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Abstract

Using detailed data from garment factories in Bangalore, India, we estimate large, negative
impacts of temperature on productive efficiency (actual over target output). The introduc-
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productivity gradient by 75 percent. Our estimates suggest that productivity returns to LEDs
are more than four times larger than the energy savings, significantly shifting firms’ cost-
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1 Introduction

Mean global temperatures are projected to rise by at least 1.5 degrees Celsius by 2100 (IPCC, 2013).
Developing countries, whose adaptive and protective capacities are low and who are on aver-
age hotter than developed countries, will bear the lion’s share of the ensuing negative impacts
(Mendelsohn et al., 2006). Agricultural and manufacturing productivity may suffer, not only due
to the increased frequency of extreme weather events1 but also because excessive heat increases
health risks (Burgess et al., 2011, 2013; Danet et al., 1999; Deschênes and Greenstone, 2011; Ku-
damatsu et al., 2012) and decreases the body’s capacity for exertion (Kjellstrom et al., 2009; Lemke
and Kjellstrom, 2012; Sudarshan and Tewari, 2013).

Given these repercussions, there is great academic and policymaking interest in quantifying
the impacts of temperature (and of environmental factors more broadly) on economic outcomes.
While the effect of rising temperatures on agriculture has been studied in depth by recent work
(Deschênes and Greenstone, 2007; Guiteras, 2009; Kala et al., 2012; Kurukulasuriya et al., 2006; Lo-
bell et al., 2011), impacts on industrial productivity remain relatively unexplored.2 As economies
in many low-income countries undergo major structural transformations away from agriculture
and into manufacturing and services sectors (Roberts and Tybout, 1996), understanding these ef-
fects becomes even more important.

In this study, we estimate the impacts of temperature anomalies using detailed production
data from garment factories in Bangalore, India. We begin by estimating the effect of changes in
temperature on worker efficiency (realized output over target output) at the production line by
day level. We find that efficiency decreases substantially on hotter days: a 1 degree Celsius in-
crease in mean daily temperature lowers production efficiency by .23 points (average efficiency
is 53.4 percent). Lagged temperature (averaged over the week prior) also matters for current ef-
ficiency: a 1 degree Celsius increase in the lagged average temperature decreases efficiency by
.34 points. Contemporaneous effects of temperature on attendance are small and tightly bounded
around 0, suggesting that the temperature-efficiency gradient derives from the direct physiologi-
cal effect of temperature on workers’ productive capacity, rather than an indirect mechanism via
worker attendance.3 However, lagged temperature does significantly affect attendance in most
specifications, suggesting that labor supply might be one mechanism for cumulative, persistent
effects of temperature on efficiency.

Having documented substantial impacts of temperature on industrial productivity and ab-
senteeism, the natural next question is whether it is possible to mitigate these impacts. Finding
effective mitigation strategies is not enough; even the most tempered by the willingness of indi-

1See, e.g., Deschênes and Greenstone (2007); Guiteras (2009); Hsiang (2010); Kala et al. (2012); Kurukulasuriya et al.
(2006); Lobell et al. (2011).

2Though the idea that heat stress in the workplace could hamper productivity, particularly in low-income coun-
tries, has been written about for some time (see, e.g., Lemke and Kjellstrom (2012) and Kjellstrom et al. (2009), to our
knowledge only one recent study in economics makes strides toward quantifying this impact (Sudarshan and Tewari,
2013).

3It bears mentioning that absenteeism is a significant problem in these factories, so there is substantial day-to-day
variation in attendance.
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viduals and firms to adopt them. This process is not easy: though the public benefits of mitigation
may be high, the immediate private returns are generally assumed to be low or even negative
(Knittel and Sandler, 2011). Achieving widespread adoption, then, might require costly sustained
subsidies or taxation. These questions are obviously important from a policy perspective, and
matter, too, for our understanding of firms’ technology adoption decisions.4

We make strides toward answering this question by estimating the productivity consequences
of the adoption of energy-saving technology in the garment factories under study. We show that
the introduction of light-emitting diode (LED) technology on factory floors substantially attenu-
ates the negative relationship between temperature and worker efficiency. LED lighting is 7 times
more energy-efficient than standard fluorescent lighting in our setting, and emits about 1/7th the
heat. We study the impacts of a staggered roll-out of LEDs over four years on the stitching floors
of 25 factories operated by a large garment export firm in India.5 The switch to LED lighting was
driven in large part by changes in international buyers’ recommendations for “green” policies for
their suppliers. We demonstrate in a variety of checks that the roll-out across factory units and
over time was not systematically related to temperature or productivity pre-trends.

We estimate the extent to which the introduction of LED lighting, through the reduced inten-
sification of temperature on factory floors, flattens the temperature-efficiency gradient. Our esti-
mated magnitudes are startling: on average, the introduction of LED lighting eliminates roughly
75 percent of the negative impact of temperature on efficiency. These results are robust to changes
in empirical specification and to a variety of temperature measures. Interestingly, though we find
that LED introduction generates significant attenuation of the temperature-productivity gradient
across the temperature distribution, this differential effect is nearly twice as large below median
temperature as compared to above. Finally, we explore the degree to which LED adoption affects
productivity directly or beyond its interaction with temperature by estimating the main effect of
LED on productive efficiency. We find no evidence of a main effect.

Our study contributes to the understanding of the effects of environmental factors on economic
productivity. Recent work has documented significant labor supply and productivity impacts of
air pollution (Graff Zivin and Neidell, 2012; Hanna and Oliva, 2011) and temperature (Graff Zivin
and Neidell, 2010; Heal and Park, 2013; Hsiang, 2010; Sudarshan and Tewari, 2013). Our detailed
productivity measures, relatively long time span, and high-frequency temperature data allow us
to quantify impacts with precision. Our findings are quite consistent with the previous studies:
deviations in temperature strongly impact labor productivity. These studies make important in-
roads, but they stop short of evaluating policies that actually lessen the negative impact of heat on
productivity. We provide the first evidence to our knowledge of the impact of technology that flat-
tens the temperature-productivity gradient, while also having important environmental benefits
via climate change mitigation.

4In an interesting and related study, Allcott and Taubinsky (2013) test for behavioral hinderances as an explanation
for low adoption of energy-efficient lightbulbs among consumers. We show among firms that non-adoption is even
more suboptimal once production benefits are taken into account.

