THE WASH CONTEXT IN TANZANIA
(From MDGs to SDGs)

Name: Stephen Kiberiti
Affiliation: Ministry of Health and Social Welfare
Presentation Outline

• Introduction
• The Global context on WASH
• The WASH concepts in Tanzania
• WASH in the MDGs Arena
• The National Sanitation Campaign
• WASH activities implementation challenges
• Attaining WASH improvements in SDGs
• The way forward
Introduction

• WASH importance: Global and National context
• Targets to reach the poor, underserved communities to reduce extreme poverty
• In Tanzania:
 – Focuses on the elimination of communicable diseases
 – Funded by many partners
 – Funds channeled through schools and LGAs
 – Intends to improve water supply and sanitation services
 – Improves health of the community at minimal cost
The Global Context on WASH

• The Alma Ata Declaration: Primary Health Care, 1978
• The WASH Decade:
• The International Year for Sanitation: 1980
• The eThekwini Declaration- 2008: African initiative on WASH - Focus to achieve MDGs
• The Ngor Declaration - 2015: African initiative on WASH - Focus to achieve SDGs
<table>
<thead>
<tr>
<th>1</th>
<th>Goal 1: Eradicate Extreme Hunger and Poverty</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Goal 2: Achieve Universal Primary Education</td>
</tr>
<tr>
<td>3</td>
<td>Goal 3: Promote Gender Equality and Empower Women</td>
</tr>
<tr>
<td>4</td>
<td>Goal 4: Reduce Child Mortality</td>
</tr>
<tr>
<td>5</td>
<td>Goal 5: Improve Maternal Health</td>
</tr>
<tr>
<td>6</td>
<td>Goal 6: Combat HIV/AIDS, Malaria and other diseases</td>
</tr>
<tr>
<td>7</td>
<td>Goal 7: Ensure Environmental Sustainability</td>
</tr>
<tr>
<td>8</td>
<td>Goal 8: Develop a Global Partnership for Development</td>
</tr>
</tbody>
</table>
WASH Concepts in Tanzania

• WASH under WSDP: Water supply, and sanitation and hygiene as separate components – addressed as NSC
• Tanzania has adopted the MDG’s sanitation target of halving the number of people without improved sanitation by 2015.
• Under the Vision 2025, Tanzania has pledged to provide improved sanitation to 95% of the population by 2025. This is a continuation of Tanzania’s short-term sanitation target outlined in the draft MKUKUTA II (Tanzania’s national poverty reduction strategy)
• WASH addresses salient issues under The National Health Policy 2002
• Improved WASH, promotes human dignity
Key Priority areas on WASH

• NSC I – Households and primary schools to address MDGs
• Target:
 – to promote household sanitation and hygiene with the target of reaching 1.52 million households
 – to promote sanitation and hygiene in primary schools targeting 812 schools. The phase I of the NSC was designed to last for four years i.e 2012-2015. The progress of implementation is encouraging with 80% of the target based on the committed resources being achieved.
Key Successes

- By 31st March, 2015, the NSC Phase I facilitated the construction of 701,739 (80%) improved household toilets
- 445,600 hand washing points out of 878,265
- With regard to school WASH, the NSC has facilitated the rehabilitation of toilets in 411 schools and that 1,021 sanitation clubs have been established and are functional. Moreover, construction of school latrine through other sources has facilitated 408 schools to access improved toilets.
The National Sanitation Campaign
Progress on HH Sanitation
School WASH facilities
Challenges under WASH

• Focus only on rural (and peri urban settings)
• Delays in disbursement of fund to LGAs slowed the implementation of the NSC across the country
• inadequate means of transport
• persistent shortage of staff to cater for NSC in all wards and villages which implement the campaign.
• The drop out of village data collectors is reportedly caused by lack of incentives to the Community Health Workers (CHWs) who take a leading role on updating the household registers.
WASH in NSC II

• The focus to attain SDGs
• Aim is to Ensure availability and sustainable management of water and sanitation for all—G6
• Broadened scope and coverage: Both in rural and urban areas; and also target the marginalized groups
 – Increased number of with improved households S&H
 – Secondary schools sanitation inclusive
 – Health facilities
 – Public places and transport hubs
 – Households water treatment and safe storage
 – Solid Waste Management
Post-2015 Development Agenda

• As of March 2015, there were 17 proposed goals:

1. End poverty in all its forms everywhere
2. End hunger, achieve food security and improved nutrition and promote sustainable agriculture
3. Ensure healthy lives and promote well-being for all at all ages
4. Ensure inclusive and equitable quality education and promote lifelong learning opportunities for all
5. Achieve gender equality and empower all women and girls
6. Ensure availability and sustainable management of water and sanitation for all
7. Ensure access to affordable, reliable, sustainable and modern energy for all
8. Promote sustained, inclusive and sustainable economic growth, full and productive employment and decent work for all
9. Build resilient infrastructure, promote inclusive and sustainable industrialization and foster innovation
10. Reduce inequality within and among countries
11. Make cities and human settlements inclusive, safe, resilient and sustainable
12. Ensure sustainable consumption and production patterns
13. Take urgent action to combat climate change and its impacts
14. Conserve and sustainably use the oceans, seas and marine resources for sustainable development
15. Protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and reverse land degradation and halt biodiversity loss
16. Promote peaceful and inclusive societies for sustainable development, provide access to justice for all and build effective, accountable and inclusive institutions at all levels
17. Strengthen the means of implementation and revitalize the global partnership for sustainable development
Recommendations and the way forward

• Ministry of Health and Social Welfare in collaboration with the Ministry of Water (MoW), Ministry of Education and Vocational Training (MoEVT), Prime Minister’s Office, Regional Administration and Local Government Authorities (PMO-RALG), DFID, UNICEF and WSP plan to conduct thorough review of the phase I lessons to shape the scope, focus and approach for phase II
Process Evaluation of the National Sanitation Campaign Design

Dr Elisa Roma (LSHTM) and Dr Rick Rheingans (UniFl)
In collaboration with MOHSW
Dar Es Salaam, 04th August 2015
Contents

• Background: NSC Phase I
• Process Evaluation Conceptual Model
• Data Sources
• Data Collection
• Data Analysis
• Lessons learnt and way forward
The National Sanitation Campaign I

- Launched in June 2012, implementation began in 2013
- By March 2015: Implemented in 25 Regions, 162 LGAs, 4,775 villages.
- Coordinated by the MoHSW, MoEVT, MoW.
- Focus on rural areas (ONLY)
NSC Phase I (June 2012-June 2016)

<table>
<thead>
<tr>
<th>Targets (PHASE I)</th>
<th>Approach</th>
</tr>
</thead>
</table>
| **1.3 million households** with improved sanitation facilities | • Use of clear and consistent messages to generate behaviour change.
 • Engagement of Households and Communities - CLTS triggering and follow-up.
 • Experiential Events – recognition and reinforcement
 • National Radio Programme | |
| **600 villages** with signed ODF declarations and deadlines to improve household sanitation and hygiene. | | |
| **600 villages** served by local service providers | Engagement of Masons and Suppliers through Sanitation Marketing |
| **812 schools** with access to improved sanitation and hygiene facilities | Improvement of Sanitation Infrastructure, installment of Hand washing facilities, and Hygiene Promotion in schools. |
Theory of change

<table>
<thead>
<tr>
<th>inputs</th>
<th>outputs</th>
<th>outcomes</th>
<th>impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funds made available and used for the purpose intended</td>
<td>People use improved water sources</td>
<td>Improved household health and socio-economic status of poor people</td>
<td>Weak evidence</td>
</tr>
<tr>
<td>Sanitation and hygiene campaigns for awareness undertaken</td>
<td>People use improved sanitation facilities</td>
<td>Reduced diarrhoea and other infectious diseases hence reduction in treatment costs and loss of life</td>
<td>Strong evidence</td>
</tr>
<tr>
<td>Water points constructed and or rehabilitated</td>
<td>Increased time used to engage in other productive activities, better caring of children</td>
<td>Improved household health and socio-economic status of poor people</td>
<td>Weak evidence</td>
</tr>
<tr>
<td>Artisans trained for production of sanplats</td>
<td>Improved hygiene practices to provide a barrier to faecal oral contamination (from fingers and flies)</td>
<td>Affordable technologies produced, eg sanplats, gulper.</td>
<td>Strong evidence</td>
</tr>
<tr>
<td>Funds for materials and technical expertise</td>
<td>People sensitised on sanitation and better hygiene practice</td>
<td>Latrines built privately using sanplast or other materials</td>
<td>Weak evidence</td>
</tr>
</tbody>
</table>

Assumptions:

1) **Funds** are made available and used for the purpose intended.
2) **Funds** are used where there is need – i.e. communities without access rather than communities that already have access.
3) Local Government Authorities have the capacity to manage the inputs and deliver outputs on water supply and sanitation and hygiene.
4) The **private sector** has the capacity to construct sanitation products.
5) Households **change their behaviour** as a result of sanitation and hygiene campaigns.
6) Households **can afford** to construct / upgrade their sanitation facilities.
Evaluation: Objectives and Components

Participatory evaluation with MOHSW, MOEVT, NIMR, SHARE, NBS (+ DFID and WORLD BANK)

1. Assess progress on and barriers to the implementation of the NSC.
2. Assess the likelihood that the campaign will result in the anticipated results in improving household sanitation.
3. Assess the progress towards improving school WASH.
4. Assess the enabling environment and the level of unit costs spent in the NSC to identify potential strategies or steps that have been done or could be done to increase the efficiency of the campaign.

Three components:

a) Household and Community survey
b) School WASH survey
c) Evaluation of the enabling environment and of the costs necessary to achieve expected results.
Evaluation Conceptual Framework

Inputs
- Sanitation and hygiene campaigns undertaken
- Artisans trained for production of sanplats

Community Conditions
- Household Enabling Conditions
 - Socio-economic status
 - Empowerment and household decision making

Action Model
- Mobilization
 - Triggering meeting
 - Attendance
 - Committee
 - Action plan
 - Active social communication
- Supply
 - Trained artisans in community
 - Artisans actively producing

Behavioural Determinants
- Motivation
- Opportunity
- Choice / Ability

Behavioural Outcomes
- Maintain Toilet
- Household Uses Toilet

Change Model
- Build Improved Toilet
- ODF

- Improved Health
Behavioural determinants

Motivation
- Personal opinions about sanitation
- Subjective norms
- Severity/Threat

Opportunity
- Availability
- Message exposure
- Social network communication

Ability
- Skills
- Affordability
- Decision Control
SCHOOL WASH Component

• Recent research suggests improvements in health and education from toilets requires:
 – Cleaning and maintenance
 – Regular handwashing
 – Materials for cleaning after defecation

• These conditions require
 – Planning
 – Recurrent costs
 – Adequate water supply
 – Monitoring and accountability
SCHOOL WASH: Evaluation Framework

Is programme being implemented in a way to ensure that the conditions for sustained improvement in school WASH are in place?

