
forth. Otherwise the potential sign of the cross-partial differences of p becomes ambiguous
and first-order dominance conditions do not qualify as full-robustness conditions. Therefore,
when the cross-partial differences of g behave in a manner mirroring those of ¢, the following
condition, and corresponding subfamily of P, can be derived:

PA

IN

D

PP Ywy € Ry A wg = D;VZ; k = D; < (20)
d=1

OVZ,,Z S [1,d1] X ... [17dD]

Oa Gaby Gabeds - - - Z 0

AF (i,...,1),AFy. (i,5,1),...AF,

<
/\gaa Gabe; - - - S

According to (20), multidimensional poverty in society A is never higher than in B, as
measured by members of a subclass of the counting family (1) characterized by the intersec-
tion approach, non-positive, odd-numbered cross-partial derivatives of g and non-negative,
even-numbered cross partial derivatives of ¢ , if and only if the joint cumulative probability
function of A is never above that of B, for all choices of specific poverty lines (Z) and weights
(W). Because condition (20) is identical to condition (14), but applied to the intersection
approach, the examples of g that are suitable for the latter, e.g. several generalized means
functions, are also relevant for the former. For instance, condition (20) is also applicable to
the Alkire-Foster family under the intersection approach.

Empirical application

An illustration of the conditions deduced above is provided in this section using the EU-SILC
dataset. For the 26 European countries® in the sample, the following three indicators of

20 Aystria, Belgium, Croatia, the Czech Republic, Germany, Denmark, Estonia, Spain, Finland, France,
Greece, Hungary, Ireland, Iceland, Italy, Lithuania, Luxembourg, the Netherlands, Norway, Poland, Portugal,
Sweden, Slovenia, Slovakia, and the United Kingdom.
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functionings for adults at least 25 years old are considered:

e Education measured by the highest International Standard Classification of Education
(ISCED) level attained according to the following ordinal categories: pre-primary ed-
ucation, primary education, lower secondary education, upper secondary education,
post-secondary non-tertiary education, first and second stages of tertiary education.?!

e Health, self-reported using the following categories: very bad, bad, fair, good, very
good.

e Ability to keep the home adequately warm (a dummy variable).??

The sample sizes for each country are in Table 5 in the Appendix 3.

Results

Tables 2 and 3 show the dominance test results for dominance conditions based on joint
cumulative distributions and joint survival distributions, respectively. The tests are the ones
proposed by Yalonetzky (2013). In these tests two sets of hypotheses are tested. First, a null
hypothesis of distributional homogeneity between A and B is tested against the alternative
of strict dominance of A over B; second, a null hypothesis of homogeneity of A and B is
rejected against the alternative hypothesis of curve-crossing. The tests rely on z-statistics
and, for the first set, rejection is concluded when all statistics are of the same sign and
statistically significant. For the second set, rejection is concluded when there are at least
two statistically significant statistics of different sign.?®> Note from the tables that, in most
cases, there are statistically significant curve-crossings.

Meanwhile, with three or more variables, a multidimensional poverty comparison based
on any measure belonging to (1), and on extreme poverty identification approaches, is fully
robust if and only if the two dominance conditions are met simultaneously. Table 4 provides
a summary of the pairs of countries for which both conditions are met, hence guaranteeing
full robustness of multidimensional poverty comparisons for the functioning indicators con-
sidered.?* It turns out that Austria, Finland, Sweden, Norway and the UK dominate three or
more European countries; whereas Italy, Latvia, Poland, Portugal and Spain are dominated
by three or more countries. By contrast, most of the comparisons are not fully robust. Hence,
for instance, whether Austria is poorer than Belgium or the other way around, depends on
the choice of poverty measure and/or its specific parameter values.

21The first stage does not lead to an advance research qualification, whereas the second stage does. See
EUROSTAT (2007).

22This question is about the ability to keep the house adequately warm, including the ability to pay bills
for that, independently of whether the house needs to be heated. See EUROSTAT (2007).

23See Yalonetzky (2013) for more details.

24The result shown in Table 4 is the one from the other two tables that exhibits the highest test size.
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Concluding remarks

Previous work on the ordinal robustness of counting measures has either focused on bivariate
applications of measures that are implicitly based on the counting approach (e.g. Bour-
guignon and Chakravarty (2003)) or focused on the robustness of comparisons to changes in
the counting cut-off, & (e.g. Lasso de la Vega (2010) and Alkire and Foster (2010)). This
paper has sought to provide the distributional conditions that ensure the full robustness
of an ordinal poverty comparison, based on ordinal variables and on a very broad family of
counting measures that includes most measures of multidimensional poverty in the literature
that depend, explicitly or implicitly, on the counting identification function characterized by
Lasso de la Vega (2010). When fulfilled, these conditions ensure that poverty comparisons
are robust to changes in the value of any of the parameters upon which the counting mea-
sures depend. The paper shows that, in bivariate cases, the conditions require comparing the
joint cumulative and survival functions of two distributions. The conditions are stringent,
but they provide the maximum degree of robustness in poverty comparisons using these
measures.