5Our data sample includes 29 factories, four of which did not receive LED lighting.
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We also add to the literature on the returns to climate change mitigation.6 The few recent
studies that examine “co-benefits,” or additional gains, of mitigation focus largely on the indirect
public returns (Bollen et al., 2009; Knittel and Sandler, 2011). For example, a carbon tax aimed
primarily at reducing CO2 emissions may also reduce emissions of accompanying pollutants such
as nitrous oxides or carbon monoxide, thus reducing substantially the tax’s welfare costs. Our
study examines a novel, private co-benefit of climate change mitigation. This distinction is impor-
tant because the success of most mitigation strategies relies on individuals’ and firms’ willingness
to adopt them, and this willingness is largely driven by private returns. If energy-saving tech-
nologies like LEDs do have substantial private co-benefits, this should meaningfully alter firms’
benefit-cost calculations. Indeed, by our estimation, the benefits of LEDs in terms of productiv-
ity are substantially larger than energy savings (in fact, roughly 4 times as large), indicating that
ignoring the former source of benefit would seriously underestimate the private returns to adop-
tion.

Finally, we contribute to the study of the determinants of firm and worker productivity in low-
income contexts. Recent work has demonstrated that management quality (Bloom et al., 2013;
Bloom and Van Reenen, 2010), intra-firm networks (Bandiera et al., 2009, 2010), incentive struc-
tures (Bandiera et al., 2007), ethnic boundaries (Hjort, 2013), and environmental disasters (De Mel
et al., 2012) all significantly impact productivity. We show that temperature, and interventions
that affect ambient temperature on factory floors, play an importnant role in worker efficiency as
well.

The remainder of the paper is organized as follows. Section 2 describes contextual details
regarding garment production in India and LED technology. Section 3 provides details on the
temperature and production data. Section 4 describes our empirical strategy. Section 5 describes
the results, and section 6 has a concluding discussion.

2 Context

In this section, we 1) discuss the garment sector in India and key elements of the garment pro-
duction process; 2) review the physiology of the relationship between temperature and worker
productivity; 3) provide an overview of energy usage and heat emissions in LED v. fluorescent
lighting; and 4) describe the roll-out of LED lighting across the garment factories in our data.

2.1 The Indian Garment Sector

Global apparel is one of the largest export sectors in the world, and vitally important for economic
growth in developing countries (Staritz, 2010). India is the world’s second largest producer of
textile and garments, with the export value totaling $10.7 billion in 2009-2010. Women comprise
the majority of the workforce (Staritz, 2010). Total employment in India’s formal apparel and

6A related literature has established patterns of adaptation to climate change and the returns to this adaptation (e.g.
Barreca et al. (2013)).
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textile industry was about 2 million in 2008, of which 675,000 was in the formal apparel sector,
making this a crucial component of India’s industrial sector.

2.2 The Garment Production Process

There are three broad stages of garment production: cutting, sewing, and finishing. In the fac-
tories that comprise our production data, garments are sewn in production lines. Each line will
produce a single style of garment at a time (i.e. color and size will vary but the design of the
style will be the same for every garment produced by that line until the order for that garment
is met). Lines consist of 20-100 sewing machine operators (depending on the complexity of the
style) arranged in sequence and grouped in terms of segments of the garment (e.g. sleeve, collar,
placket).7 Completed sections of garments pass between these groups, are attached to each other
in additional operations along the way, and emerge at the end of the line as a completed garment.
These completed garments are then transferred to the finishing floor.

Before reaching the sewing floor, pieces of fabric needed for each segment of the garment are
cut using patterns from a single sheet so as to match color and quality perfectly. These pieces are
divided according to groups of sewing operations (e.g. sleeve construction, collar attachment) and
pieces for 10-20 garments are grouped and tied into bundles. These bundles are then transported
to the sewing floors where they are distributed across the line at various “feeding points” for each
group of sewing operations.

In finishing, garments are checked, ironed, and packed. A great degree of quality checking
is done “in-line” on the sewing floor, but final checking occurs in the finishing stage. Any gar-
ments with quality issues are sent back to the sewing floor for rework or, if irreparably ruined, are
discarded before packing. Orders are then packed and sent to port.

2.3 Physiology of the Temperature-Productivity Gradient

The physical impact of temperature on human beings is a very well-studied area (Enander, 1989;
Parsons, 2010), and has traditionally been important in order to establish occupational safety stan-
dards for workers exposed to very high or low temperatures for continued periods of time (Van-
hoorne et al., 2006). Higher temperatures and consequent thermal stress can impact human beings
not only physically, but also through lower cognition and psychomotor ability (Hancock et al.,
2007). For instance, Ramsey et al. (1983) find increases in unsafe behavior by workers at tem-
peratures greater than 35 degrees Celsius WBGT (Wet Bulb Globe Temperature). The individual
impact on a person varies based on factors such as the type of task and its complexity, duration
of exposure, as well as the worker-level skill and acclimatization level (Pilcher et al., 2002), which
contributes to the issues in setting a particular limit in working environments (Hancock et al.,
2007).

7In general, we describe here the process for woven garments; however, the steps are quite similar for knits and
even pants, with varying number and complexity of operations. Even within wovens, the production process can vary
a bit by style or factory.
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2.4 LED v. Fluorescent Lighting

LED light bulbs are approximately 7 times as energy-efficient as fluorescent bulbs (requiring about
3 as opposed to 21 KWh/year in electricity in our setting), and thus operate at about 1/7 the cost
of fluorescent lighting. In addition, they generate a tenth of the CO2 emissions (5.01 pounds of
CO2 per year per bulb, as compared to 35.11 pounds for fluorescent lighting).8 Heat emissions
for LEDs are substantially lower than fluorescent bulbs: the average LED bulb emits 3.4 Btus, as
against 23.8 Btus for fluorescent lighting in the setting we study.

2.5 LED Roll-out: Summary and Timeline

The factories began installing LED lighting in October 2009 and completed the installations by
February 2013. There was no formal documentation of the reasons for LED adoption in each
factory, but according to senior management at the firm, the reasons were twofold. First, over the
last decade, buyers have become more stringent in their regulation of their suppliers’ production
standards and environmental policies. This generated a staggered roll-out of LEDs across factories
within the firm because some factories were more heavily involved in the production of orders
from particular buyers than others. So, for example, if buyer A’s environmental regulations or
production guidelines become more stringent, then the supplier might choose to convert to LED
lighting in factories processing many orders from buyer A. When buyer B’s regulation change, the
firm will prioritize factories servicing buyer B, and so on. Second, over the study period, the firm
itself began a variety of “green” initiatives firm-wide, and thus scaled up LED introduction across
its factories. These two factors combine to generate wide variation in the timing of LED take-up
across the factories we study. To test whether this timing was exogenous to line-daily efficiency,
we perform some checks, which are described in detail in section 5.