Three levels of investigation:

– Campaign related activities (teacher training latrine constructions)
– Environmental conditions (latrine conditions, HHWS)
– School enabling conditions (budget, school health, roles)
Assessing the enabling environment

<table>
<thead>
<tr>
<th>Evaluation Questions</th>
<th>Data</th>
</tr>
</thead>
</table>
| 1) In each of the district has the campaign reached the targets? | • LGA level monitoring data
• HHS survey
(to compare data reported at the region, community and household levels) |
| 2) How are the funds allocated by the NSC spent in each District? | Data collected at the regional and district level on the distribution of costs by activity and input categories. |
| 3) What are the barriers and challenges in the processes related to the NSC? | • Surveys on key respondents Regional, District level.
• The instruments focus on key activities in the different stages of the project cycle (planning and budgeting, coordination, implementation and monitoring). |
<table>
<thead>
<tr>
<th>Data Sources: Primary Data</th>
<th>1. Respondent Characteristics</th>
<th>2. Household Composition</th>
<th>3. Household characteristics</th>
<th>4. Decision Making</th>
<th>5. Behavioural Determinants:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Household Survey- Structured questionnaire</td>
<td>• Motivation</td>
<td></td>
<td></td>
<td></td>
<td>• Opportunity</td>
</tr>
<tr>
<td></td>
<td>• Ability</td>
<td></td>
<td></td>
<td></td>
<td>• Social Network Communication</td>
</tr>
<tr>
<td></td>
<td>6. Direct observations of sanitation and hygiene facilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community Survey- Structured questionnaire administered to village leader</td>
<td>A. Community identification</td>
<td>B. Investment Projects in the community</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C. Governance</td>
<td>D. Service Providers and Social Marketing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>School WASH survey- Structured questionnaire administered face to face with Head teachers of selected schools</td>
<td>A. School Information</td>
<td>B. School Management</td>
<td>C. School Funds</td>
<td>D. School resources and needs</td>
<td>E. School Health Clubs</td>
</tr>
<tr>
<td>Key informants interviews Regional Health Officers, Regional Education Officer, District Health Officer, District Education Officer</td>
<td>Four areas: Planning and budgets, Coordination, Implementation, Monitoring</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data Source: Secondary Data

<table>
<thead>
<tr>
<th>Quarterly progress matrix from MOHSW</th>
<th>The following reports were provided:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q3 Jan_March 2013</td>
<td>Q3 Jan_March 2013</td>
</tr>
<tr>
<td>Q4 April-June 2013</td>
<td>Q4 April-June 2013</td>
</tr>
<tr>
<td>Q1 July-September 2013</td>
<td>Q1 July-September 2014</td>
</tr>
<tr>
<td>Q2 October_December 2013</td>
<td>Q2 October to December 2014</td>
</tr>
<tr>
<td>Q3 January_March 2013</td>
<td>Q3 January - March 2015</td>
</tr>
<tr>
<td>Q4 April_June 2014</td>
<td>Q4 April_June 2014</td>
</tr>
<tr>
<td>Q1 July-September 2014</td>
<td>Q1 July-September 2014</td>
</tr>
<tr>
<td>Q2 October to December 2014</td>
<td>Q2 October to December 2014</td>
</tr>
<tr>
<td>Q3 January - March 2015</td>
<td>Q3 January - March 2015</td>
</tr>
</tbody>
</table>
Sampling

- Survey covered **14 Regions** and **49 LGAs** which implemented the NSC.
- In each LGAs, Enumeration Areas (EAs) were selected with probability proportional to size (pps) using number of households as a measure of size (as per 2012 National Census). Therefore, EAs with higher population had higher chance of being selected.
- In each LGa, **12 EAs** were selected with pps and taking into account available resources (cost and time).
- A sample of **8 households** was selected from each selected EA using systematic random sampling.
Data Collection

• Conducted by MOHSW in collaboration with NIMR.
• The data collection involved 10 Supervisors and 40 Enumerators: in each region teams of 2 supervisors and 4 Research Assistants.
• Translated tools were programmed into ODK using Smartphone with Android operation system(OS).
• A total 50 smart phones were programmed (40 for RAs and 10 for supervisors)
Collected data

<table>
<thead>
<tr>
<th>Survey</th>
<th>Target HH</th>
<th>Total valid cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Household</td>
<td>4,512</td>
<td>4,071</td>
</tr>
<tr>
<td>Schools</td>
<td>82</td>
<td>70</td>
</tr>
<tr>
<td>Key Informants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Region Health Officer</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Region Education Officer</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>District Health Officer</td>
<td>47</td>
<td>43</td>
</tr>
<tr>
<td>District Education Officer</td>
<td>47</td>
<td>40</td>
</tr>
</tbody>
</table>
Targets and coverage: School Survey

<table>
<thead>
<tr>
<th>Key Performance Indicator</th>
<th>Monitored for process evaluation?</th>
<th>Process evaluation information source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of households with improved latrines.</td>
<td>Yes</td>
<td>Household survey</td>
</tr>
<tr>
<td>Number of households with functional hand washing facilities.</td>
<td>Yes</td>
<td>Household survey</td>
</tr>
<tr>
<td>Number of villages in the service area of a local sanitation service provider.</td>
<td>Yes</td>
<td>Community survey/ Monitoring Reports</td>
</tr>
<tr>
<td>Number of sub-villages/villages with signed declarations and deadline to improve household sanitation and hygiene.</td>
<td>Yes</td>
<td>Community survey/ Monitoring Reports</td>
</tr>
<tr>
<td>Number of schools meeting a ratio of 40 girls, 50 boys per drop hole.</td>
<td>Yes</td>
<td>School WASH survey</td>
</tr>
<tr>
<td>Number of schools with functional hand washing facilities for boys and girls.</td>
<td>Yes</td>
<td>School WASH survey</td>
</tr>
<tr>
<td>Number of cholera outbreaks per quarter.</td>
<td>No</td>
<td>N/A</td>
</tr>
<tr>
<td>Number of diarrhoea cases in the campaign areas per quarter.</td>
<td>No</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Preliminary Data analysis

Descriptive statistics of community and household survey (not disaggregated by region/districts) showing:

- **Action Model**
 - Did implementation occur?
 - Is there evidence of community conditions for change?

- **Behavioural Determinants**
 - Are the behavioural determinants of change in place?

- **Change Model**
 - Prevalence of sanitation and hygiene outcomes since the beginning of NSC.
Progress of NSC Evaluation

• December 2014: Data collection completed
• January- March 2015: Data cleaning (Collaborative activity- LSHTM/SHARE, MOHSW, NIMR,)
• August 2015: Data Analysis finalised and Use preliminary results to inform Phase II of NSC
• September 2015: Final report
NSC I – Emerging Conclusions

• Tanzania is global best practice in developing large scale program channeled through national institutions
• Campaign Institutionalized and understood at local levels
• LGA performance varies and is tied to regional, district and village executive leadership being involved
• Coverage estimates at 25% (LSTHTM) to 39% (MOHSW) improved sanitation
• Local level CLTS implemented in 1300 communities, with infrastructure to deliver nation wide.
NSC I – Emerging Conclusions

• Delays in fund transfers to regions and districts
• Quality of interventions vary
• National level messaging, promotion such as radio, and sanitation marketing did not take place due to procurement delays
• School WASH progressing, but no systematic WASH compliance
• Inefficient dialogue structure
Lessons Learnt Process Evaluation

- Participatory: MOHSW, MoEVT involved in questionnaire design, data collection.
- Capacity building in study design, data collection and interpretation of data.
- Results will be feedback to allow learning and change for Phase II of the NSC.

Challenges:
- Data collection using mobile phones: Need IT manager to supervise the activity during collection and troubleshoot problems instantly.
- Professional and expert data collectors compensated.
FINDINGS AND RECOMMENDATIONS FROM HWTS PROJECT

Name: Hamisi M. Malebo, Dip. Ed (Sc), B.Sc(Hons), M.Sc, PhD, FASI
Affiliation: National Institute for Medical Research, P.O. Box 9653, Dar es Salaam, Tanzania.
E-mail: Malebo@hotmail.com
Why HWTS in Tanzania?
1. Background to the HWTS project

- Tanzania experiences about 60 – 80% OPD cases due to diseases caused by consumption of unsafe water and poor sanitation.
- Only 73% of urban and 42% of rural population has access to safe water and adequate sanitation.
- About 2.5 million episodes of diarrhea are reported in Tanzania annually (MOHSW, 2008).
- The goal to reach rural communities with centralized safe water supply is far from being achieved in the near future in Tanzania.
National level commitment

• Boiling is the only method promoted formally
• Alternative HWTS promoted ≈ 10 years ago
 – Chlorination
 – Solar disinfection
 – Filtration
• Recognition by governments after the WHO intervention
• GOT commitment at high level in Bagamoyo conference 2009
BAGAMOYO CONFERENCE 2009

• National and international policy markers
• Declared HWTS as acceptable group of interventions
 - Recognized alternatives to boiling
• Commitment to take up the technical recommendations
• Set stage for national actions
“HWTS is the right step to improve health of those without access to safe water”

“We policy makers are keenly waiting for the outcomes of this conference; to recommend the next steps to improve water treatment and diarrhea prevention”

“Clean water is good health”

We understand the gaps in water supply services and their implications to the health of people

We are working closely with Ministry of Health and Social Welfare and Partners to address the gap and support complementary measures

Prof. Mwakyusa (M)
MoHSW

Dr. Mjengera (For: PS)
MoW
While **people are dying**, technologies exist that can reduce deaths from diarrhoea. The conference importance to influence government commitments and creation of awareness.

The challenge remaining is to **implement the recommendations** from the conference.

"**HWTS is a complement** to safe water supply services and public education"

“We need to make sure that what has been recommended is implemented”

“I urge all to **enhance collaboration** in the promotion of HWTS”

Dr. Tinorgah (For: CR) UNICEF

Mr. Mukama (PS). MoW
Recommendations and follow up

5. The Government of Tanzania and other stakeholders should work together to develop a comprehensive country plan for scaling up HWTS services which would allow effective service provision and address the need to provide for most vulnerable groups and the poor.

- Drafting of the CCP began, but
- Evidence based required before endorsing explicit plan
- To ensure public health and safety

12. Research capacity should be strengthened with refocusing of research direction more from evidence of effectiveness to ways in which HWTS can be scaled up and achieve more impact on diarrhoea.
HWTS CONCEPTUAL FRAMEWORK

Water problems

- Turbidity
- Fecal contamination
- Availability/access
- Quality chlorination standards

Interventions

- Ceramic filtration flocculation
- Disinfection, ceramic filtration
- Provision of clean & safe water
- Provision of standards

Attributes for success

1. Adoption
2. Correct usage
3. Continues supply
4. Consistent usage
5. User preference

Health impact

- Decline in diarrhea and other Water, Sanitation and Hygiene (WASH) related diseases
Results: A total of 266 households in Geita were included in the study. Acceptable levels of turbidity were found in Nungwe and Katoma.
A total of 824 households in Kisarawe were included in the study. High and unacceptable levels of turbidity were found in Mitengwe and Sungwi villages.

Mean Turbidity of source and stored water in Kisarawe during dry season.
Mean Turbidity of source and stored water by Village: Dry Season

Village

Katoma

Nungwe

Mitengwe

Sungwi

HH

Source
3.0 The effect of turbidity on chlorination

- In Tanzania, there is no guideline on level of turbidity for effective chlorination.
- Tanzania water quality standard gives a range of turbidity for visual purposes which ranges from 5-25 NTU.
- Some studies recommend chlorination of water as high turbidity level as 100 NTU.
- WHO recommends free chlorine residual of less than 2.0 mg/l at 30 min after treatment and thereafter a greater than 0.2 mg/l at 24 h time.

<table>
<thead>
<tr>
<th>Standards</th>
<th>Mean pH</th>
<th>Mean TDS (mg/L)</th>
<th>Mean Turbidity (NTU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBS</td>
<td>6.5 – 9.2</td>
<td>-</td>
<td>5 - 25</td>
</tr>
<tr>
<td>WHO</td>
<td>6.5 – 8.0</td>
<td>500</td>
<td>5</td>
</tr>
</tbody>
</table>
• The study was designed to assess limits of turbidity for effective chlorination.
• A total of 43 different water sources were included in the study.

Results:
• Turbidity values affect disinfection efficiency differently.
• Chlorine efficiency decreased 18 folds for a unit increase in turbidity in a category between 6-10 NTU.
• The maximum limit for effective chlorination using a single dose of chlorine was in between 13 to 20 NTU.
• The maximum turbidity for chlorination is 100 NTU.
• High free chlorine was obtained when chlorine was provided as a double dose as compared to single dose (P<0.01).