In applications with three or more variables, the traditional dominance conditions used in
this paper are not appropriate for poverty counting measures, except when extreme poverty
identification approaches are considered. The reason is that the conditions do not cover
all the possible signs that certain cross-partial differences may take; specifically, those of
cross-partial differences of the individual poverty function with respect to an odd number
of variables. For intermediate identification approaches, the odd cross-partial differences of
poverty counting measures can take any sign. Hence traditional dominance conditions are
not applicable.

However this paper shows that there are suitable dominance conditions for any num-
ber of variables, only for extreme poverty identification approaches. In the case of the union
approach, the paper derives three first-order dominance conditions that are suitable as full ro-
bustness conditions. Each depends on different sets of signs that the cross-partial differences
of g can take. By contrast, in the case of the intersection approach, only one distributional
condition can be derived. According to the latter, a country whose cumulative joint and
marginal distributions first-order dominate will not exhibit higher poverty according to any
of the counting measures belonging to (1), with ¢ (¢,; k) = I (¢, = D).

What’s left for poverty comparisons using counting measures, intermediate identification
approaches and several ordinal variables? In these circumstances, traditional dominance con-
ditions cannot ascertain robustness when fulfilled. However, by looking at (10) or (11), it is
clear that when these conditions are not fulfilled, ordinal poverty comparisons with count-
ing measures are not robust. This limitation in the applicability of multivariate first-order
conditions to robustness of poverty comparisons is not a consequence of using counting mea-
sures. It’s rather a reflection of the lack of resilience of traditional distributional conditions
to deal with different signs of the odd-numbered cross partial differences (and derivatives).
Hence the limited applicability of the conditions is bound to be a problem in other con-
texts of ordinal poverty and wellbeing comparisons.?” This state of affairs calls for future

2TFor instance, when using the new family of measures proposed by Rippin (2011). Her family is similar to
(1), but ¢ (c,,) takes a more general form and the union approach is adopted. The latter means that ¢ (c;,)
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research to explore alternative robustness criteria for ordinal poverty (and wellbeing) com-
parisons, beyond the traditional tools developed since the seminal contribution of Atkinson
and Bourguignon (1982).

The empirical illustration relying on the EU-SILC dataset shows the existence of several
robust comparisons of multidimensional poverty using educational achievement, self-reported
health, and ability to keep the house warm. For instance, Austria, Finland, Sweden, Norway
and the UK dominate three or more European countries; whereas Italy, Latvia, Poland,
Portugal and Spain are dominated by three or more countries. However, as is often the
case, a complete and fully robust ordering does not stem from these data. This means that
several other comparisons, as well as the aim of generating any complete ordering, ultimately
depend on the choices of multidimensional poverty measures and their parameters’ values
(e.g. specific poverty lines, weights and multidimensional cut-offs in the case of the Alkire-
Foster family of measures). It is possible that some other dominance relationship would
emerge in this dataset should the test of the conditions be restricted, say, by ruling out
values of the variables that appear not to be reasonable as poverty lines. However applying
these restrictions when dealing with multiple variables is not trivial. Particularly one does
not want to rule out testing conditions related to union approaches, i.e. in which low values
of some variables are considered along with the whole range of other variables (since in these
approaches, a person can be deemed poor even if he or she performs well in some dimensions
of wellbeing). Therefore this restricted-dominance approach has not been pursued in the
paper.

This paper’s focus has been on ordinal variables. Future research should also ascertain
the validity of similar dominance conditions as robustness criteria for measures based on
continuous variables. Hybrids depending on both continuous and discrete ordinal variables
should also be considered. Given the pervasiveness of discontinuities in the functional forms
of the continuous-equivalent of (1), the application of traditional stochastic dominance tech-
niques is expected to be challenging in these contexts. Resorting to the theory of generalized
functions; or, alternatively, smoothing the discontinuities around the poverty lines, may be
the way to go.
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Appendix 1: Cross-partial difference of v(c,; k)

012 (1,J) = 1(i—1<zn<)I(j—1<z<j)I(c,—ws —ws <k)] (21)
I(chn—wy <k)I(ch—we>k)+1(ch—wy<k)Il(cp—w >k)
—1 (e, —wy < k)I(c, —wy < k)]

Appendix 2: Basic cross-partial differences of p in the
intersection approach

P2 = gPia (Cn; D) 4 9109 (Cn; D) + gotpy (cni D) + @ (cn; D) g2 (22)
P23 = 1993 (Cn; D) + 920013 (¢ D) + g3p15 (cn; D) (23)
+3 (cn; D) g12 + 03 (cn; D) 13 + @4 (s D) ga3
+9193 (Cn; D) + G123 (cn; D)

Appendix 3: Sample sizes
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Table 5: Sample sizes: Adults 25 years old or older

Sample size

Austria 11,780
Belgium 10,765
Croatia 7,076
Czech 17,108
Germany 23,484
Denmark 10,092
Estonia 9,518
Spain 25,348
Finland 18,402
France 17,547
Greece 11,074
Hungary 16,232
Ireland 9,478
Iceland 5,302
Italy 40,245
Lithuania 9,365
Luxembourg 6,978
Latvia 7,947
Netherlands 17,601
Norway 9,835
Poland 29,294
Portugal 8,773
Sweden 11,955
Slovenia 20,736
Slovakia 10,262
UK 15,504
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