The replacement took the form of substituting all fluorescent lights targeted at individual oper-
ations with an equivalent number of small LED lights mounted on individual workers’ machines.
The replacements were designed to maintain the original level of illumination. On average, each
unit replaced about 1,000 fluorescent lights of 7W each with 1,000 LED lights of 1W each.9 Based
on the factories’ operating time cost calculation, this meant an energy saving of 18KWh per light
per year. In the conclusion, we discuss the magnitude of the environmental benefits from the
installation.

A particular factory received the installation within a single month. 8% of the LED rollout (2
units) was completed in 2009, 48% (12 units) in 2010, 16% (4 units) in 2011, about 24% (6 units)
in 2012 and the rest (1 unit) in 2013. Of the 29 units from which we have productivity data, LED
replacements occurred in 25 units. Since our productivity data ranges from April 2010 to June

8Note that while both fluorescent and LED lighting are much more efficient than incandescent bulbs, the factories
in our sample did not have any incandescent lighting on the production floor. For details on emissions calculations,
please refer to section 6.

9The number of lights installed unit by unit is a function of the number of machines in the unit, and varies from
about 100 to 2,550 with a mean of 1,000.
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2013, some units already have LEDs at the beginning of our productivity data, and all but four
units have LED for the last four months of our productivity data range. This is why our results
report the impact of temperature not only for the whole sample, but also separately for the units
that did not have LED at a particular time.

3 Data

Here we provide an overview of data sources, describe our data via summary statistics, and pro-
vide preliminary graphical evidence on the temperature-productivity gradient and the effects of
LED introduction.

3.1 Data Sources

3.1.1 Temperature Data

Our temperature data is from the National Climatic Data Center (NCDC) at the National Oceanic
and Atmospheric Administration (NOAA). The Center compiles global station-level weather data
at the hourly level, although most stations outside the US report data only at 3-hour intervals. We
have temperature data from three stations in Bangalore over the period spanned by our productiv-
ity data (April 2010 to June 2013). Over 80% of the observations are at the 3 hourly level (midnight
IST onwards), and the rest are across somewhat arbitrary time measurements. We consider all
observations across the three available stations between 9am and 6pm for each day as our daily
temperature measure, which constitutes the working hours at the factories we consider.10 This is
dry bulb temperature, and at the daily level ranges between 18.8 and 34.4 degrees Celsius, with
an average of about 27.6 degrees Celsius.

We have relative humidity data at the monthly level for three stations in Bangalore from Jan-
uary 2010 to November 2013, from the NOAA’s National Data Center (NNDC). We were unable to
find relative humidity data at a daily level for Bangalore, and are consequently unable to include
daily relative humidity. Accordingly, the specifications using dry bulb temperature alone at the
daily level are our preferred specifications in the results below. Nevertheless, at the monthly level,
relative humidity ranges between about 44% and 85.7%.11.

With the daily temperature and monthly relative humidity data, we construct two measures
that incorporate both temperature and humidity. The first is the Heat Index (HI) that is calculated

10Note that since not all observations are available for each of the three stations, assigning factories to the nearest
station is not feasible. About 60% of our observations come from the first station, and about 20% each from the second
and third. The correlation between the observations from the first and second station as well as the first and third
station is between 0.92 and 0.93, which is very high (the second and third stations do not overlap in terms of data
availability).

11Analogous to the temperature calculations, we average over the station observations - the correlation between
station-level observations ranges from 0.92 to 0.99
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based on the formula:

HI = −42.379 + 2.04901523 ∗ Td + 10.14333127 ∗ rh− .22475541 ∗ Td ∗ rh

− .00683783 ∗ T 2
d − .05481717 ∗ rh2 + .00122874 ∗ T 2

d rh

+ .00085282 ∗ Td ∗ rh2 − .00000199 ∗ T 2
d ∗ rh2. (1)

where Td = dry bulb temperature in Fahrenheit and rh = relative humidity (%). The formula for
the calculation is derived from the Rothfusz regression that replicates the HI values from Stead-
man (1979).

For about 0.6% of our data, the relative humidity is greater than 85% and daily temperature
ranges between 80 and 87 degrees Fahrenheit, and the following adjustment is applied:

HI = HI + [(rh− 85)/10] ∗ [(87− Td)/5] (2)

The second measure is a particular method for calculation Wet Bulb Globe Temperature that is
suitable for indoor exposure. The formula is from Lemke and Kjellstrom (2012), and is given by:

WBGT = 0.567Td + 0.216

(
rh

100
∗ 6.105 exp

(
17.27Td

237.7 + Td

))
+ 3.38. (3)

All the three measures of temperature – dry bulb temperature, Heat Index (HI), and Wet Bulb
Globe Temperature (WBGT) – are converted into Celsius to ensure interpretative ease across re-
gression specifications. While there are numerous formulae for the calculation of varied heat
indices, we chose these two since they were relatively easy to calculate and interpret. For all our
results, we report the main effect of dry bulb temperature as well as the main effect of dry bulb
temperature controlling for relative humidity in addition to the impact of the Heat Index and the
Wet Bulb Globe Temperature. The results corresponding to specifications including dry bulb alone
are preferred, but the other measures are reported as evidence of robustness.

3.1.2 Factory Data

We use data on line-level daily production from 29 garment factories in and around Bangalore,
India. Identifiers include factory unit number and line number within the factory. For each line
and day within each factory unit, production measures include actual quantity produced, actual
efficiency, and budgeted efficiency.

Actual efficiency is actual quantity produced divided by target quantity. The target quantity
is derived from an industrial engineering (IE) measure for the complexity of the garment called
“Standard Allowable Minute” (SAM). This measure amounts to the estimated number of minutes
required to produce a single garment of a particular style. This estimate comes from a central
database of styles, but is then amended by the factory’s IE department during “sampling.” Sam-
pling is the process by which a style that is ordered by a buyer is costed in terms of labor and
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production time. The highest skill grade tailor, called a sampling tailor, will make a garment of a
particular style entirely and recommend a SAM for that style to the IE department.