Conclusion and Recommendation
• Chlorination of water at the household level can effectively be practiced over a wide range of turbidity not exceeding 20 NTU.
• Use of single dose of chlorine is not recommended in water with turbidity above 20 NTU.
• Double dose of chlorine can effectively be used to a maximum of 100 NTU.
4.0 Microbial Effectiveness of Water Treatment Technologies under Field use Condition

• The objective of this study was to assess the microbiologic effectiveness of HWTS technologies under field use condition

• HWTS technologies involved:-
 – Water-Guard (liquid and tablet)
 – Ceramic Pot filters
 – Siphon filters,
 – PuR and
 – Boiling
Educational and promotion

• Behavior change promotion and equipment distribution structure designed
• Quantitative and qualitative evaluations conducted
Photo: Petri Dishes with grown Thermotolerant coliforms
Effectiveness of HWT in Katoma Village-Geita

<table>
<thead>
<tr>
<th>HWTS Methods</th>
<th>Percent of cfu/100mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiling</td>
<td>91</td>
</tr>
<tr>
<td>Pot Filter</td>
<td>85</td>
</tr>
<tr>
<td>Water Guard Liquid</td>
<td>98</td>
</tr>
<tr>
<td>Water Guard Tablet</td>
<td>95</td>
</tr>
</tbody>
</table>
Effectiveness of HWT in Nungwe Village-Geita

<table>
<thead>
<tr>
<th>HWTS Methods</th>
<th>Percent of cfu/100mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiling</td>
<td>94</td>
</tr>
<tr>
<td>PuR</td>
<td>98</td>
</tr>
<tr>
<td>Sifon Filter</td>
<td>96</td>
</tr>
<tr>
<td>Water Guard Liquid</td>
<td>94</td>
</tr>
<tr>
<td>Water Guard Tablet</td>
<td>96</td>
</tr>
</tbody>
</table>
Comparison of HWTS Effectiveness in Katoma and Nungwe Village

Percent Reduction

<table>
<thead>
<tr>
<th>HWTS Methods</th>
<th>Katoma</th>
<th>Nungwe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiling</td>
<td>91</td>
<td>94</td>
</tr>
<tr>
<td>Water guard liquid</td>
<td>98</td>
<td>94</td>
</tr>
<tr>
<td>Water guard tablet</td>
<td>95</td>
<td>96</td>
</tr>
</tbody>
</table>
Effectiveness of HWT in Mitengwe Village-Kisarawe

![Bar chart showing the effectiveness of different HWT methods in Mitengwe Village-Kisarawe. The methods include Boiling, Sifon Filter, Water Guard Liquid, and Water Guard Tablet. The chart indicates the percent of cfu/100mL for each method. Boiling: 40, Sifon Filter: 89, Water Guard Liquid: 65, Water Guard Tablet: 77.]
Effectiveness of HWT in Sungwi Village-Kisarawe

![Bar chart showing the effectiveness of different HWTS methods. Boiling: 25%, Pot Filter: 81%, PuR: 63%, Water Guard Liquid: 73%, Water Guard tablet: 74%.]
Comparison of percent reduction between Mitengwe and Sungwi Village

<table>
<thead>
<tr>
<th>HWTS Methods</th>
<th>Mitengwe</th>
<th>Sungwi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiling</td>
<td>40</td>
<td>25</td>
</tr>
<tr>
<td>Water guard liquid</td>
<td>65</td>
<td>73</td>
</tr>
<tr>
<td>Water guard tablet</td>
<td>77</td>
<td>74</td>
</tr>
</tbody>
</table>
The overall per-cent Reduction (cfu/100mL)

Boiling
Ceramic pot filter
PUR
Sifon filter
Water guard liquid
Water guard tablet

% Reduction cfu/100mL

HWTS Methods

Kisarawe
Geita
Combined
5.0 Behaviour change: Water treatment in study areas

- Our findings revealed a large improvement in water treatment after the introduction of the study.
- This practice was maintained throughout all four rounds.
- More people shown to change behavior and start drinking treated water.
6.0 Behaviour change: Water treatment and safe storage in study areas

• Accordingly, the intervention showed a large improvement in safe storage.

• More people are using safe storage containers.
7.0 Behaviour change: water drawing practices in study areas

• Dipping a cup without a long handle was the most typical way to retrieve stored water for use at baseline.

• Dipping vessel is the most likely method to introduce contamination in the home, through the introduction of hands into the stored water supply.

• The intervention was highly successful in ending this practice in the vast majority of houses during all four rounds of the project.
8.0 User preferences for HWTS

<table>
<thead>
<tr>
<th>Geita</th>
<th>Liked</th>
<th>Disliked</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Most</td>
<td>Least</td>
</tr>
<tr>
<td>Boiling</td>
<td>52%</td>
<td>27%</td>
</tr>
<tr>
<td>PUR</td>
<td>5%</td>
<td>8%</td>
</tr>
<tr>
<td>WaterGuard Liquid</td>
<td>16%</td>
<td>7%</td>
</tr>
<tr>
<td>WaterGuard Tablets</td>
<td>3%</td>
<td>15%</td>
</tr>
<tr>
<td>Siphon Filter</td>
<td>14%</td>
<td>28%</td>
</tr>
<tr>
<td>Pot Filter</td>
<td>34%</td>
<td>25%</td>
</tr>
</tbody>
</table>
9.0 Willingness to pay for HWTS

<table>
<thead>
<tr>
<th></th>
<th>PUR</th>
<th>Water-Guard Liquid</th>
<th>Water-Guard Tablets</th>
<th>Siphon Filter</th>
<th>Pot Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Bid</td>
<td>572.6</td>
<td>738.2</td>
<td>426.5</td>
<td>1637.4</td>
<td>7361.2</td>
</tr>
<tr>
<td>Median Bid</td>
<td>500</td>
<td>500</td>
<td>300</td>
<td>1000</td>
<td>5000</td>
</tr>
<tr>
<td>Number of Households Who Bid</td>
<td>175</td>
<td>347</td>
<td>347</td>
<td>142</td>
<td>175</td>
</tr>
<tr>
<td>Maximum Bid</td>
<td>5000</td>
<td>10000</td>
<td>5000</td>
<td>15000</td>
<td>70000</td>
</tr>
<tr>
<td>Minimum Bid</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Estimated Retail Price</td>
<td>1000</td>
<td>1500</td>
<td>1000</td>
<td>15000</td>
<td>45000</td>
</tr>
</tbody>
</table>

- **Cash/Mobile Money**
- **Chicken**
10. Summary of key outputs

• Implemented 2 out of 3 components of the planned research project (Baseline survey, introduction of HWTS, preference study, willingness to pay study, turbidity-chlorination study).

• Based on research evidences, cut-off level for effective chlorination of turbid water is 13 NTU (this contradicts TBS cut-off of 25 NTU).

• Developed Takasa-maji, a floculant-disinfectant water treatment product, simple and cheaper than PUR (Grand Challenges funded field trial in final stages).

• Produced evidence that is adequate to plan and implement national level scaling up of HWTS programs

• Based on research evidences, we drafted working tools including guidelines, promotional approaches, and IEC materials

• Equipped technical team members with skills essential for planning and deliver intervention

• Facilitated the finalization of National Plan for scaling up HWTS and national standards
11. Required next steps

- Signing and implementation the prepared HWTS National Action Plan
- Launch scaling up mission of HWTS at national scale
- Establish coordination mechanism (MoW, MoHSW, MoEVT and other stakeholders)
- Institute regulatory mechanism for HWTS products and services delivery
- Provide guidance and technical support on the implementation process
- Monitor and evaluation of health impact through disease and other health determinants and indicators.
- Introduce sanitation and hygiene interventions as critical synergies to HWTS
12. Major requirements for scaling up

- Strengthen collaboration with harmonization of responsibilities (agree on roles)
- Integrate with existing programs and frameworks (Health, education, and water sector programs)
- Mobilize and secure adequate funding
- Build capacity to provide services (from production, transportation, to promotion)
13. Conclusion and recommendations

- HWTS tested in this study are all effective in reducing infection in drinking water, hence they are useful in the provision of safe water to households.
- HWTS study has shown promising adoption, usage and preference by households in Geita and Kisarawe districts warranting expansion to cover whole villages and the district at large.
- Missing supply chain of HWTS in rural areas is a threat to progress – need to be addressed.
What's next

- HWTS is a fundamental human right.
- Implementation and scale up HWTS is not one man’s business but it is a responsibility of each and every Water, Hygiene and Sanitation (WASH) stakeholder.
Acknowledgement

• UNICEF for financially supporting these studies
• Ministry of Health and Social Welfare
• MUHAS
• NIMR
• MOWI
• Geita and Kisarawe District Councils
• PSI, Segerea Pharmacy, East Africa Ceramics, Simba Plastics Ltd
Thanks for Listening
Weaning food hygiene (SHARE’s work to date)

Name: Jeroen Ensink
Affiliation: London School of Hygiene & Tropical Medicine
PRESENTATION OUTLINE

I. CONTEXT/JUSTIFICATION
II. DEVELOPMENT USING HACCP
III. TESTING THE INTERVENTION
IV. REPLICATION; BANGLADESH & NEPAL
V. RECENT DEVELOPMENTS/PERSPECTIVES
CONTEXT/JUSTIFICATION

• Diarrhoeal diseases mainly kill children under five years in developing countries;

• Diarrhoea control thus needs to stop young children ingesting pathogens;

• Weaning foods are usually more heavily contaminated than drinking water;

• Weaning food hygiene deserves high priority.
EXPERIMENTAL STUDY, TO DEVELOP INTERVENTION

• 15 mothers of children aged 6 to 36 months;

• Selection of 2 commonest weaning foods - moni & fish soup;

• intensive observation of food preparation and handling hygiene;

• Implementation of HACCP Method.
Legend
- Initial contamination
- Hand contamination
- Utensils contamination
- Ingredient contamination
- Water contamination
PILOT STUDY, TO TEST THE INTERVENTION

60 mothers; 30 Intervention, 30 control;
3 weeks’ training for intervention group;
samples examined for faecal coliforms.

Intervention key messages:
• Reheating meals to boiling point, even if for only a few seconds;
• Handwashing with soap after faecal contact and before handling food;
• Running water and soap to wash dishes
FC CONTAMINATION OF INTERVENTION GROUP’S FOODS AT THE END OF THE INTERVENTION
LESSONS LEARNT FROM THE INTERVENTION

• The intervention was very effective in FC contamination reduction; it resulted in a very high performance in meeting the quality standard of less than 10 fcu/g;

• Behaviours acquired lasted for at least three months after the intervention.
REPLICATION STUDY

- Bangladesh, rural setting;
- Copied Bamako protocol with 2 local weaning foods (Suzi & Khishuri);
- Same result!
- *The method has already been integrated into the National Diarrhoea Prevention Strategy of Bangladesh* (Dr S. Islam, ICDDR,B)
INTERVENTION IMPACT ON BACTERIOLOGICAL WEANING FOODS SAFETY

Mean count of bacteria (Log_{10} cfu/g)

Study Households Control Households

Before 1st feeding Before 2nd feeding Before 3rd feeding

Faecal Coliforms Faecal Streptococci Clostridium Perfringens
Recent developments, future perspectives

• Replication in Nepal:
 - at District scale, reduced cost to US$ 17 per mother (Om Gautam);
 - Impact on diarrhoea incidence discernible, though study under-powered.

• In the Gambia:
 - Similar study due soon (Buba Manjang, Ministry of Health) & University of Birmimgham;
 - Unicef Gambia considering implementation at national level.

Photo credit: Om Pd Gautam, DCD/ITD, LSHTM
CONCLUSION/RECOMMANDATION

• The HACCP Approach is effective in FC contamination reduction through hygiene intervention;
• Behaviours acquired last for at least three months after the intervention.
• These very encouraging findings need to be translated into Health Education Programs’ guidelines;
• The Approach reserves to be scaled up to assess its impact in diarrhoea prevention/reduction.
THANK YOU
IMPLEMENTATION OF MTUMBA SANITATION AND HYGIENE PARTICIPATORY APPROACH IN TANZANIA: ITS OUTCOME AND IMPACT IN PILOTED AREAS

Name: Hamisi M. Malebo, Dip. Ed (Sc), B.Sc(Hons), M.Sc, PhD, FASI
Affiliation: National Institute for Medical Research, P.O. Box 9653, Dar es Salaam, Tanzania.
E-mail: Malebo@hotmail.com
Presentation outline

1. Sanitation situation in Tanzania before Mtumba implementation
2. MTUMBA sanitation and hygiene approach
3. Evaluation methodology
4. Findings
5. Conclusion and Recommendations
1.0 Sanitation situation in Tanzania

• In Tanzania, only 42% of rural populations and 73% of urban population had access to improved sanitation

• Low coverage of quality latrines noted in rural areas in Tanzania

• The 2010 DHS report showed a very low improvement on the coverage of improved latrines from 10% in 2004 to 12% in 2010
Tanzania’s current latrine coverage

<table>
<thead>
<tr>
<th>Type of latrine/toilet</th>
<th>DHS 2004-2005</th>
<th>HBS 2007</th>
<th>DHS 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Pour flush</td>
<td>5%</td>
<td>3%</td>
<td>5%</td>
</tr>
<tr>
<td>2. VIP</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>3. Improved pit latrine</td>
<td>-</td>
<td>-</td>
<td>1%</td>
</tr>
<tr>
<td>4. Unimproved pit latrine</td>
<td>-</td>
<td>-</td>
<td>66%</td>
</tr>
<tr>
<td>5. Unclassified pit latrine</td>
<td>85%</td>
<td>85%</td>
<td>-</td>
</tr>
<tr>
<td>6. Shared latrine/toilet</td>
<td>-</td>
<td>-</td>
<td>8%</td>
</tr>
<tr>
<td>7. No latrine</td>
<td>5%</td>
<td>7%</td>
<td>14%</td>
</tr>
</tbody>
</table>

2.0 MTUMBA Sanitation and Hygiene Participatory Approach

- Following PHAST limitations as identified by NIMR, WaterAid Tanzania and her partners convened at Mtumba village in Dodoma in September, 2007
 - Reviewed different participatory approaches used in Tanzania.
 - They identified strengths and weaknesses of various participatory approaches implemented in the country
 - Used the strengths to form an approach that would be effective to Tanzanian context.
 - The meeting finally came up with MTUMBA Sanitation and Hygiene Participatory Approach, named after MTUMBA village.
What is MTUMBA approach?