This SAM is then used to calculate the target quantity for the line for each hour of production.
Each line runs for 8 hours during a standard work day. Accordingly, a line producing a style with
a SAM of .5 will have a target of 120 garments per hour, 960 garments per day. Most importantly,
the target quantity will be largely fixed across days (in fact, across hours within the day) within a
particular order of a style.

Each line will only produce a single style at any time. However, depending on the order size
(or “scheduled quantity”) for a style, multiple lines might be producing the same style at one time
and each line could produce a style for many days.12 Of course, a line which has been producing
the same style for many days will likely be more efficient at producing that style than will a line
which has been producing a style (of even the same complexity or SAM) for less days.

That is, let us say that line 1 is producing some style X . The order from the buyer for style X is
for a quantity of 10,000 garments. The SAM for style X is calculated by the sampling department
and IE department to be .5. Then, line 1 is estimated to make 60/.5 = 120 garments per hour, or
960 garments per day. Then, if line 1 produces exactly 960 garments of style X each day, its actual
efficiency will be 960/960 = 100%. At this efficiency, line 1 will complete the order in roughly 10.5
production days. If, instead, line 1 produces only 480 garments of style X on the first day, because
it is still learning the production details of style X or perhaps because it is too hot to produce
efficiently, the actual efficiency for line 1 and day 1 will be 480/960=50%. Of course, even if line
1 produces at 100% efficiency on all subsequent days, it will take a full 11 days to complete the
order instead of 10.5 days.

Predictable variations in efficiency, due to learning of new styles or line-specific characteristics
such as number of operators of each skill grade, are reflected in the budgeted efficiency. Conse-
quently, actual efficiency of a given style will vary systematically across lines and within line over
time. We are, of course, interested in unpredictable, relatively transitory fluctuations in productiv-
ity due to temperature rather than these systematic fluctuations across lines due to line-specific or
operator-specific characteristics and within lines over time due to order size and style complexity.
We will accordingly control for budgeted efficiency and include line fixed effects in the regression
analysis below.

Most importantly, we use actual efficiency rather than produced quantity as our outcome of
choice. Produced quantity would not account for systematic variation due to complexity of style
or number of operations. Without normalizing production observations to target quantity, one
could potentially misrepresent an association between temperature and style complexity or order
size as an impact on productivity. That is, for example, if garment complexity or line length varied
by temperature due to seasonal buying of winter garments at certain times in the fall months or
labor supply in harvest weeks, resulting variations in efficiency could be attributed to temperature
spuriously. Accordingly, we argue that actual efficiency, controlling for budgeted efficiency, is the

12Indeed, in our data, lines produce styles for between 1 and 199 days.
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most appropriate outcome for the empirical exercise proposed in this study.
To summarize, target quantity will reflect only style by line characteristics which do not vary

day to day and certainly do not vary with temperature fluctuations across days. Actual quantity
will indeed vary with daily productivity, of which we hypothesize temperature is an important
determinant, but must be normalized by target quantity to be compared across lines and within
lines across styles. Even within styles and lines, certain predictable variations and evolutions
in actual efficiency arise due to, among other things, learning by doing which is a function of
garment complexity, order size, and line- and order-specific characteristics. True daily fluctuations
in productivity are, therefore, best measured by actual efficiency net of budgeted efficiency.

3.2 Summary Statistics

We present means and standard deviations of variables used in the analysis below. Our sample
consists of 446 lines across 29 factory units. The range of dates over which we have production
data spans 941 days in total. However, we do not observe all factory units, nor all lines within a
unit, for all dates. We restrict our attention to lines for which we observe production data for at
least 40% of dates. Altogether, our data includes nearly 215,000 line-day observations. Roughly,
one-third of the observations correspond to days in factory units prior to the introduction of LED
lighting and the rest are post-LED observations.

The summary statistics indicate a great deal of variation in the measures of temperature. The
means of these measures appear quite similar before and after the introduction of LED. This is to
be expected given that the timing of LED introduction varied at the factory level across nearly the
entire date range. That is, 6 units already have LED lighting at the beginning of the date range
and 4 units still have not received LED lighting by the end of the date range. On the other hand,
both actual and budgeted efficiency appear to differ on average between the before and after LED
samples. Average efficiency appears higher after LED introduction, while budgeted efficiency
appears lower.

3.3 Preliminary Graphical Evidence

We begin by motivating the central exercise of this study with descriptive plots of production and
temperature data.

3.3.1 Temperature-Productivity Gradient

Underlying the analysis conducted below is the assertion that productivity and temperature are
negatively correlated. In order to check this assertion in our empirical context, we plot both the
daily time series of actual production efficiency and the dry bulb temperature. These plots, pre-
sented in Figure 1, depict a distinct negative correlation and, perhaps, a slight lag in the impact of
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FIGURE 1: EFFICIENCY AND TEMPERATURE TIME SERIES
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Notes: Efficiency is produced quantity divided by targeted quantity. Date trimmed before June 1, 2010 due to limited production data.

temperature on efficiency.13

We next collapse the time element of the data and plot actual efficiency as a function of dry bulb
temperature. Figure 2 shows that indeed efficiency appears to be a downward-sloping function of
temperature.

3.3.2 Impacts of LED Introduction

Having provided preliminary evidence of a negative temperature-productivity gradient for the
garment factories in our data, we next check for evidence that this gradient is affected by the
replacement of the ambient fluorescent lighting in factories with focused, machine-mounted LED
lighting. We repeat the exercise from Figure 2 for subsets of the data from before and after the
LED roll-out in each factory. These plots are presented in Figure 3. The evidence suggests that
factories are more efficient at all temperatures after the LED introduction. This efficiency gap is
increasing in temperature due to a less negative slope with LED, particularly in the lowest and
highest ranges of temperature.

We also return to the exercise conducted in Figure 1, but plot the efficiency series separately for
factory-day observations with and without LED lighting. Once again, we include the temperature

13Note that there appears to be a downward trend in efficiency over the time period covered by the data. This is
likely due to rampant expansion across many factory units during this time that stresses resources and periodically
depresses efficiency within the unit. This is another strong indication for the inclusion of unit x year FE and budgeted
efficiency as a control.
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FIGURE 2: EFFICIENCY AGAINST TEMPERATURE
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FIGURE 3: EFFICIENCY AGAINST TEMPERATURE BY LED
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FIGURE 4: EFFICIENCY AND TEMPERATURE TIME SERIES BY LED
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time series for comparison and present the plots in Figure 4. The evidence in Figure 4 also suggests
that LED lighting improves efficiency on all days, but particularly smooths the fluctuations in
efficiency due to temperature.