• In principle; MTUMBA Sanitation and Hygiene Participatory Approach is amalgamated strengths from:
 ✓ PHAST tools
 ✓ CLTS tools and,
 ✓ PRA tools.
MTUMBA concept

• Mtumba concept anchors on quality, quantity, equity and sustainability
 ✓ **Quality**: increasing the latrine standards (from poor to improved latrines)
 ✓ **Quantity**: higher coverage (all households)
 ✓ **Equity**: appropriate types of latrine for all including the vulnerable people such as elderly, disabled and small children
 ✓ **Sustainability**: community to continue accessing improved latrines even after the project tenure
Quality of majority of traditional pit latrines before Mtumba implementation

National Institute for Medical Research
www.nimr.or.tz
MTUMBA pilot implementation

- Piloted in three districts of Iramba, Nzega and Mbulu districts from March 2008 to March 2011
 - Trained and empowered artisans and animators
 - Constructed demonstration centres
 - Capacity building in terms of skills development of the district sanitation team/department
 - Lobbying for the District Health Department to adequately budget for Sanitation in the Council Comprehensive Health Plans (CCHP)
 - Effective utilization of the opportunity found in the community
3.0 Evaluation methodology

- A cross-sectional qualitative and quantitative design was adopted in the study.
- Participatory method involving different stakeholders at ward level whereby triangulation of techniques including interviews, observations and focus group discussions (FGDs) as well as desk review of existing data in the districts were used.
- The study was carried out in the Mtumba Approach piloted wards of Masieda in Mbulu, Mtoa in Iramba and Mambali in Nzega districts in Tanzania.
- Sample size: 1,200 households.
4.0 Findings

4.1 Demographic and economic characteristics of surveyed households

<table>
<thead>
<tr>
<th>Region</th>
<th>Tabora</th>
<th>Manyara</th>
<th>Singida</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>District</td>
<td>Nzega</td>
<td>Mbulu</td>
<td>Iramba</td>
<td></td>
</tr>
<tr>
<td>Ward</td>
<td>Mambali</td>
<td>Masieda</td>
<td>Mtoa</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td>398</td>
<td>403</td>
<td>402</td>
<td>1,203</td>
</tr>
<tr>
<td>Male</td>
<td>219 (55.03%)</td>
<td>255 (63.28%)</td>
<td>164 (40.80%)</td>
<td>638 (53.03%)</td>
</tr>
<tr>
<td>Female</td>
<td>179 (44.97%)</td>
<td>148 (36.72%)</td>
<td>238 (59.20%)</td>
<td>565 (46.97%)</td>
</tr>
<tr>
<td>Age groups in years</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19-34</td>
<td>180 (45.23%)</td>
<td>146 (36.23%)</td>
<td>166 (41.29%)</td>
<td>492 (40.90%)</td>
</tr>
<tr>
<td>35-44</td>
<td>126 (31.66%)</td>
<td>138 (34.24%)</td>
<td>108 (26.87%)</td>
<td>372 (30.92%)</td>
</tr>
<tr>
<td>45-54</td>
<td>61 (15.33%)</td>
<td>68 (16.87%)</td>
<td>59 (14.68%)</td>
<td>188 (15.63%)</td>
</tr>
<tr>
<td>55+</td>
<td>31 (7.79%)</td>
<td>51 (12.66%)</td>
<td>69 (17.16%)</td>
<td>151 (12.55%)</td>
</tr>
<tr>
<td>Mean age + SD</td>
<td>37.8±11.9</td>
<td>38.9±12.8</td>
<td>40.1±14.4</td>
<td>39.0±13.1</td>
</tr>
</tbody>
</table>
4.2 Education level of respondents

<table>
<thead>
<tr>
<th>Literacy level</th>
<th>Tabora</th>
<th>Manyara</th>
<th>Singida</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literate</td>
<td>204 (51.26%)</td>
<td>271 (67.25%)</td>
<td>273 (67.91%)</td>
<td>748 (62.18%)</td>
</tr>
<tr>
<td>Illiterate</td>
<td>194 (48.74%)</td>
<td>132 (32.75%)</td>
<td>129 (32.09%)</td>
<td>455 (37.82%)</td>
</tr>
<tr>
<td>Level of education</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No formal education</td>
<td>200 (50.25%)</td>
<td>138 (34.24%)</td>
<td>138 (34.24%)</td>
<td>476 (39.57%)</td>
</tr>
<tr>
<td>Primary education</td>
<td>189 (47.49%)</td>
<td>237 (58.81%)</td>
<td>248 (61.69%)</td>
<td>674 (56.03%)</td>
</tr>
<tr>
<td>Secondary education</td>
<td>7 (1.76%)</td>
<td>26 (6.45%)</td>
<td>14 (3.48%)</td>
<td>47 (3.91%)</td>
</tr>
<tr>
<td>Above secondary education</td>
<td>1 (0.25%)</td>
<td>1 (0.25%)</td>
<td>0 (0.00%)</td>
<td>2 (0.17%)</td>
</tr>
<tr>
<td>Adult education</td>
<td>1 (0.25%)</td>
<td>1 (0.25%)</td>
<td>2 (0.50%)</td>
<td>4 (0.33%)</td>
</tr>
</tbody>
</table>
4.3 Common house roofing materials in the surveyed wards

- Corrugated iron roof: 44.80%
- Thatched grass roof: 33.70%
- Mud roof: 21.50%
IEC materials used in MTUMBA advocacy
4.4 Sanitation facilities in the surveyed households

- The commonest sanitation facilities observed in the surveyed households are the pit latrines which were present in an overall of 1,083 (90%) of the surveyed households.
- A total of 120 (10%) of households were found to have no any form of latrine.
- Traditional pit latrines constituted 64.3% of all latrines constructed in the surveyed households.
Observed increased latrine construction and use

- Direct observations revealed that, majority of the sampled household in each ward have constructed latrines which are being used.

<table>
<thead>
<tr>
<th>Type of Latrine</th>
<th>Mambali</th>
<th>Masieda</th>
<th>Mtoa</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. VIP</td>
<td>5 (1.6%)</td>
<td>26 (6.5%)</td>
<td>2 (0.5%)</td>
<td>33 (3.1%)</td>
</tr>
<tr>
<td>2. Improved Pit latrine</td>
<td>69 (22.2%)</td>
<td>64 (16.1%)</td>
<td>17 (4.5%)</td>
<td>150 (13.9%)</td>
</tr>
<tr>
<td>3. Traditional pit latrine</td>
<td>60 (19.3%)</td>
<td>303 (76.1%)</td>
<td>333 (89.0%)</td>
<td>696 (64.3%)</td>
</tr>
<tr>
<td>4. Pour flush-direct to pit</td>
<td>5 (1.6%)</td>
<td>2 (0.5%)</td>
<td>0 (0.0%)</td>
<td>7 (0.7%)</td>
</tr>
<tr>
<td>5. Pour flush-offset to pit</td>
<td>10 (3.2%)</td>
<td>0 (0.0%)</td>
<td>2 (0.5%)</td>
<td>12 (1.1%)</td>
</tr>
<tr>
<td>6. Water closet with septic tank system</td>
<td>9 (2.9%)</td>
<td>0 (0.0%)</td>
<td>19 (5.1%)</td>
<td>28 (2.6%)</td>
</tr>
<tr>
<td>Total</td>
<td>311 (78%)</td>
<td>398 (98.8%)</td>
<td>374 (93.0%)</td>
<td>1,083 (90.0%)</td>
</tr>
</tbody>
</table>
Odds ratios on latrine construction

<table>
<thead>
<tr>
<th></th>
<th>Own latrine</th>
<th>OR</th>
<th>95%CI</th>
<th>p-value</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literacy level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illiterate</td>
<td>375(82.4)</td>
<td>1</td>
<td></td>
<td></td>
<td>455</td>
</tr>
<tr>
<td>Literate</td>
<td>708(94.7)</td>
<td>3.8</td>
<td>[2.5 – 5.6]</td>
<td>0.0</td>
<td>748</td>
</tr>
<tr>
<td>Education level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not formal/Adult education/Do not Read and Write</td>
<td>397(83.1)</td>
<td>1</td>
<td></td>
<td></td>
<td>478</td>
</tr>
<tr>
<td>At least Primary education</td>
<td>686(94.6)</td>
<td>3.6</td>
<td>[2.4 – 5.4]</td>
<td>0.0</td>
<td>725</td>
</tr>
<tr>
<td>Roofing materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thatched grass</td>
<td>325(80.1)</td>
<td>1</td>
<td></td>
<td></td>
<td>406</td>
</tr>
<tr>
<td>Earth/mud</td>
<td>512(95.0)</td>
<td>4.7</td>
<td>[3.0 – 7.5]</td>
<td>0.0</td>
<td>539</td>
</tr>
<tr>
<td>Corrugated iron sheets</td>
<td>246(95.3)</td>
<td>5.1</td>
<td>[2.7 – 9.6]</td>
<td>0.0</td>
<td>258</td>
</tr>
<tr>
<td>Total</td>
<td>1,083(90.0)</td>
<td></td>
<td></td>
<td></td>
<td>1,203</td>
</tr>
</tbody>
</table>
Overall percentage of latrine options constructed by households in the surveyed districts

- WC: 2.6%
- Pour flush-offset to pit: 1.1%
- Pour flush-direct to pit: 0.7%
- Traditional pit latrine: 64.3%
- Improved Pit latrine: 13.9%
- VIP: 3.1%
Traditional pit latrine
Improvement in latrine quality

Household latrines before and after the intervention – Mambali Ward
Quality latrines constructed

An Improved Traditional Latrine and a bathroom constructed by grass owned by a household at Mbutu village, Mambali Ward.
Construction of improved latrines with hand washing tippy tap

Study respondent in front of his improved latrine in-Mambali Ward, Nzega.

Locally available materials used for construction of improved latrine by a Barbaig family at Endahagichan village - Masieda ward
A child demonstrating on hand washing using a tippy tap at Umburu sub-village in Masieda ward.
Improved traditional pit latrine was shown to be mostly preferred by majority of the households
5.0 Impact of MTUMBA

• Hygiene and sanitation behavior change after MTUMBA

✓ 80.05% of the respondents in the household survey have noted sanitation and hygiene behavior changes in a span of three years of MTUMBA implementation.

✓ Key changes:
 i. Decline of open defecation
 ii. Majority of people are now using latrines
 iii. Disposal of child feces in latrines
 iv. Hand washing after visiting latrine
Observed decline in waterborne diseases in underfives
6.0 Preference of sanitation technologies in the study sites

<table>
<thead>
<tr>
<th>Domain</th>
<th>Masieda- Mbulu</th>
<th>Mambali- Nzega</th>
<th>Mtoa- Iramba</th>
</tr>
</thead>
</table>
| Attributes of preferred technology | i. Slab- Sungura type
 ii. Walls- poles with mud
 iii. Roof- poles with mud | i. Slab- Sungura type
 ii. Walls- mud bricks
 iii. Roof- thatched grasses (Maluli) | i. Slab- Sungura type
 ii. Walls- mud bricks
 iii. Roof- poles with mud |
| Local name | Tembe | Kihenge | Tembe |
| Reasons for the preferred technology | • Affordable for majority of people
 • Local materials- soil, poles easily available
 • Aunts destroy building materials- grasses if used
 • Grasses are scarce as the area is dry
 • Artisans are available in the area and costs of labour manageable
 • Slabs (Sungura type) are available at Sanitation Centre and prices are affordable | • Costs are affordable to the majority of people
 • Local materials- soil, grasses easily available
 • Artisans are available in the area and costs of labour manageable
 • Slabs (Sungura type) are available at Sanitation Centre and prices are affordable | • Costs are affordable
 • Local materials- soil, grasses easily available
 • Artisans are available in the area and costs of labour manageable
 • Slabs (Sungura type) are available at Sanitation Centre and prices are affordable |
7.0 Costs of implementing MTUMBA

<table>
<thead>
<tr>
<th></th>
<th>Mtoa</th>
<th>Mbulu</th>
<th>Nzega</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buildings: Financial</td>
<td>20,533,333</td>
<td>24,166,666.70</td>
<td>26,100,000</td>
</tr>
<tr>
<td>Economic</td>
<td>23,698,889</td>
<td>27,892,361.11</td>
<td>30,123,750</td>
</tr>
<tr>
<td>Motocycles/tillers/bikes: Financial</td>
<td>4,480,000</td>
<td>3,600,000</td>
<td>3,600,000</td>
</tr>
<tr>
<td>Economic</td>
<td>5,170,666</td>
<td>4,155,000</td>
<td>4,155,000</td>
</tr>
<tr>
<td>Demo Latrines: Financial</td>
<td>642,600</td>
<td>632,000</td>
<td>736,000</td>
</tr>
<tr>
<td>Economic</td>
<td>774,643</td>
<td>729433.34</td>
<td>765,235.60</td>
</tr>
<tr>
<td>Average costs per ward</td>
<td>55,300,131</td>
<td>61,175,461</td>
<td>35,356,236</td>
</tr>
</tbody>
</table>

Average costs per ward is Tshs 50,610,609/=
Costs of latrine options in Mambali ward

<table>
<thead>
<tr>
<th>Type of latrine</th>
<th>Description</th>
<th>Total (Tshs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. VIP</td>
<td>Roof of corrugated iron sheet, dry bond lined pit, floor with dome slab</td>
<td>262,000</td>
</tr>
<tr>
<td>2. Improved Pit Latrine 1</td>
<td>Thatched roof, pit made of cement-earth bricks, floor with dome slab</td>
<td>110,700</td>
</tr>
<tr>
<td>3. Improved Pit Latrine 2</td>
<td>Thatched roof, pit made of burnt bricks, floor with dome slab</td>
<td>110,700</td>
</tr>
<tr>
<td>4. Improved Pit Latrine 2</td>
<td>Roof of corrugated iron sheet, pit made of cement bricks, floor with dome slab</td>
<td>124,300</td>
</tr>
<tr>
<td>5. Improved Pit Latrine 4</td>
<td>Roof of corrugated iron sheet, pit made of dry bonds, floor with dome slab</td>
<td>134,300</td>
</tr>
<tr>
<td>6. Improved Pit Latrine 1</td>
<td>Thatched roof, pit made of wattle (kihenge), floor with SanPlat</td>
<td>45,700</td>
</tr>
<tr>
<td>7. Institutional latrine</td>
<td>Roof of corrugated iron sheet, pit made of dry bonds, floor with dome slab</td>
<td>338,000</td>
</tr>
<tr>
<td>8. Urinal</td>
<td>Roof of corrugated iron sheet, floor with a urinal farrow for men</td>
<td>240,500</td>
</tr>
<tr>
<td>9. Abaloo</td>
<td>Thatched roof, pit made of mud/wattle (kihenge), floor with small dome slab</td>
<td>20,000</td>
</tr>
<tr>
<td>10. Pour flush offset latrine</td>
<td>Ferro-cement roof, pit made of dry bonds, floor with SanPlat</td>
<td>169,000</td>
</tr>
<tr>
<td>11. Disabled and elderly latrine</td>
<td>Roof of corrugated iron sheet, pit made of dry bonds, cement floor, with a chair form of latrine, metal rails for support</td>
<td>383,000</td>
</tr>
<tr>
<td>12. Kilimo kwanza latrine</td>
<td>Roof of corrugated iron sheet, pit made of dry bonds with doors for removal of composite, floor with dome slab with urine diversion</td>
<td>846,500</td>
</tr>
</tbody>
</table>
Costs of latrine in Masieda ward

<table>
<thead>
<tr>
<th>Type of latrine</th>
<th>Description</th>
<th>Total (Tshs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. VIP latrine</td>
<td>Roof of corrugated iron sheet, burnt brick wall, floor with SanPlat</td>
<td>290,000</td>
</tr>
<tr>
<td>2. Institutional improved pit latrine</td>
<td>Roof of corrugated iron sheet, burnt brick wall, floor with SanPlat</td>
<td>499,000</td>
</tr>
<tr>
<td>3. Traditional improved pit latrine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i. Tembe</td>
<td>Mud/earth roof, wattle/mud wall, floor with SanPlat</td>
<td>129,500</td>
</tr>
<tr>
<td>ii. Songe</td>
<td>Thatched roof, wattle/cow dung wall, floor with SanPlat</td>
<td>135,000</td>
</tr>
<tr>
<td>iii. Kambi</td>
<td>Thatched roof, cement finish wattle/mud wall, floor with SanPlat</td>
<td>210,500</td>
</tr>
<tr>
<td>4. Special groups</td>
<td>Roof of corrugated iron sheet, burnt brick wall, with a chair form of latrine, metal rails for support</td>
<td>199,000</td>
</tr>
</tbody>
</table>
8.0 Factors contributed to observed changes

• Community made aware of the linkage between human fecal matter and waterborne diseases
• Expected health benefits of latrine use
• Constant messaging by SEMA, HAPA, DMDD, leaders, animators and artisans
• Presence of a sanitation centre which demonstrated that improved latrine is cheap and doable
• Follow up by district, ward and village leaders
Factors contributed to the observed changes

Triggering activities and constant messaging in the wards
Sustainability issues

• Trained artisans and provided them with working tools and revolving fund
• District sanitation team composed but inactive
• Council Executive Directors from the three districts are supporting the incorporation of MTUMBA activities in the Comprehensive Council Plan (CCHP) – a step towards district ownership
• Districts budgeted for initial scale up of MTUMBA to new wards in the new financial year 2011/2012
Shortfalls noted

- Animators lacks reliable incentives/ compensations for their efforts
- Only health departments among the district sanitation team members are active
- District health supervisory roster does not include supervision of MTUMBA activities
- Neighboring villages were not informed about Mtumba
- Promotion and demonstration is skewed to latrine construction and hand washing technologies and none on household water treatment and safe storage
9.0 Conclusion and Recommendations

• MTUMBA raises hygiene and sanitation expectations and needs which must be met with an appropriate range of products and services provided by the private sector.

• In all districts visited systems to facilitate supervision, monitoring and regular assessment of SANITATION activities were not in place.
• The integration of MTUMBA into the government structures is an important step towards improving the effectiveness and efficiency of the approach in bringing about the desired community sanitation and hygiene behavioural changes. Donor funding to support MTUMBA activities need to be channelled through LGA.

• MTUMBA needs multi-sectoral collaboration; key district departments need to be effectively involved.

• Evidence based guideline is needed on latrine options relating to the Tanzanian context, considering community preference, construction materials, ease of use, willingness and ability to pay.
EXPANDING THE MTUMBWA MODEL: CREATING A PRODUCT FOR SCALE UP
Training or artisans and animators prior to community triggering
Hands on practice training
Some of new latrines after Mtumba implementation in Geita
Acknowledgement

• Funded by Sanitation and Hygiene Applied Research for Equity (SHARE) consortium through WaterAid in Tanzania
• Partners: SEMA (Singida and Nzega), HAPA (Singida and Nzega) and DMDD (Mbulu).
• Local government authorities in Singida, Nzega and
• NIMR and WaterAid officials are thanked for their technical support

This material has been funded by UK aid from the Department for International Development (DFID). However, the views expressed do not necessarily reflect the Department’s official policies.
Thanks for Listening
Sanitation Microfinance

Name: George Muruka
Affiliation: MicroSave
Microfinance and Applicability on Sanitation

- **Phase I: Global trends (2010)**
 - Desk literature reviews
 - Most activities in India

- **Phase II: Field Studies (2011)**
 - Studies in India
 - Similar study in Tanzania
 - Need to explore applicability of lessons from India to Tanzania

- **Phase III: Action Research (Dec 2013 – Jan 2015)**
 - Learning by doing
 - Product development
 - Program design and advice

- **Phase IV: Dissemination (2015)**
 - Sharing of lessons
 - Raising profile of Sanfinance
Sanitation and Microfinance Nexus

- **Financing constraints:**
 - Small informal operators suffer limited capital
 - Low institutional capacity (e.g. business operation skills)
 - Enterprises are heavy on social mission

- **Water + sanitation challenges by the poor:**
 - Both focus on the poor segments
 - Poor households spend much of HH income on sanitation
 - Sanitation loans can be income enhancing and reduce household burden

- **Limitations of public funding/programs:**
 - Limited public funding for both sectors.
 - Limitations of public driven programs
 - Limited grants focussed on market development facilitation.

- **Progressive regulation:**
 - Progressive regulation and good press for microfinance in EA region
 - Commercialisation, a challenge to social mission.
 - Similarly, WASH regulations progressively opening up.
Financing Structure

Financing gap in the sanitation market (HH & SMEs)
General Findings of Phase I and II

1. Limited understanding of the WASH sector:
 - FIs familiar with business/trading sector lending,
 - WASH NGOs not familiar with FIs demands

2. Progressive commercialization of WASH activities:
 - Progressive commercialization of services
 - WASH NGOs focus on advocacy, awareness creation

3. Regulatory environment
 - Recognition of need of private sector financing in sanitation
 - Improved financial inclusion through microfinance laws and digital financial services.

Sanitation Microfinance
Action Research in Tanzania
(December 2013 – January 2014)
PHASE III: ACTION RESEARCH

MARKET Scoping → PARTNERS Identification → SECTOR engagement /Seminar

WORKING Group Formation → TA Support & Sector Learning → PILOTS Volunteer Institutions

PRODUCT Rollouts → DISSEMINATION → SCALE UP
Project Core Activities & Results

- **Sector Engagement**
 - 3 WG Meetings
 - 40 participants

- **3 ARPs (2 MFI & 1 NGOs**

- **Loans products**
 - Lessons in SMf

- **Lending pilots**
 - US$ 3,000

- **Demand for Lending capital**
LESIONS

- **Need for a host institution:**
 - WaterAid Tanzania provided a much needed anchor to host and supported the project

- **Leveraging on existing networks**
 - WG attract both FI and Sanitation NGOs
 - Donor representatives important for advocacy and change of discourse.
 - Link with small scale finance for housing finance in Tanzania.

- **Long term engagement with FI sector**
 - Need to continue engaging with the banking sector through dialogue & peer learning meetings
 - Mainstream banks/Community Banks required more assurance of the market.

- **Continued engagement with the Sanitation sector?**
 - Promote information exchange platform for sanitation microfinance e.g. the SWG
 - Policy & advocacy: engagement with government and international agencies on how to leverage on microfinance.
Scaling up Sanitation Microfinance

- Regular **market assessment** of supply and demand for Sanitation finance (micro and meso finance) to track market development.

- Build upon **existing innovative programmes**: e.g. Informal settlers sanitation groups, rural sanitation technician networks.

- Careful **selection of FIs** and financing channels e.g. Select interested FIs and encourage MFIs and NGOs partnerships

- Develop and/or support to **Apex Institutions** e.g. TAMFI supporting SWG

- Advocacy for improvement of **sanitation business regulatory environment**
Role of Consultants e.g. *MicroSave* and Tremolet

- **Market Assessment:**
 - Market research
 - Business Needs Assessments

- **Market development:**
 - Facilitating sectors actors
 - Advocating for synergies between the two sectors
 - Supply and demand assessments

- **Technical support**
 - Training
 - Product development
 - Program design and advice

- **Lessons dissemination**
 - Advocacy
 - Profile raising
Shared sanitation, what constitutes an improved form of sanitation?