Finally, we explore graphically the main effects of LED lighting on efficiency. That is, there
might be many pathways by which LED introduction might affect efficiency directly or outside
of its interaction with the temperature-efficiency gradient. For example, the quality and quantity
of light might have effects on attentiveness and sight, both of which are important in garment
manufacturing. While, the previous figures indicate that LED might have a mitigative impact on
the temperature-efficiency gradient, estimating the mean composite effect of LED introduction on
efficiency is also of interest in what follows. We present preliminary evidence of this main effect
by plotting actual efficiency over time relative to the date of LED introduction. However, Figure 5
shows little evidence of a mean composite effect.

Motivated by this preliminary evidence we set forth a more rigorous regression analysis below
to causally identify both the effect of temperature on production efficiency and the attenuation of
this impact driven by the replacement of traditional fluorescent lighting with LED technology. In
particular, we address concerns regarding unit-level trends in efficiency, line-level unobservables,
seasonality in efficiency, and the exogeneity of the LED introduction.
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FIGURE 5: EFFICIENCY BEFORE AND AFTER LED
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4 Empirical Strategy

‘
First, we estimate the following empirical specification of the relationship between worker

efficiency and temperature:

Eludmy = α0 + βTdmy + φBludmy + αl + γuy + ηm + δd + εludmy. (4)

Here, E for efficiency of line l of unit u on day d in month m and year y; B is budgeted efficiency
for line l of unit u on day d in monthm and year y; T is daily temperature in degrees Celsius; αl are
line fixed effects; γuy are unit x year fixed effects; ηm are month fixed effects; δd are day-of-week
fixed effects; and α0 is an intercept. β is the coefficient of interest, giving the impact of a 1-degree
Celsius increase in temperature on line-level efficiency.

In addition to the average effect of temperature on efficiency, we are also interested in testing
whether this effect, and its corresponding attenuation by LED lighting, is heterogenous across
the distribution of temperature. To implement this, we estimate equation 4 allowing for varying
slopes of temperature above and below the median of the temperature distribution. We use the
following empirical specification:

Eludmy = α0 + ζ1 (Q1 x Tdmy) + ζ2 (Q2 x Tdmy) + ζ5Q1 + ζ6Q2 + αl + γuy + ηm + δd + εludmy. (5)
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where Q1 is a dummy variable that is 1 if temperature is above median temperature and zero
otherwise, and Q2 is a dummy variable that is 1 if temperature is below median temperature and
zero otherwise.

We then estimate the extent to which the introduction of LED lighting attenuates the temperature-
productivity relationship via the following specification:

Eludmy = α0 + β1 (Tdmy x LEDumy) + β2LEDmy + β3Tdmy + φBludmy + αl + γuy + ηm + δd + εludmy. (6)

HereLEDumy is a dummy for presence of LED lighting in unit u in monthm and year y. It changes
from 0 to 1 in the month following LED introduction in a particular factory unit. The coefficients
of interest in the above specification are β1 and β3. β3 indicates the effect of temperature on pro-
ductivity before LED introduction. β3 is the extent of attenuation of the temperature-productivity
gradient once LED lighting is introduced. The sum of these two, β1 + β3, gives the net effect of
temperature on productivity following LED introduction.

Finally, we test if the attenuation impact of LED is heterogenous for temperatures above and
below the median temperature by estimating the following specification:

Eludmy = α0 + β1Q1 x Tdmy x LEDumy + β2Q2 x Tdmy x LEDumy + ψ1Q1 x Tdmy + ψ2Q2 x Tdmy

+ ζ1Q1 x LEDumy + ζ2Q2 x LEDumy + θQ1 + φBludmy + αl + γuy + ηm + δd + εludmy. (7)

Following Graff Zivin and Neidell (2012), we use two-way clustering of standard errors in all
regressions (Cameron et al., 2011). Standard errors are clustered 1) at the production line level,
because our cross-sectional variation is the line level, and we would expect inter-temporal corre-
lation in productivity within lines; and 2) at the date level, since this is the level at which temper-
ature varies.

4.1 Controlling for Unobservables

Note that all specifications include as controls budgeted efficiency, line fixed effects, unit by year
fixed effects, month fixed effects, and day of the week fixed effects. Line fixed effects are meant to
control for unobservable determinants of efficiency at the line level that are static over time such
as line supervisor characteristics (e.g. management style, experience, rapport and relationship
with workers), type of garment usually produced by the line (e.g. shirt vs. pant, denim vs. twill),
and position in the factory (e.g. higher floor where it is hotter, closer to the window where there
is better light and ventilation). Unit by year fixed effects are meant to control not only for static
unobservables at the unit level such as characteristics of factory management and factory location,
but also for unobservable factors driving unit-specific non-linear trends such as differential rates
of expansion across factories or primary buyers. Month fixed effects control for seasonality due
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to, for example, garment demand and labor supply patterns; day of week fixed effects control for
fluctuations in efficiency across work days due to for example fatigue or weekend salience.

Budgeted efficiency controls for variations in actual efficiency due to unobserved determinants
at the line by garment style level that vary over time such as garment style complexity, order size
and time since garment style production began in that line, number of operations and operators in
the line, and distribution of skill grade among operators in the line. Specifically, any fluctuations
in efficiency which are predictable from the perspective of factory management and line supervi-
sors and, therefore, might factor into endogenous production decisions, are well-summarized in
budgeted efficiency.

5 Results

In this section, we present and discuss the results of the estimation strategy proposed in section 4
above.

5.0.1 Average Impact of Temperature

We begin by verifying the apparent negative temperature-productivity gradient depicted in Fig-
ure 2. In Table 2, we present results from the regression of actual efficiency on various measures
of temperature. Unless otherwise noted, all specifications, as discussed in section 4, include bud-
geted efficiency as a control as well as month, day-of-week, line, and unit by year fixed effects.

Column 1 in Panel A shows that a one degree Celsius increase in the dry bulb temperature
leads to a .23 percentage point reduction in efficiency (as compared to a mean efficiency of roughly
53.4 percent). This estimate is significant at the 5 percent level and is robust across various tem-
perature measures. Column 2 presents the impact of a one degree rise in dry bulb temperature
controlling for relative humidity; while columns 3 and 4 present the impact of a one degree rise in
heat index and wet bulb globe temperature, respectively. Across all measures estimates are neg-
ative, statistically significant and of nearly identical magnitude. Estimates range from .16 to .26
percentage points across the other measures of temperature.