Name: Jeroen Ensink
Affiliation: London School of Hygiene & Tropical Medicine
WHO/UNICEF JMP classification of sanitation

IMPROVED
- Flush/Pour flush toilet
 - To piped sewerage system
 - To septic tank
 - To closed pit
- Ventilated improved pit latrine
- Composting toilet
- Pit latrine with slab

SHARING STATUS
- 1 household
- 2 or more households

UNIMPROVED
- Flush/Pour flush toilet
 - To elsewhere
- Pit latrine without slab
- Hanging toilet or hanging latrine
- No facilities

unimproved
Sharing facilities

- Estimate 760 million people rely on public and other shared sanitation (JMP 2013)
- Globally, the number of users has increased by 425 million since 1990 – increasing from 6 per cent of the global population to 11 per cent in 20 years
- Nearly a fifth of the population of sub-Saharan Africa and Eastern Asia reports using shared sanitation
Hygiene along the sanitation ladder

- Selection of >350 latrines
- Divided over different groups
 - Rural vs Urban
 - Improved vs Unimproved
 - Shared vs Family latrine
 - Different technology
- Impact of seasonality
- Comparative sample within the household

- Different transmission routes
 - Hand contact point sampled for presence and concentration of *E. coli*
 - Soil samples analysed for helminths
 - Fly catches within latrines
Hand contact (*E. coli*)
Latrine characteristics

MDG
- Improved
- Unimproved

JMP
- Improved
- Shared
- Unimproved

Number of households sharing
- 5-22
- 2-4
- 1

Technology
- Poor-flush
- Pit-latrine with slab
- Pit-latrine without slab
E. coli at point of hand contact
Risk factors

E. coli

- Higher levels of contamination in dry season (10 vs 37 E. coli/100 ml)
- The higher the number of users the cleaner the facility
- Mutivariate: presence of a slab, and season significant

Helminths

- No correlation between type of latrine and concentrations in courtyard
- 60% of latrines without a slab positive, 100% of latrines with a cracked slab

Flies

- Concentrations low
- Urban latrines produce more flies and higher levels of sharing result in more fly
- Absence of a roof a key risk factor
Conclusions

• Pit latrines without a slab can pose a risk for hookworm infection
• Need to come-up with solutions to improve the simple pit latrine (without a slab)
• Use and management seem more important in hygiene of a latrine than technology alone
• Shared latrines should be included as an improved form of sanitation in new SDGs
Acknowledgement

BILL & MELINDA GATES foundation

share Sanitation and Hygiene Applied Research for Equity

UKaid This material has been funded by UK aid from the Department for International Development (DFID). However, the views expressed do not necessarily reflect the Department’s official policies.
Spatial planning for urban water & sanitation infrastructure & services in 4 African cities

Based on Research conducted by
Timeyin Uwejamomere, Technical Support Manager – Urban
&
John Garrett, Senior Policy Analyst

WaterAid

Presented at SHARE National Workshop, Dar es Salaam
4th August, 2015
Most people have safe water and sanitation, but it’s far from universal.

748 million people without improved water (but c. 2 billion drink contaminated water).

2.5 billion without basic sanitation (2x population of Commonwealth).

Inequality: rural / urban, urban / slum, rich / poor, mainstream / marginalised, men / women and children.

Diarrhoea is still among the biggest killer diseases of children.

Source: WHO/UNICEF Joint Monitoring Programme
The Urban Challenge: City vs Country populations

<table>
<thead>
<tr>
<th>City</th>
<th>Population</th>
<th>Country</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delhi</td>
<td>25.0 million</td>
<td>Australia</td>
<td>23.1 million</td>
</tr>
<tr>
<td>Karachi</td>
<td>22.1 million</td>
<td>Canada</td>
<td>35.2 million</td>
</tr>
<tr>
<td>Mumbai</td>
<td>17.7 million</td>
<td>Cyprus</td>
<td>0.9 million</td>
</tr>
<tr>
<td>Dhaka</td>
<td>15.7 million</td>
<td>Malta</td>
<td>0.4 million</td>
</tr>
<tr>
<td>Kolkata</td>
<td>14.7 million</td>
<td>New Zealand</td>
<td>4.5 million</td>
</tr>
<tr>
<td>Lagos</td>
<td>13.1 million</td>
<td>Singapore</td>
<td>5.4 million</td>
</tr>
<tr>
<td>Lahore</td>
<td>10.1 million</td>
<td>UK</td>
<td>64.1 million</td>
</tr>
<tr>
<td>Total</td>
<td>118.4 million</td>
<td>Total</td>
<td>133.6 million</td>
</tr>
</tbody>
</table>

Source: Demographia World Urban Areas, 2015, UN DESA 2012-13 mid-year estimates

“Cities are where the battle for sustainable development will be won or lost...”

“By 2050, nearly 75% of the world's population will live in cities. This growth creates new opportunities but also presents cities with huge economic, environmental and social challenges.
The Urban Challenge: Inequality vs Sustainability...

- Is equity and sustainability essential characteristics too?
 Consider Kibera in Nairobi,
 - one of the largest slums in the world,
 - where finding safe water and sanitation is part of the daily struggle
 But,
 - Next to Royal Nairobi Golf Club,
 - where green fairways suggest water is readily available

- 32% of children under five in Kenyan slums have diarrhoea, compared with 17% nationally (2008 figures)

- Should we take broader view of “smart”?
 - fit-for-purpose infrastructure
 - good governance
 - excellence in leadership and vision

 “And not just in the form of technology, but also crucially through leadership, innovation and collaboration?”

Source: CSCLeaders, Common Purpose
WaterAid Response to Urbanisation – A Manifesto

WaterAid’s urban manifesto…

Sets out WaterAid’s action plan for universal water supply & sanitation services in urban communities

4 Key calls on local authorities, governments & donors to:

- Prioritise poor communities within investments in water and sanitation
- Improve data collection & disaggregation to support pro-poor targeting of interventions
- Develop integrated city-wide plans for urban basic services
- Better co-ordinate urban planning and organisations delivering water and sanitation services

WaterAid City-wide spatial planning project...

• Started in April 2012

• Project to analyse the level of citywide infrastructure planning for water supply and sanitation (WSS) in four African cities: Lusaka, Lagos, Kinshasa and Maputo

• **Aim** is to
 • understand what informs infrastructure planning and investments; and practice
 • produce high-level plans and proposals to inform planning & investment decisions – in 4 case cities

• **Longer term:** Promote the adoption & scale up of the concept of integrated spatial planning for water & sanitation within the development community

• **Methodology:**
 • Includes series of workshops & consultation meetings in 4 case cities
 • Close collaboration with authorities in four cities to build local ownership & adoption of proposals
 • Continue support to local authorities – technical advice & capacity building
Guiding principles:

Long-term vision

Integrate projections for population growth and climate change

Secure the city’s water supply, by protecting its fresh water resources

Reach future peri-urban communities

Linked to existing infrastructures

Integrate wider infrastructure plans, such as road construction or flood protection

Encourages cooperation between state and municipal departments

WSS ring-mains proposal Lusaka: integrating the comprehensive 2009 urban plan supported by JICA
Proposals: Sanitation & Sewerage ...

Guiding principles:

Maximising the use of gravity: natural topography & hydraulic systems

Maximise economies of scale but phased implementation & preserves communities

Long-term, large-scale infrastructure

Development of off-site wastewater treatment facilities

Integrate intermediary solutions for city-wide faecal sludge disposal & treatment

Sewage infrastructure adapted to context e.g. floating slums – Makoko, Lagos

Sewage proposal for Maputo – integrating sludge management.

Sanitation proposal for floating slums
Proposals: Drainages & Climate Change...

Guiding principles:

Separate sewage & drainage systems

Use rivers as primary drainage network whenever possible & combined with land stabilisation work

Integrate impacts of climate change risk

Most notably sea level rise & storm surges affecting some of the poorest settlements

Sustainable planning & layout of WSS infrastructure is dependent on effects of climate change – particularly in Lagos and Maputo
Addressing these issues

• Dealing effectively with these issues will be essential to achieve smart cities:

• Requires joint work and collaboration between many areas: water, sanitation, drainage, flood defence, but also housing, urban planning, finance...

• Effective working between the public and private sectors, and between government at national, regional and local levels

• Mobilising funding and spending it wisely

• Making best use of available data and technology

• Being prepared to adopt and implement long-term visions that take account of rapid growth and the effects of climate change

• Common purpose and cultural intelligence

•and will require exceptional leadership.
Smart leadership: long-term vision

• Long-term vision of the Victorians 150 years ago

• When London had 2 million people, they built a sanitation system to accommodate 4 million people

• **Key question still unanswered:** will developing country governments and international donors prioritise this kind of leadership & investment?
Thank you

Questions and discussion

WaterAid, 47-49 Durham Street, London SE11 5JD

Registered charity numbers 288701 (England and Wales) and SC039479 (Scotland)
BUILDING CITY-WIDE SANITATION STRATEGIES FROM THE BOTTOM UP

Name: MWANAKOMBO M. MKANGA
Affiliation: CENTRE FOR COMMUNITY INITIATIVES
INTRODUCTION TO CCI AND FEDERATION

• CCI is a local based not for profit organization which supports urban poor communities with housing and shelter; community savings and credits and informal settlements upgrading. It started in 2004 and is working in 8 regions.

• Tanzania Urban Poor federation – A network of savings groups constituted at the community levels in informal settlements, with majority membership of women. These groups federate citywide and nationwide scale, and they are part of SDI (Shark Dwellers International) which is Transnational network of grassroots slum dwellers.
OVERVIEW OF CITY WIDE SANITATION RESEARCH IN TZ

INTRODUCTION TO CITYWIDE SANITATION RESEARCH
The citywide sanitation research had the aim to secure a model for development and realization of pro-poor citywide sanitation through scalable projects.

COMPONENTS OF THE RESEARCH
• Undertake Situational analysis to determine key challenges which limits promotion of sanitation in informal settlements areas.

• Implement of precedent setting projects.

• Developing citywide sanitation strategies based on the above scalable precedents.
HOW THE WORK STARTED

• Introduction of the research to key stakeholders

• Identifying research team

• Training of the research team

• Data collection - Household survey, FGDs and taking GPS coordinates to collect information about latrines
FINDINGS: CRITICAL SANITATION CHALLENGES IN URBAN TANZANIA

• Absence of Sanitation policy has led to absence of guidance to all relevant sectors, no clear common vision.

• The draft sanitation and hygiene policy does not specifically address the challenge of urbanization and lack of proper sanitation facilities for the urban poor.

• Individual sanitation are not in the public interest
FINDINGS: CRITICAL SANITATION CHALLENGES IN URBAN TANZANIA

• Inaccessibility within informal settlements for pit emptying
• Lack of space to construct toilet facilities
• Lack of skills to construct new sanitation options (technicians and artisans)
• Lack of appropriate technologies which are affordable to low income communities.
• Lack of affordable financial investments which include the poor communities.
• Lack of landlords and tenants relationships
• Lack of collaboration and partnerships between the urban poor and the Local Governments.
FINDINGS: CRITICAL SANITATION CHALLENGES IN URBAN TANZANIA
IDENTIFIED PRECEDENTS

Based on findings 4 key precedents were identified:

- Capacity building to technicians through peer learning
- Construction of shared toilets
- Pit emptying using gulper
- Simplified sewerage system

Precedent projects aim was to explore how the action research will address the aspects of:

- Collective
- Co-production
- Finance and affordability
- Trans-sectoral
CITY WIDE SANITATION STRATEGY

• The SHARE research was conducted in 3 major settlements but its finding and precedence setting aims to develop a city wide sanitation strategy.

• The city wide sanitation strategy is developed in a consultative process where Community Federation in 4 wards developing ward sanitation action plans which will lead to development of Municipal Sanitation strategy. The three Municipality will eventually consolidate their strategies to develop a city wide sanitation strategy.
SUPPORTING COMMUNITIES TO EFFECTIVELY ENGAGE WITH LGA AND UTILITY
Water, sanitation and hygiene research at Ifakara Health Institute

Dr Jacqueline Thomas (Senior Scientist)
Ms Fatuma Matwewe (Research Officer)
Mr Emmanuel Mrimi (Research Officer)
Mr Revocatus Musiba (Research Officer)
Largest not-for profit research institute in East Africa
CURRENT PROJECTS – FAECAL FERTILIZER

Round 6 Grant # 0553-01-10
$CAD 100 000
April 2014 – October 2015
Mr Emmanuel Mrimi

A novel rice husk fired furnace to heat sterilize faecal sludge and create safe faecal fertilizer
GCC – FAECAL FERTILIZER PROJECT

Rice husk

Sludge drying bed leachate

Lab tests

Trials with farmers

Pyrolysis
FAECAL FERTILIZER PROJECT

USAGE OF FERTILIZER

• 75% of the farmers do not use fertilizer

• With the high price of fertilizer being the major reason for 90%.