The regressions reported in Panel A are estimated on the sample of observations prior to the
introduction of LED lighting in order to isolate the unmitigated temperature-efficiency gradient.
Panel B of Table 2 shows estimates from regressions identical to those reported in Panel A, but in-
cluding observations from both before and after the introduction of LED lighting. Point estimates
from Panel B are consistently smaller than those from Panel A ranging from .1 to .17 percentage
points. All estimates in Panel B, as in Panel A, are significant at the 1 to 5 percent level.

5.1 Lagged Impact of Temperature

Having shown the significant impact of contemporaneous temperature on efficiency, we next ex-
plore the degree to which this impact persists and/or compounds over time. We test for persis-
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tent, cumulative effects of temperature by re-estimating the regressions from Table 2 including the
mean temperature over the prior week as an additional regressor. The results of these regressions
are reported in Table 3. Once again, the point estimates in panel A correspond to the pre-LED
sample; while Panel B presents estimates from the whole sample.

In Panel A, the point estimates on the one week lag are precisely estimated, negative, and
large in magnitude across all measures of temperature. Point estimates are more than 50 percent
larger than the contemporaneous effect of temperature, presented in panel A of Table 2. These
results suggest that the effect of temperature on efficiency does in fact persist or even compound.
Estimates in Panel B are less precisely estimated and the magnitudes are less than half of those
from Panel A.14

Note that when the 1 week lagged temperature is included, estimates of the effect of contem-
poraneous daily temperature on efficiency become smaller and less significant. This is most likely
due to the strong serial correlation in temperature. The pairwise correlations between yesterday’s
temperature, today’s temperature, and tomorrow’s are upwards of .8. Therefore, it is unfortu-
nately impossible to determine which day’s temperature in the past week is driving the effect of
the 1 week lagged temperature, or if all the days in the past week are impactful. In Table A.2, we
repeat the analysis from Table 3, but disaggregate the 1 week lagged temperature into the tem-
peratures from each of the 7 days in the last week and include these days 1 at a time. The results
indicate that indeed all the days in the past week negatively impact current efficiency, but due to
the serial correlation only some of the coefficients are statistically significant.

Next, we explore the impact of temperature on worker attendance. Considering that when
the work attendance decision is made in the morning the temperature is still quite mild, we do
not expect that contemporaneous temperature will have much of an effect on attendance. Of
course, information on temperature forecasts might be available and the high serial correlation
in temperature indicates that the temperature from the day before provides a reasonable forecast;
however, empirical estimates of the effects of contemporaneous temperature alone on attendance
show little evidence of an effect (not reported).

However, we suspect that lagged temperature might impact future attendance, perhaps by
way of exhaustion. We estimate regressions identical to those reported in Table 3, but with a binary
for whether the worker attended a full day of work as the outcome. While partial attendance,
particularly leaving early due to heat exhaustion, might also be of interest, we focus here on full
day attendance because partial absences are extremely rare in the data (less than 1 percent). We
present results from these regressions in Table 4.

Notice these data are available at the worker level, rather than the production line level. Ac-
cordingly, the sample of observations is much larger. The results indicate that the probability that
a worker comes to work today is indeed reduced by the mean temperature over the prior week.

14The fact that the estimates include observations after the introduction of LED lighting presented in Panel A are
attenuated and insignificant might indicate that the introduction of LED lighting offsets the persistent impacts of tem-
perature on efficiency as well. However, there is insufficient residual variation in the interaction of the 1 week lagged
temperature with LED after controlling for the interaction of LED with contemporaneous temperature.
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A one degree celsius increase in mean temperature over the prior week leads to a .45 percentage
point reduction in the probability of attending in the preferred specification (estimates range from
.13 percentage points to .65). Estimates are quite similar from both the sample of observations
prior to LED introduction (reported in Panel A) and the whole sample (reported in panel B).

On the other hand, consistent with the discussion above, point estimates of the contemporane-
ous effect of temperature on attendance are consistently insignificant and an order of magnitude
smaller than those of the 1 week lagged temperature.15 Taken together, we interpret the results for
attendance as evidence that labor supply is not the primary mechanism of impact for contempora-
neous temperature on efficiency. On the other hand, labor supply impacts of lagged temperature
might be contributing to the persistent, cumulative effects of temperature on efficiency depicted
in Table 3. We do not push the interpretation of lagged impacts further due to concerns regarding
serial correlation in temperature, and undertake specification robustness checks in Table A.3 to
partially alleviate concerns regarding serial correlation in temperature.

5.2 LED and the Temperature-Efficiency Gradient

Having established the impacts of temperature on production outcomes, we next investigate the
degree to which LED attenuates these impacts. We regress actual efficiency on the interactions of
our four measures of temperature with a dummy for the presence of LED lighting in the factory
along with the main effects of temperature and LED introduction. The remainder of the specifica-
tion is identical to that presented in Table 2. The results of these regressions are presented in Table
5. Estimates of the coefficients on the interaction of LED introduction with all measures of tem-
perature are positive, statistically significant, and large in magnitude relative to the main effects of
temperature. The estimates overall provide strong evidence that the partial replacement of incan-
descent bulbs with LED bulbs significantly offset the negative impact temperature on production
efficiency.

The results in column 1 indicate that the introduction of LED lighting offsets .24 percentage
points in efficiency loss for each degree of temperature. This amounts to roughly a 75% reduction
in the impact of temperature on efficiency. The final row of Table 4 shows that the impact of
temperature on efficiency net of attenuation from LED introduction is only weakly negative and
insignificant. Estimates in columns 2 through 4 using alternate measures of temperature are very
similar with LED introduction significantly offsetting the negative effects of temperature.

While we may not necessarily expect that LED has as strong a mitigative effect on the impacts
of lagged temperature, we are not able to explicitly test for this effect. In the data, due to the
strong serial correlation in temperature, there is insufficient independent variation in the interac-
tion of LED with the 1 week lagged mean of temperature once we control for the interaction of the
contemporaneous temperature with LED. Similarly, given the evidence of minimal effects of con-
temporaneous temperature on attendance, we do not report results from regressions of attendance

15Results from specifications regression attendance on only the contemporaneous temperature also show no evidence
of an impact of LED and are available upon request.
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on the interaction of temperature with LED introduction.16

5.2.1 Distributional Impacts of Temperature

In Table 6, we investigate the degree to which the temperature-efficiency gradient has different
slopes above and below the median of the temperature distribution, and accordingly, the degree
to which the mitigative impact of LED is more strongly realized at above or below median tem-
peratures. The regressions reported in Table 6 are identical to those in the first columns of Tables
2 and 5, with added triple interactions of heat index, LED, and dummies for temperatures below
and above the median. The main effect of the below median dummy is omitted to preserve the
constant.