Do you use fertilizer on your crops

- Yes
- No

Why don't you use fertilizer?

- DO NOT NEED THEM
- TOO MUCH WORK
- TOO EXPENSIVE
- OTHER
Reducing diarrhea incidence in urban slums and rural areas by houseflies control with a novel insecticide-baited trap and mobile phone advertising
F Diagram: transmission routes of faecal pathogens
Controlling flies can reduce diarrhoeal disease prevalence by between 22 – 26 % (Emerson et al., 1999)

Musca domestica (houseflies) can carry high densities of Shigella bacteria (Tamer et al., 2013)

An attract and insecticide will be combined into a novel trap design.

In consultation with local mobile phone companies a model will be developed for paid advertising space on the traps.

The impact of the traps will be trailed in both rural and urban communities.
INNOVATION

DEWATS plant in Kigamboni, Dar es Salaam, Tanzania.

- BORDA designed a novel DEWATS plant for sludge disposal from household pit latrines.
- In Dar households pay TSH 50,000 – 200,000 to empty latrines/septics.
- This waste normally is illegally dumped.
- The business model based on collection and treatment at Kigamboni is working.

Bio-solids for fertilizer

Bremen Overseas Research and Development Association
'Sanitation services'

- Latrine upgrading service
- Latrine emptying service

Resource recovery

- Bio-solids for fertilizer
- Biogas for cooking

M&E

Treatment plant

- Resource recovery
- Biogas for cooking
FUTURE RESEARCH PLANS

- **Resource recovery from faecal sludge** - research on novel technologies with local implementing partnerships such as BORDA

- **WaSH surveillance** – essential monitoring platform for WaSH practices and health impacts.
 - DHSS – 330 000 in 3 districts
 - SPDS – 800 000 in 23 districts

- **Research focus** –
 - Pyrolysis of dried faecal sludge to make charcoal.
 - Safe bio-solids markets
WAT Urban and Rural Sanitation Programme

Lessons Learnt
WAT Experience

- Mtumba Approach (Rural)
 - Sanitation Marketing
 Sanitation options (technology)
 - Improved Toilets
 - Environment

- Commercial Model (Urban)
 - Entrepreneurships
 - Financing
 - Technology
 - Environment

Strong and focused Leadership with business mind
Lessons Learnt: The sanitation business demand?

- **Sanitation is a profitable business with untapped market**

<table>
<thead>
<tr>
<th>Underlying Size of Business</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both NUMEGRO and UMAWA are only able to reach to:</td>
</tr>
<tr>
<td>- Wet Seasons (March-June) 950 Toilets*</td>
</tr>
<tr>
<td>- Dry Seasons (July- February) 750 Toilets*</td>
</tr>
</tbody>
</table>

Extrapolations

- Temeke Municipality has population is **1,368,881** and Total Households **351,000**
- Assuming 1 Toilet is shared between 4 households = **87,750** Toilets in Temeke
- Assuming target of 80% is served by competition; 20% translate to **17,550** toilets
 - The 2 SE only serve approximately **5%** of total toilets
 - The market is still enamours (**95%** unserved)

Un-exploited(Unreached) 95 Percent Market

- With annual Gross income of Tshs **27,264,000** ($15,147), The two S.E are missing out on about Tshs **518,016,000** ($287,793)

Number of toilet reached was obtained through in-depth discussions with the 2 S.Es
Lessons Learnt: Access & Affordability is context specific

Access to Basic Sanitation Services

- Most households pay for sanitation services
- Opportunity indicating that sanitation is a business

Who do you pay for these services?

- Most household do not recognize S.E groups by names.
- This could be attributed to the low levels of education?
- Unique in Keko where majority could tell service provider
- Marketing campaigns needs to be enhanced
The need for regular Demand assessments and promotion of appropriate approaches and products
Lessons Learnt: Business focus vs. Services

- Both rural and urban sanitation requires clear business models.
- Context specific

- Coordinated stakeholders with clear responsibilities;
 - Government
 - Micro financing institutions
 - Entrepreneurs
 - Research and training institutions
 - Customers
 - Technical Support (business orientation, Indicators & M&E system)
Lessons learnt: The Private sector and Leadership

- Target a private sector

- Strong leadership with business mind.
Lessons Learnt: Integrated approach

- Maximizing the impact of Water on improving SH, and WASH on wider development;
 - Thinking (achieving SDGs as a whole). What is takes?
 - Planning
 - Implementation
 - Monitoring
Tanzania has not met WASH MDGs

- That means 6.2 million Tanzanians that poo outside!
- Sustainability???

(Sanitation progress, JMP 2014)
WASH as An Entry Point For Improved Maternal and Newborn Health, and Infection Prevention and Control

Name: Catherine Kahabuka (MD, Ph.D.)
Affiliation: Consultant at CSK Research Solutions
• A long discovered **path breaking solution** still largely ignored today!
Since 2010, SHARE has funded several studies aiming at advancing the evidence base on the relationship between WASH and MNH;
1. An exploration of the links between WASH and MNH (A Conceptual framework)

Methods:
A systematic mapping and evaluation of the direct and indirect pathways between WASH and MNH via a conceptual approach and a scoping review.

Key Findings:
- 67 biological/chemical “in water” and 10 “behavioral” risk mechanisms linking WASH to MNH outcomes.
2. A systematic review of evidence on effect of water & sanitation on maternal mortality

Methods:
A systematic review and meta-analysis of published literature in Medline, Embase, Popline and Africa Wide EBSCO since 1980 (14 articles were found).

Key Findings:
• Women in households with poor sanitation had thrice the odds maternal mortality (OR = 3.07 : 95% CI 1.72–5.49).
• Poor water environment also significantly associated with higher maternal mortality (OR = 1.50, 95% CI 1.10–2.10).
3. An assessment of the water and sanitation environments of birth settings - Tanzania

Methods: Secondary data analyses;
• 2010 TDHS: to characterize the delivery location of births occurring between 2005 and 2010.
• 2006 SPA survey: to characterize the WATSAN environment of facilities that conduct deliveries.

Key Findings:
• Only 44% of facilities overall and 24% of facility delivery rooms were WATSAN safe.
• Only 1.5% of all births that occurred in homes were WATSAN-safe (42.9% of all births occur in homes).

* WATSAN-safe: fulfilling international definitions of improved water and improved sanitation access.
4. Needs assessments of infection prevention control and WASH in maternity units: Zanzibar Case Study

Methods:
• Facility questionnaire: **Coverage** of WASH & IPC (n=37).
• In-depth assessment: **Status** of WASH & IPC (n=7)
 – visual, photographs, microbiological swabs & water samples (n=7), and IDIs.

Key findings:
• All units = improved water source.
 • Water interruptions a huge challenge.
WATER QUALITY

Hand washing water

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1-10</th>
<th>11-100</th>
<th>101-300</th>
<th>300+</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Count</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>17</td>
<td>4</td>
<td>34</td>
</tr>
<tr>
<td>E</td>
<td>11</td>
<td>10</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>34</td>
</tr>
<tr>
<td>F.C</td>
<td>26</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>34</td>
</tr>
<tr>
<td>TOTAL</td>
<td>37</td>
<td>18</td>
<td>26</td>
<td>17</td>
<td>4</td>
<td>102</td>
</tr>
</tbody>
</table>

Drinking water for clients

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1-10</th>
<th>11-100</th>
<th>101-300</th>
<th>300+</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Count</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>E</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>F.C</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>TOTAL</td>
<td>10</td>
<td>4</td>
<td>7</td>
<td>5</td>
<td>1</td>
<td>27</td>
</tr>
</tbody>
</table>
4. Needs assessments of infection prevention control and WASH in maternity units: Zanzibar Case Study

Non-supportive infrastructure for proper hand hygiene.

In 30% of PHCUs, no functional hand washing stations in the maternity area (n=29).

Insufficient no. of toilets (75%) & **broken** toilets facilities (100%)

Only 12% of toilets observed had a functioning **flushing system**.
4. Needs assessments of infection prevention control and WASH in maternity units: Zanzibar Case Study

Five major challenges facing maintenance of WASH facilities in maternity units (IDIs);

1. Insufficient **no. of cleaners**.
2. Lack of **WASH training** – highly contaminated surface swabs.
3. **Clinical tasks** vs. cleaning tasks.
4. Lack of **WASH maintenance** personel.
5. **Poor knowledge** among women clients.
Conclusion

• Leveraging WASH to support efforts on MNH is a significant missed opportunity.

• SHARE’s work provides evidence-base both to guide action, and advocacy for high-level political recognition of WASH as a critical component of MNH strategies.

• More considerations needed for better quality and sustainable WASH.
WASH IN HEALTH FACILITIES:
ON-GOING ASSESSMENT

Name: Hamisi M. Malebo, Dip. Ed (Sc), B.Sc(Hons), M.Sc, PhD, FASI
Affiliation: National Institute for Medical Research, P.O. Box 9653, Dar es Salaam, Tanzania.
E-mail: Malebo@hotmail.com
Background

• Improvements in water, sanitation and hygiene (WASH) practices and infrastructure is one of the most important and cost-effective methods for decreasing the burden of infectious diseases worldwide

• Insufficient hygiene and sanitation practices and infrastructure are associated with a multitude of diseases, including:
 ✓ acute respiratory tract infections
 ✓ skin diseases such as scabies and ringworm
 ✓ intestinal parasites and diarrheal illness

• HOWEVER, THIS BURDEN OF DISEASE IS NOT JUST IN CHILDREN; "EVERY YEAR ACROSS THE GLOBE AROUND TWO MILLION PEOPLE DIE OF DIARRHEAL ILLNESS"
Known causes of neonatal deaths

• The three major causes of neonatal deaths worldwide are:
 ✓ infections (36%, which includes sepsis, pneumonia, tetanus and diarrhoea)
 ✓ pre-term (28%),
 ✓ birth asphyxia (23%).
Diarrhea in children

• Each year diarrhea kills around 760,000 children under five.
• Diarrhea disease is the second leading cause of death in children under five years old.
• DIARRHEA DISEASE IS BOTH PREVENTABLE AND TREATABLE THROUGH SAFE DRINKING-WATER AND ADEQUATE SANITATION AND HYGIENE (WASH).
Why WASH in health facilities?

• Safe and sufficient drinking-water, along with adequate sanitation and hygiene have implications across all Millennium Development Goals (MDGs)
 ✓ from eradicating poverty and hunger,
 ✓ reducing child mortality,
 ✓ improving maternal health,
 ✓ combating infectious diseases,
 ✓ to ensuring environmental sustainability.

WHO, 2015
Water supply in Health Facilities in Tanzania

• 38% of health facilities in developing countries lack access to even rudimentary levels of water (WHO/UNICEF, 2015)

• Water supplies in dispensaries and health centers in Tanzania are often non-existent, erratic, and unsafe (Kahabuka et al., 2012)

• Almost two thirds of all health facilities in Tanzania lack a regular water supply (Ben Taylor, 2009)

• In hospitals, the main challenge is the reliability of water sources: 96 percent of hospitals have on-site water sources, but only 42 percent have year-round supply (Ben Taylor, 2009)

• A third of health centres and almost half of all dispensaries have no safe on-site water supply at all (Ben Taylor, 2009)
Challenges

• Using contaminated drinking water to provide medications, including anti-tuberculosis drugs, de-worming medications, first doses of antibiotics for common infections, zinc and Vitamin A, and oral rehydration solutions can increase the risk of enteric infections in all patients and the risk of opportunistic infections in HIV-infected persons.
Handwashing in Health Facilities

• Estimated over 50% of health care facilities (HCFs) in developing countries lack access to hand washing facilities (WHO/UNICEF, 2015).
• The risk of healthcare-associated infections (HAIs) in developing countries is approximately 2–20 times greater than in higher-income countries.
• Poor hand hygiene in healthcare facilities is a long-recognized risk factor for HAIs.
• Lack of safe water for handwashing and personal hygiene can increase the risk of enteric infections in all patients and the risk of opportunistic infections in HIV-infected persons.
Sanitary facilities in Health Facilities

• Over one-third of all health facilities in Tanzania have no client latrine facilities (Ben Taylor, 2009).

"Sanitation is a cornerstone of public health," said WHO Director-General Dr Margaret Chan. "Improved sanitation contributes enormously to human health and well-being, especially for girls and women. We know that simple, achievable interventions can reduce the risk of contracting diarrhea disease by a third."
How to address WASH in health facilities?