The results suggest that indeed the slope of the temperature-efficiency gradient is steeper be-
low the median without LED, but this relationship does not appear in the whole sample . The
mitigative impact of LED appears to be strongest for below median temperatures as well. These
results could perhaps indicate that at sufficiently high temperatures the reduction in indoor tem-
perature due to LED lighting replacement is less noticeable.17

5.3 Main Effect and Exogeneity of LED Introduction

As mentioned in section 3 above, there are several channels by which LED might affect efficiency
directly, in addition to its demonstrated mitigative effect on the temperature-efficiency gradient.
For example, changes in the quality and quantity of light might improve attention and sight, which
in turn affect efficiency. However, the preliminary evidence presented in Figure 5 does not support
a main effect. In order to verify Figure 5, we regress actual efficiency on the introduction of LED
in the usual specification, but with temperature and its interaction with LED omitted. The results
are reported in column 1 of Table 7 and show no evidence of a main effect of LED introduction on
efficiency.

We also conduct checks of the exogeneity of the timing of the roll-out of LED bulb replacement
across factory units. To the degree that temperature deviations from monthly means are plausibly
exogenous, we do not necessarily need LED roll-out to also be exogenous in order to interpret the
coefficient on the interaction of LED introduction and temperature in the main results as causal.
That is, any correlation of LED introduction timing with unobservable determinants of efficiency
across factories or over time ought to be addressed by the inclusion of the main effect of LED intro-
duction, so long as these unobservables are orthogonal to temperature deviations within month.
Furthermore, as mentioned in section 2, senior managers at the garment factories indicated that
LED introduction was driven mostly by efforts to comply with changing environmental policies
of the companies of specific buyers.

16The results show no evidence of a role for LED and are available upon request.
17Notice these regression results do not necessarily match the preliminary evidence depicted in Figure 3. This is

likely due to the month fixed effects which restrict comparisons of efficiency to days within a month and remove the
contribution of seasonal patterns to the temperature-efficiency gradient.
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FIGURE 6: EFFICIENCY BY DATE RELATIVE TO LED INTRODUCTION
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Notes: Plots are lowess-smoothed separately before and after led introduction at time 0. 

Nevertheless, for the sake of interpretation and external validity, we investigate determinants
of the timing of LED introduction. Specifically, we investigate the degree to which standard al-
lowable minutes, budgeted efficiency, scheduled quantity, and target quantity correlate with LED
introduction. That is, to the extent that LED replacement is, for example, more likely during lean
production times or less likely during the production of large orders from important buyers, these
will be reflected in the scheduled quantity and budgeted efficiency for the days leading up to LED
introduction.

We first regress SAM on LED introduction to check whether the timing of LED roll-out coin-
cided with the arrival of orders for more or less complex garments. The results of this regression
are reported in column 2 of Table 7 and show no evidence of a relationship between SAM and
LED roll-out.

We next plot budgeted efficiency against the date relative to LED introduction using data from
the quarters before and after LED introduction for each factory unit. This plot is presented in
Figure 6 and shows no clear evidence of abnormal trends in budgeted efficiency leading up to
LED introduction. Next, we perform the regression analog to Figure 6 by regressing budgeted
efficiency on the date relative to LED introduction, again including the usual fixed effects. The
results of this regression are reported in column 3 of Table 7 and provide no evidence of any
correlation.
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FIGURE 7: SCHEDULED QUANTITY BY DATE RELATIVE TO LED INTRODUCTION
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We then repeat both exercises for scheduled quantity. The plot of scheduled quantity against
the date relative to LED introduction is presented in Figure 7. The results from the analogous
regression are reported in columns 4 of Table 7. Both further support the exogeneity of the intro-
duction of LED lighting.

6 Discussion

The promise of climate change mitigation is tempered by the willingness of individuals and firms
to adopt these beneficial technologies on a large scale. This willingness, in turn, is a function of the
private returns to adoption, which, for most mitigation strategies, are cited as low or negative even
when the public benefits are large. In this study, we show that the introduction of energy-saving
LED lighting in Indian garment factories has substantial productivity co-benefits. In particular,
the introduction of LEDs eliminates 75% percent of the negative impact of temperature on worker
efficiency.

What are the benefit-cost implications for the firm of this productivity impact? From the coeffi-
cient estimates in Table 4, we find that, at the average daily heat index of 29.669, LED introduction
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is associated with an increase in efficiency of -3.87 + (.15 x 29.669) = .58 percentage points.18 What
does this mean to the firm? Senior management at the firm we worked with estimated that the
profit gains for each percentage point gain in efficiency were 0.2 percentage points (a fifth of every
point gained in efficiency is translated to profit). Thus, at 1,067.58 dollars (USD), the approximate
value of profit per factory unit per operating day, LED introduction results in a profit increase of
about 41.4 USD per factory unit per operating day, or 12,922.46 USD per factory per year. This is
equivalent to about 3.9 percent of daily profit per unit. Put another way, installing LEDs results in
each factory unit “gaining” 12 additional days in profit per year.

How does this estimate change the benefit-cost calculations of LED adoption for the firm? To
begin with, we obtained energy cost-savings calculations the firm used when making its LED
adoption choices. Management estimated that the total energy and operating cost savings per
year per factory unit of LEDs (as compared with CFL bulbs, which were being used before LED
introduction) were approximately 1,83,000 rupees (INR), or about 3,000 USD. The productivity
savings we compute are more than 4 times this amount. The cost of replacing a single factory’s
bulbs to LEDs is 3,84,000 INR, or about 6,300 USD. Thus, if only energy savings were taken into
account, it would take more than 2 years to break even. But when the productivity benefits are
included, the firm breaks even within 5 months of LED introduction.