Three key factors have to be addressed:

• Predisposing factors - knowledge, attitudes and belief of key actors
• Enabling factors - availability of resources
• Reinforcing factors - ability to sustain appropriate sanitation and hygiene behavior in health facilities
ONGOING SITUATIONAL ANALYSIS OF SAFE WATER SUPPLY, SANITATION INFRASTRUCTURE, HAND-WASHING FACILITIES AND HYGIENIC PRACTICES IN HEALTH FACILITIES WITHIN 7 UNICEF PROGRAM DISTRICTS FOR PROVIDING EVIDENCE BASED RECOMMENDATIONS, GUIDANCE DOCUMENTS AND TECHNICAL ADVICE ON GOVERNMENT PROGRAMMATIC ACTIONS IN TANZANIA

Main objective

• To support the Ministry of Health and Social Welfare’s wider plans to improve quality of care in health facilities through an assessment of availability, quality and coverage of water supply, sanitation infrastructure, hand washing facilities and hygienic practices in HCFs with a view to generate evidence-based recommendations for policy and actions geared towards improving MCH conditions, prevention and control of WASH related infection.
CONCEPTUAL FRAMEWORK

DETERMINANTS OF CLEANING PRACTICE

- Contextual drivers
 (e.g. WASH infrastructure - water supply, sanitation system etc., Government & health facility policies, management, available materials (mops, cloths, cleaning resources etc.), promotion, regulation)

- Individual drivers
 (e.g. knowledge, attitudes & beliefs, status, perceived support, social norms, expectations, intention (locus of control))

Key
1 Perceived cleanliness from visual clues
2 Healthcare environment
3 Objectively-assessed safety from infection risk assessment

Cleaning Practice (Behaviour) → Degree of Visible Cleanliness\(^1\) of HCE\(^2\) → Degree of Safety\(^3\) of HCE

OUTCOMES
- Satisfaction (patient/provider)
- Acceptability
- Health outcomes
METHODOLOGY

Study Design: cross sectional study

- HCFs level in 7 UNICEF programme districts
- Assessment components:
 - direct observation of safe water supply, sanitation infrastructure, hand washing facilities and hygienic practices in HCFs
 - Isolation and identification of microorganisms from available water for handwashing and other healthcare purposes
 - Isolation and identification of microorganisms from touch surfaces and handwashes from healthcare workers, patients and visitors
 - Determination of antibiotic, antiseptic and disinfectant susceptibility pattern of isolated microbes
 - administration of an anonymous questionnaire to test HCWs knowledge on infection prevention in health care.
water supply
- Entry point
- At service points
- Stored water
- Transported water in HCF
- Water containers

Staff and OPD Toilet and bathrooms
- HW Basin
- Bathroom rails
- Door Knobs
- Tap handle
- Tap mouth
- Foot rest

Incharge & cleaning room
- HW Basin
- Bathroom rails
- Door Knobs
- Tap handle
- Tap mouth
- Foot rest
- Drawers (handles)

Labor room and ward
- Delivery bed rail
- Mattress
- Infant receiver/balance
- HW Basin
- Tray table
- Door knob
- Tap handle
- Tap mouth
- IV Pole
- Floor
- Drawers (handles)

Pediatric ward
- Bed rail
- IV Pole
- Tray table
- Door knob
- Floor
- Ward toilets
- Tap handle
- Tap mouth

Hand washes
- Medical attendants/Axillary
- Technical staff on duty
- Clinician/Nurses
- Infant mothers/care givers
- Visitors
Acknowledgement

• UNICEF for financially supporting these studies
• Ministry of Health and Social Welfare
• MUHAS
• NIMR
• MOWI
• Geita and Kisarawe District Councils
• PSI, Segerea Pharmacy, East Africa Ceramics, Simba Plastics Ltd
Thanks for Listening
Priority areas for further research on sanitation and hygiene in Tanzania

Amour Seleman
Environmental Health Officer
Water and Sanitation Section
Regional Vision on Sanitation and hygiene

• To achieve universal access to adequate and sustainable sanitation and hygiene services and eliminate open defecation by 2030.
Regional Commitments

• Training institutions to strengthen local capacity to deliver appropriate services in line with demand;
• Research institutions to strengthen the evidence base and develop innovative locally appropriate solutions;
• The private sector to increase its engagement in the entire sanitation and hygiene value chain to improve innovation and efficiency;
Focus for NSC Phase II

Six areas of focus
1) Sanitation and hygiene (S+H) at household level
2) S+H facilities in primary Schools
3) S+H facilities in Secondary Schools
4) S+H facilities in Health facilities
5) S+H facilities in facilities in transport hubs
6) Household water treatment and safe storage
Gray areas that need further research

- Socio cultural drivers to OD practices particularly among communities near large water bodies.
- Disposal of child faeces disposal in rural and urban areas
- Comprehensive mapping of sanitation and hygiene stakeholders in the country
Areas for further research...

• Behavior change approaches for overcoming hard to change communities
• Socio cultural dimensions to hand washing with soap at critical times.
• Current and future sanitation systems appropriate for urban and urbanizing communities
Areas for further research...

- Shit flow diagrams for urban and Small towns

Example for a SFD and a context visualization (SDA):

Areas for further research...

• Impact of improved sanitation (ODF status) on health and social welfare
• Adequacy of WASH in public areas (markets, Health facilities and offices)
• Human and institutional capacity development strategies for sanitation and hygiene improvement
Areas for further research...

• Increasing supply of sanitation and hygiene commodities in hard to reach communities
• Alternative and progressive financing mechanisms for urban sanitation systems
• Enhancing public private partnership in sanitation and hygiene promotion
• Socio-economic barriers to water treatment and safe storage at household and in schools
Thank you for your participation
Deworming, Hand Hygiene and Child Development

3Saidi Kapiga, 2Jeroen Ensink, 1Safari Kinunghi, 2Heiner Grosskurth, 2Adam Biran

1National Institute for Medical Research (NIMR), Mwanza Centre, Tanzania.
2London School of Hygiene and Tropical Medicine, UK
3Mwanza Intervention Trials Unit (MITU), Mwanza, Tanzania
PRESENTATION OVERVIEW

• Background
• Project aims and objectives
• Projects methods
• Project outputs
STH BACKGROUND

- STH infections are highly prevalent globally
 - Ascaris lumbricoides: 807 million infected
 - Trichuris trichuria: 604 million infected
 - Hookworm: 576 million infected
- They cause high disease burden particularly in poor communities
 - Associated with anemia, malnutrition, stunted growth, poor cognitive development, adverse birth effects
- Level of sanitation and hygiene is important in disease transmission, though role played by hand hygiene is unclear
BACKGROUND (CONTD...)

- In Tanzania, the Soil–Transmitted helminths (mainly Hookworms, Ascaris and Trichuris) occur throughout the country.
- They are associated with poverty and underdevelopment, most prevalent in the poorest communities.
- Transmission is associated with poor hygiene and sanitation.
- STHs infect all age groups, however, the most vulnerable groups include school age children, women of child-bearing age and adolescent girls.
BACKGROUND (CONT'D...)

- Major control interventions currently exist, mainly deworming programmes using ALB/MBZ
- ALB/MBZ are highly effective drugs, cheap, no major side effects, no evidence of drug resistance
- However: 10 years of deworming programmes, little to no impact on child development/stunted growth
- Reinfection is rapid, for Ascaris within a year
- Interestingly, there has been promising results from deworming + Hygiene from China
The study showed an increased knowledge of worm infections and a 50% reduction in reinfection.
Key Findings

- Hands and Ascaris infection: Method developed with high recovery (96%)
 - 35% of hands positive in high risk area (agric use of excreta)
 - 5-10% in poor sanitation area (China)
 - 20% school children in SA
PROPOSED RESEARCH WORK:
ADOPTED FROM SUPERAMMA PROJECT, INDIA

http://www.superamma.org/campaign-film.html
AIMS

- To assess the extent to which a behaviour change intervention to promote hand washing with soap among school aged children can reduce both the prevalence and intensity of *Ascaris lumbricoides* and *Trichuris trichiura* infection in these children.

- To improve the value for money (VFM) of deworming campaigns in Tanzania, by reducing reinfection rates of STH through improved hand hygiene.
OBJECTIVES

• To design a scalable, school-based behaviour change intervention to promote hand washing with soap at key times among school aged children (6-14 years).

• To assess the effectiveness of this intervention in changing hand washing behaviour.

• To assess the effectiveness of this intervention in reducing re-infection rates of STH in school aged children.
METHODS

- RCT implemented in 20 schools in Mwanza city (10 schools per arm), enrolling 6,000 school age children
- Preliminary survey to confirm study site and sample size
- Intervention roll out
 - Hand rinses at baseline & endline
 - Observed behaviour at baseline & endline
 - Stool survey + deworming at baseline & endline
PHASE 2

• Scale up and incorporation/testing of intervention in national deworming programmes in order to establish impact under ‘real’ implementation conditions
PROJECT KEY OUTPUT

• Hand hygiene intervention developed and evaluated under “real” conditions
• Hand hygiene intervention scaled up and incorporated into national deworming programmes
• Value for money for deworming programmes
THANK YOU FOR YOUR ATTENTION
“Achieving Universal Access to adequate, sustainable and equitable sanitation services in the Cities of Tomorrow”

Name: Francis Ntitu, Erin Flynn & Timeyin Uwejamomere
Affiliation: WaterAid
Content

Context

Research problem

Research objective and questions

Methodology

Outline

Site selection criteria

Recce visit
Context

Post-2015 Global Development Agenda

Ngor Declaration, AfricaSan4

To achieve universal access to adequate and sustainable sanitation and hygiene services and eliminate open defecation by 2030

But we still don’t know how to reach the urban poor, particularly in small towns.

WaterAid/Dieter Telemans
Research problem

We still don’t know how:

We don’t have adequate, clear information

Inequalities in the allocation and targeting of development finance

Few cities and towns have robust and credible plans on how they are going to progress to universal coverage

Attempts to deliver at scale has faced several challenges
Research objective

WaterAid proposes an applied research to

understand how to serve the poor in a universal access scenario

The research would demonstrate and investigate

the conditions under which municipalities can deliver town-wide strategic infrastructure plans and sanitation facilities & services

that can deliver inclusive, sustainable sanitation services to all,

with appropriate and viable sanitation solutions that meets the needs of the poorest and most marginalised.
Research questions

1. Does collaborative and consultative planning, led by municipal government with the support of city planners, result in a city-wide sanitation plan that is owned and feasible with consideration given to the poorest?

2. What are the economic, political and policy conditions necessary for municipal authorities to design and implement an inclusive universal access sanitation plan?

3. What motivates and drives public (government) and private (households and community groups) initiatives to improve or invest in sanitation facilities and infrastructure in an urban context?

Ideally, a collaborative and consultative participatory planning process should link bottom-up and top-down actions or approaches.
Methodology

Identification of site

Conceptual framework of analysis to:
 iteratively assess the extent to which the intervention is addressing
 criteria essential to the successful implementation of the chosen
 scenario

 whether the proposed collaborative and consultative approach
 results in plans that can be delivered.

Data collection:
 Desk review / study & literature survey
 Key informants interview and consultation
 Regulatory assessment

 Poverty pocket mapping, case studies & anecdotes
Partnerships, Actions & Outputs

We will work with local partners – municipal & regional authority, academics and NGOs to develop a citywide plan - with inbuilt scenarios and cost options for universal access

We will conduct a research to inform the research questions

We will invest on a section of the city to promote sanitation up-take

We will work with others – municipality to strengthen processes and actions to deliver sanitation across the city

Research Uptake: We will use our results and progress stories to influence Government of Tanzania to plan for and roll out universal access for towns

Process guide
Conceptual framework
Citywide sanitation plan
Research papers, project report,
Site selection criteria

We believe universal access can be achieved

We are looking for a small town who believe this as well

With current plans, interest and capability

Readiness to strengthen own and actors capacity to deliver a citywide sanitation service

Population, prior action / plan, economic status, and willingness to invest in sanitation initiatives

Local citizens’ community development interests
Recce visits

Candidate towns: Geita and Babati

A dating service: Establish a familiarity between municipal / town; regional authority and WaterAid / SHARE

Understanding of the existing and planned situation of sanitation in town

Basic understanding of the SHARE-2 research

A sense of whether a partnership is possible
Thank you