In addition to the private benefits of increased productivity and energy cost savings, the re-
placement of LED lighting has public benefits of avoided damages due to reduced carbon emis-
sions. On average, the LED replacement saves 18,000 KWh of electricity per factory unit per year,
which in this case reduces electricity emissions by about 3.73 tC emissions per unit per year.19

Valuing this reduction of carbon emissions at the Nordhaus (2008) estimate of $27/tC (a 2005 car-
bon price) gives us avoided damages of $101.23 per unit per year, and valuing this at the mean
value of the review by Tol (2005) of $93/tC yields avoided damages of $345.68 per unit per year.
Interestingly, at the current estimates of carbon prices, these benefits are relatively small in com-
parison to the annual private benefits.20

We believe our work is an important first step in quantifying private co-benefits of climate
change mitigation strategies, but that much more needs to be done to quantify the full returns to
the variety of mitigation strategies. For example, as Knittel and Sandler (2011) suggest, carbon
taxes likely have health benefits due to decreases in local air pollution. If consumers internalize
these benefits, the effective costs of the tax will be substantially lower. Whether similar co-benefits
exist for other types of mitigation – e.g., renewable energy investments, public transport systems,
energy-efficient built environments, etc. – is an open and vital question.

18We use the coefficient on the impact of heat index on efficiency here because it is the most conservative estimate of
the various temperature measures we use.

19The conversion from electricity consumption to carbon emissions is done as follows: According to the CO2 Baseline
Database for the Indian Power Sector (version 8) by the Central Electricity Authority of India, a MWh of electricity
generated on the Southern grid causes 0.76 tCO2 of emissions. Thus, 18,000 KWh causes about 13.68 tCO2, or about
3.73 tC.

20Adding the corresponding reduction in local air pollutants would increase the valuation of public benefits, but
given the sparsity of accurate data regarding marginal damages of local pollutants in Bangalore, we are unable to
include this valuation in this study.
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A Additional Tables

In appendix table A1, we test the robustness of our main results–that is, the main effect of tem-
perature on efficiency, as well as the interaction of LED introduction and temperature–to the sub-
traction of a variety of fixed effects. In particular, we explore three alternate specifications. The
first specification has no fixed effects, and daily budgeted efficiency is the only control variable.
The second specification includes all the time fixed effects, namely year, month, and day of the
week. The third specification includes unit by year, month, and day of the week fixed effects (in
addition to daily budgeted efficiency as a control variable). We find that the results are very ro-
bust to these alternate specifications, and that the coefficients on temperature and the interaction
of temperature and LED introduction are quite stable.

In appendix tables A2 and A3, we examine the impact of lagged daily temperature on pro-
duction efficiency and attendance, respectively. We include the contemporaneous temperature as
well as one of seven daily lags in turn. Thus, the first column includes contemporaneous temper-
ature and a one-day lag, the second includes contemporaneous temperature and a two-day lag,
and so on, for seven days respectively. Appendix table A2 presents the results of this specification
for production efficiency, and table A3 for attendance. We notice that contemporaneous tempera-
ture negatively impacts production efficiency regardless of the lag measure used, but has a much
smaller and statistically insignificant impact on attendance.

Furthermore, Table A2 shows that one-day and two day lags have a statistically insignificant
impact on production efficiency, with lags further back in time, such as five or six day lags show-
ing a more robust negative relationship with production efficiency. Part of the reason why lags
closer to the contemporaneous temperatures may not show a significant relationship is that con-
temporaneous temperature is highly correlated with more recent lagged temperatures, and this
correlation diminishes with lags further in time - e.g. the correlation between contemporaneous
temperature and one-day lagged temperatures is about 0.887, whereas the relationship between
contemporaneous temperature and seven-day lagged temperature is about 0.696.

Table A3 shows that one-day lagged temperature most strongly impacts attendance, likely
through thermal stress as well as through its impact on expectations about the temperature the
next day. Lags further back in time also have some predictive power regarding attendance, which
likely works through the heat stress channel. Overall, the results from tables A2 and A3 support
the evidence presented in the main paper.

In Table A4, we consider whether the mitigative impact of LED varies by whether a unit re-
ceived LED earlier or later. Since we have unit by year fixed effects in all regression specifications,
the estimates are not biased by the potential correlation of unit-level unobserved heterogeneity
with the introduction of LED. Nevertheless, it is still instructive to examine whether units that
adopted LED later exhibit differential impacts of LED on the productivity-temperature gradient.
We divide our sample of 29 units into two - the first 14 units to receive LED are considered to
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have received LED relatively early and the other 15 relatively late.21 Table A4 illustrates that the
mitigative impact of LED does not vary by whether a unit received LED relatively late, since the
triple interaction term between the LED dummy variable, temperature, and a dummy that takes
the value 1 if the unit received LED relatively late and is 0 otherwise is not statistically signifi-
cant. The other coefficients of interest - the interaction of the LED dummy and temperature and
the main effect of temperature - are very similar to the estimates in Table 5. Temperature has a
negative and statistically significant impact on production efficiency, and the introduction of LED
mitigates a large portion of this negative relationship.

B Data Appendix

We have daily line-level data from 29 factories in Bangalore. To ensure accurate estimation, we re-
move extreme outlier values as well as unrepresentative days (such as Sundays) from the dataset.
The following factors are taken into consideration when deciding our final sample.

• We create a measure of the difference between the maximum and minimum date for which
each line is observed divided by the total number of days for which it is observed. This
measure essentially captures the proportion of time for which a line is observed relative to
its time in the data. We remove observations for which this proportion is strictly greater than
1 (10 lines) and less than 0.38, which is the 5th percentile of the observations. This is done to
ensure that the sample includes lines that are consistently producing, not ad hoc lines that
are sometimes set up to fulfil rush orders or orders behind schedule.

• We remove lines observed greater than twice a day, about 0.6% of our observations, since
these are likely coding errors. While it is possible that a line finished a set of orders and
moved onto producing a different style of garment midway through the day, it is not possible
that a line finished several sets of garment orders in a single day, since orders are usually for
hundreds or thousands of garments per order. For lines that are observed more than twice a
day, we consider mean actual efficiency and mean budgeted efficiency across the two styles
produced that day.

• We remove extreme outliers from the efficiency and quantity produced. We consider all ob-
servations between the 5th and 95th percentile of the efficiency measurements, which ranges
from about 3% to about 111%. After removing these values, we also trim physical quantity
produced at the 1st and 99th percentile. These decisions were taken following meetings with
the Industrial Engineering experts at the factory regarding what constitutes feasible values
of output and efficiency.

• Finally, we remove Sundays as well as days which have very few lines, since these are likely
regional holidays or days of unrepresentatively low productivity. We consider only days for

21The latter measures includes four units that did not have LED throughout our sample period.
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which 117 or more lines are present in the data (the 1st percentile of observations).
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